author | wenzelm |
Mon, 08 May 2017 10:27:13 +0200 | |
changeset 65767 | 222ed8901008 |
parent 64267 | b9a1486e79be |
child 66453 | cc19f7ca2ed6 |
permissions | -rw-r--r-- |
63627 | 1 |
(* Title: HOL/Analysis/L2_Norm.thy |
36333 | 2 |
Author: Brian Huffman, Portland State University |
3 |
*) |
|
4 |
||
60420 | 5 |
section \<open>Square root of sum of squares\<close> |
36333 | 6 |
|
7 |
theory L2_Norm |
|
8 |
imports NthRoot |
|
9 |
begin |
|
10 |
||
11 |
definition |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
49962
diff
changeset
|
12 |
"setL2 f A = sqrt (\<Sum>i\<in>A. (f i)\<^sup>2)" |
36333 | 13 |
|
14 |
lemma setL2_cong: |
|
15 |
"\<lbrakk>A = B; \<And>x. x \<in> B \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> setL2 f A = setL2 g B" |
|
16 |
unfolding setL2_def by simp |
|
17 |
||
18 |
lemma strong_setL2_cong: |
|
19 |
"\<lbrakk>A = B; \<And>x. x \<in> B =simp=> f x = g x\<rbrakk> \<Longrightarrow> setL2 f A = setL2 g B" |
|
20 |
unfolding setL2_def simp_implies_def by simp |
|
21 |
||
22 |
lemma setL2_infinite [simp]: "\<not> finite A \<Longrightarrow> setL2 f A = 0" |
|
23 |
unfolding setL2_def by simp |
|
24 |
||
25 |
lemma setL2_empty [simp]: "setL2 f {} = 0" |
|
26 |
unfolding setL2_def by simp |
|
27 |
||
28 |
lemma setL2_insert [simp]: |
|
29 |
"\<lbrakk>finite F; a \<notin> F\<rbrakk> \<Longrightarrow> |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
49962
diff
changeset
|
30 |
setL2 f (insert a F) = sqrt ((f a)\<^sup>2 + (setL2 f F)\<^sup>2)" |
64267 | 31 |
unfolding setL2_def by (simp add: sum_nonneg) |
36333 | 32 |
|
33 |
lemma setL2_nonneg [simp]: "0 \<le> setL2 f A" |
|
64267 | 34 |
unfolding setL2_def by (simp add: sum_nonneg) |
36333 | 35 |
|
36 |
lemma setL2_0': "\<forall>a\<in>A. f a = 0 \<Longrightarrow> setL2 f A = 0" |
|
37 |
unfolding setL2_def by simp |
|
38 |
||
39 |
lemma setL2_constant: "setL2 (\<lambda>x. y) A = sqrt (of_nat (card A)) * \<bar>y\<bar>" |
|
40 |
unfolding setL2_def by (simp add: real_sqrt_mult) |
|
41 |
||
42 |
lemma setL2_mono: |
|
43 |
assumes "\<And>i. i \<in> K \<Longrightarrow> f i \<le> g i" |
|
44 |
assumes "\<And>i. i \<in> K \<Longrightarrow> 0 \<le> f i" |
|
45 |
shows "setL2 f K \<le> setL2 g K" |
|
46 |
unfolding setL2_def |
|
64267 | 47 |
by (simp add: sum_nonneg sum_mono power_mono assms) |
36333 | 48 |
|
49 |
lemma setL2_strict_mono: |
|
50 |
assumes "finite K" and "K \<noteq> {}" |
|
51 |
assumes "\<And>i. i \<in> K \<Longrightarrow> f i < g i" |
|
52 |
assumes "\<And>i. i \<in> K \<Longrightarrow> 0 \<le> f i" |
|
53 |
shows "setL2 f K < setL2 g K" |
|
54 |
unfolding setL2_def |
|
64267 | 55 |
by (simp add: sum_strict_mono power_strict_mono assms) |
36333 | 56 |
|
57 |
lemma setL2_right_distrib: |
|
58 |
"0 \<le> r \<Longrightarrow> r * setL2 f A = setL2 (\<lambda>x. r * f x) A" |
|
59 |
unfolding setL2_def |
|
60 |
apply (simp add: power_mult_distrib) |
|
64267 | 61 |
apply (simp add: sum_distrib_left [symmetric]) |
62 |
apply (simp add: real_sqrt_mult sum_nonneg) |
|
36333 | 63 |
done |
64 |
||
65 |
lemma setL2_left_distrib: |
|
66 |
"0 \<le> r \<Longrightarrow> setL2 f A * r = setL2 (\<lambda>x. f x * r) A" |
|
67 |
unfolding setL2_def |
|
68 |
apply (simp add: power_mult_distrib) |
|
64267 | 69 |
apply (simp add: sum_distrib_right [symmetric]) |
70 |
apply (simp add: real_sqrt_mult sum_nonneg) |
|
36333 | 71 |
done |
72 |
||
73 |
lemma setL2_eq_0_iff: "finite A \<Longrightarrow> setL2 f A = 0 \<longleftrightarrow> (\<forall>x\<in>A. f x = 0)" |
|
74 |
unfolding setL2_def |
|
64267 | 75 |
by (simp add: sum_nonneg sum_nonneg_eq_0_iff) |
36333 | 76 |
|
77 |
lemma setL2_triangle_ineq: |
|
78 |
shows "setL2 (\<lambda>i. f i + g i) A \<le> setL2 f A + setL2 g A" |
|
79 |
proof (cases "finite A") |
|
80 |
case False |
|
81 |
thus ?thesis by simp |
|
82 |
next |
|
83 |
case True |
|
84 |
thus ?thesis |
|
85 |
proof (induct set: finite) |
|
86 |
case empty |
|
87 |
show ?case by simp |
|
88 |
next |
|
89 |
case (insert x F) |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
49962
diff
changeset
|
90 |
hence "sqrt ((f x + g x)\<^sup>2 + (setL2 (\<lambda>i. f i + g i) F)\<^sup>2) \<le> |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
49962
diff
changeset
|
91 |
sqrt ((f x + g x)\<^sup>2 + (setL2 f F + setL2 g F)\<^sup>2)" |
36333 | 92 |
by (intro real_sqrt_le_mono add_left_mono power_mono insert |
93 |
setL2_nonneg add_increasing zero_le_power2) |
|
94 |
also have |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
49962
diff
changeset
|
95 |
"\<dots> \<le> sqrt ((f x)\<^sup>2 + (setL2 f F)\<^sup>2) + sqrt ((g x)\<^sup>2 + (setL2 g F)\<^sup>2)" |
36333 | 96 |
by (rule real_sqrt_sum_squares_triangle_ineq) |
97 |
finally show ?case |
|
98 |
using insert by simp |
|
99 |
qed |
|
100 |
qed |
|
101 |
||
102 |
lemma sqrt_sum_squares_le_sum: |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
49962
diff
changeset
|
103 |
"\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> sqrt (x\<^sup>2 + y\<^sup>2) \<le> x + y" |
36333 | 104 |
apply (rule power2_le_imp_le) |
56536 | 105 |
apply (simp add: power2_sum) |
44142 | 106 |
apply simp |
36333 | 107 |
done |
108 |
||
64267 | 109 |
lemma setL2_le_sum [rule_format]: |
110 |
"(\<forall>i\<in>A. 0 \<le> f i) \<longrightarrow> setL2 f A \<le> sum f A" |
|
36333 | 111 |
apply (cases "finite A") |
112 |
apply (induct set: finite) |
|
113 |
apply simp |
|
114 |
apply clarsimp |
|
115 |
apply (erule order_trans [OF sqrt_sum_squares_le_sum]) |
|
116 |
apply simp |
|
117 |
apply simp |
|
118 |
apply simp |
|
119 |
done |
|
120 |
||
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
49962
diff
changeset
|
121 |
lemma sqrt_sum_squares_le_sum_abs: "sqrt (x\<^sup>2 + y\<^sup>2) \<le> \<bar>x\<bar> + \<bar>y\<bar>" |
36333 | 122 |
apply (rule power2_le_imp_le) |
56536 | 123 |
apply (simp add: power2_sum) |
44142 | 124 |
apply simp |
36333 | 125 |
done |
126 |
||
64267 | 127 |
lemma setL2_le_sum_abs: "setL2 f A \<le> (\<Sum>i\<in>A. \<bar>f i\<bar>)" |
36333 | 128 |
apply (cases "finite A") |
129 |
apply (induct set: finite) |
|
130 |
apply simp |
|
131 |
apply simp |
|
132 |
apply (rule order_trans [OF sqrt_sum_squares_le_sum_abs]) |
|
133 |
apply simp |
|
134 |
apply simp |
|
135 |
done |
|
136 |
||
137 |
lemma setL2_mult_ineq_lemma: |
|
138 |
fixes a b c d :: real |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
49962
diff
changeset
|
139 |
shows "2 * (a * c) * (b * d) \<le> a\<^sup>2 * d\<^sup>2 + b\<^sup>2 * c\<^sup>2" |
36333 | 140 |
proof - |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
49962
diff
changeset
|
141 |
have "0 \<le> (a * d - b * c)\<^sup>2" by simp |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
49962
diff
changeset
|
142 |
also have "\<dots> = a\<^sup>2 * d\<^sup>2 + b\<^sup>2 * c\<^sup>2 - 2 * (a * d) * (b * c)" |
36333 | 143 |
by (simp only: power2_diff power_mult_distrib) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
49962
diff
changeset
|
144 |
also have "\<dots> = a\<^sup>2 * d\<^sup>2 + b\<^sup>2 * c\<^sup>2 - 2 * (a * c) * (b * d)" |
36333 | 145 |
by simp |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
49962
diff
changeset
|
146 |
finally show "2 * (a * c) * (b * d) \<le> a\<^sup>2 * d\<^sup>2 + b\<^sup>2 * c\<^sup>2" |
36333 | 147 |
by simp |
148 |
qed |
|
149 |
||
150 |
lemma setL2_mult_ineq: "(\<Sum>i\<in>A. \<bar>f i\<bar> * \<bar>g i\<bar>) \<le> setL2 f A * setL2 g A" |
|
151 |
apply (cases "finite A") |
|
152 |
apply (induct set: finite) |
|
153 |
apply simp |
|
154 |
apply (rule power2_le_imp_le, simp) |
|
155 |
apply (rule order_trans) |
|
156 |
apply (rule power_mono) |
|
157 |
apply (erule add_left_mono) |
|
64267 | 158 |
apply (simp add: sum_nonneg) |
36333 | 159 |
apply (simp add: power2_sum) |
160 |
apply (simp add: power_mult_distrib) |
|
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
44142
diff
changeset
|
161 |
apply (simp add: distrib_left distrib_right) |
36333 | 162 |
apply (rule ord_le_eq_trans) |
163 |
apply (rule setL2_mult_ineq_lemma) |
|
56536 | 164 |
apply simp_all |
36333 | 165 |
done |
166 |
||
167 |
lemma member_le_setL2: "\<lbrakk>finite A; i \<in> A\<rbrakk> \<Longrightarrow> f i \<le> setL2 f A" |
|
63938 | 168 |
unfolding setL2_def |
64267 | 169 |
by (auto intro!: member_le_sum real_le_rsqrt) |
36333 | 170 |
|
171 |
end |