104
|
1 |
%% $Id$
|
315
|
2 |
\chapter{Higher-Order Logic}
|
|
3 |
\index{higher-order logic|(}
|
|
4 |
\index{HOL system@{\sc hol} system}
|
|
5 |
|
|
6 |
The theory~\thydx{HOL} implements higher-order logic.
|
344
|
7 |
It is based on Gordon's~{\sc hol} system~\cite{mgordon-hol}, which itself is
|
315
|
8 |
based on Church's original paper~\cite{church40}. Andrews's
|
|
9 |
book~\cite{andrews86} is a full description of higher-order logic.
|
|
10 |
Experience with the {\sc hol} system has demonstrated that higher-order
|
|
11 |
logic is useful for hardware verification; beyond this, it is widely
|
|
12 |
applicable in many areas of mathematics. It is weaker than {\ZF} set
|
|
13 |
theory but for most applications this does not matter. If you prefer {\ML}
|
|
14 |
to Lisp, you will probably prefer \HOL\ to~{\ZF}.
|
104
|
15 |
|
315
|
16 |
Previous releases of Isabelle included a different version of~\HOL, with
|
|
17 |
explicit type inference rules~\cite{paulson-COLOG}. This version no longer
|
|
18 |
exists, but \thydx{ZF} supports a similar style of reasoning.
|
104
|
19 |
|
306
|
20 |
\HOL\ has a distinct feel, compared with {\ZF} and {\CTT}. It
|
104
|
21 |
identifies object-level types with meta-level types, taking advantage of
|
|
22 |
Isabelle's built-in type checker. It identifies object-level functions
|
|
23 |
with meta-level functions, so it uses Isabelle's operations for abstraction
|
315
|
24 |
and application. There is no `apply' operator: function applications are
|
104
|
25 |
written as simply~$f(a)$ rather than $f{\tt`}a$.
|
|
26 |
|
306
|
27 |
These identifications allow Isabelle to support \HOL\ particularly nicely,
|
|
28 |
but they also mean that \HOL\ requires more sophistication from the user
|
104
|
29 |
--- in particular, an understanding of Isabelle's type system. Beginners
|
315
|
30 |
should work with {\tt show_types} set to {\tt true}. Gain experience by
|
|
31 |
working in first-order logic before attempting to use higher-order logic.
|
|
32 |
This chapter assumes familiarity with~{\FOL{}}.
|
104
|
33 |
|
|
34 |
|
|
35 |
\begin{figure}
|
|
36 |
\begin{center}
|
|
37 |
\begin{tabular}{rrr}
|
111
|
38 |
\it name &\it meta-type & \it description \\
|
315
|
39 |
\cdx{Trueprop}& $bool\To prop$ & coercion to $prop$\\
|
|
40 |
\cdx{not} & $bool\To bool$ & negation ($\neg$) \\
|
|
41 |
\cdx{True} & $bool$ & tautology ($\top$) \\
|
|
42 |
\cdx{False} & $bool$ & absurdity ($\bot$) \\
|
|
43 |
\cdx{if} & $[bool,\alpha,\alpha]\To\alpha::term$ & conditional \\
|
|
44 |
\cdx{Inv} & $(\alpha\To\beta)\To(\beta\To\alpha)$ & function inversion\\
|
|
45 |
\cdx{Let} & $[\alpha,\alpha\To\beta]\To\beta$ & let binder
|
104
|
46 |
\end{tabular}
|
|
47 |
\end{center}
|
|
48 |
\subcaption{Constants}
|
|
49 |
|
|
50 |
\begin{center}
|
315
|
51 |
\index{"@@{\tt\at} symbol}
|
|
52 |
\index{*"! symbol}\index{*"? symbol}
|
|
53 |
\index{*"?"! symbol}\index{*"E"X"! symbol}
|
104
|
54 |
\begin{tabular}{llrrr}
|
315
|
55 |
\it symbol &\it name &\it meta-type & \it description \\
|
|
56 |
\tt\at & \cdx{Eps} & $(\alpha\To bool)\To\alpha::term$ &
|
111
|
57 |
Hilbert description ($\epsilon$) \\
|
315
|
58 |
{\tt!~} or \sdx{ALL} & \cdx{All} & $(\alpha::term\To bool)\To bool$ &
|
111
|
59 |
universal quantifier ($\forall$) \\
|
315
|
60 |
{\tt?~} or \sdx{EX} & \cdx{Ex} & $(\alpha::term\To bool)\To bool$ &
|
111
|
61 |
existential quantifier ($\exists$) \\
|
315
|
62 |
{\tt?!} or {\tt EX!} & \cdx{Ex1} & $(\alpha::term\To bool)\To bool$ &
|
111
|
63 |
unique existence ($\exists!$)
|
104
|
64 |
\end{tabular}
|
|
65 |
\end{center}
|
|
66 |
\subcaption{Binders}
|
|
67 |
|
|
68 |
\begin{center}
|
315
|
69 |
\index{*"= symbol}
|
|
70 |
\index{&@{\tt\&} symbol}
|
|
71 |
\index{*"| symbol}
|
|
72 |
\index{*"-"-"> symbol}
|
104
|
73 |
\begin{tabular}{rrrr}
|
315
|
74 |
\it symbol & \it meta-type & \it priority & \it description \\
|
|
75 |
\sdx{o} & $[\beta\To\gamma,\alpha\To\beta]\To (\alpha\To\gamma)$ &
|
111
|
76 |
Right 50 & composition ($\circ$) \\
|
|
77 |
\tt = & $[\alpha::term,\alpha]\To bool$ & Left 50 & equality ($=$) \\
|
315
|
78 |
\tt < & $[\alpha::ord,\alpha]\To bool$ & Left 50 & less than ($<$) \\
|
|
79 |
\tt <= & $[\alpha::ord,\alpha]\To bool$ & Left 50 &
|
|
80 |
less than or equals ($\leq$)\\
|
111
|
81 |
\tt \& & $[bool,bool]\To bool$ & Right 35 & conjunction ($\conj$) \\
|
|
82 |
\tt | & $[bool,bool]\To bool$ & Right 30 & disjunction ($\disj$) \\
|
315
|
83 |
\tt --> & $[bool,bool]\To bool$ & Right 25 & implication ($\imp$)
|
104
|
84 |
\end{tabular}
|
|
85 |
\end{center}
|
|
86 |
\subcaption{Infixes}
|
|
87 |
\caption{Syntax of {\tt HOL}} \label{hol-constants}
|
|
88 |
\end{figure}
|
|
89 |
|
|
90 |
|
306
|
91 |
\begin{figure}
|
315
|
92 |
\index{*let symbol}
|
|
93 |
\index{*in symbol}
|
104
|
94 |
\dquotes
|
315
|
95 |
\[\begin{array}{rclcl}
|
104
|
96 |
term & = & \hbox{expression of class~$term$} \\
|
315
|
97 |
& | & "\at~" id~id^* " . " formula \\
|
|
98 |
& | &
|
|
99 |
\multicolumn{3}{l}{"let"~id~"="~term";"\dots";"~id~"="~term~"in"~term}
|
|
100 |
\\[2ex]
|
104
|
101 |
formula & = & \hbox{expression of type~$bool$} \\
|
111
|
102 |
& | & term " = " term \\
|
|
103 |
& | & term " \ttilde= " term \\
|
|
104 |
& | & term " < " term \\
|
|
105 |
& | & term " <= " term \\
|
|
106 |
& | & "\ttilde\ " formula \\
|
|
107 |
& | & formula " \& " formula \\
|
|
108 |
& | & formula " | " formula \\
|
|
109 |
& | & formula " --> " formula \\
|
315
|
110 |
& | & "!~~~" id~id^* " . " formula
|
111
|
111 |
& | & "ALL~" id~id^* " . " formula \\
|
315
|
112 |
& | & "?~~~" id~id^* " . " formula
|
111
|
113 |
& | & "EX~~" id~id^* " . " formula \\
|
315
|
114 |
& | & "?!~~" id~id^* " . " formula
|
111
|
115 |
& | & "EX!~" id~id^* " . " formula
|
104
|
116 |
\end{array}
|
|
117 |
\]
|
306
|
118 |
\caption{Full grammar for \HOL} \label{hol-grammar}
|
104
|
119 |
\end{figure}
|
|
120 |
|
|
121 |
|
|
122 |
\section{Syntax}
|
315
|
123 |
The type class of higher-order terms is called~\cldx{term}. Type variables
|
|
124 |
range over this class by default. The equality symbol and quantifiers are
|
|
125 |
polymorphic over class {\tt term}.
|
104
|
126 |
|
315
|
127 |
Class \cldx{ord} consists of all ordered types; the relations $<$ and
|
104
|
128 |
$\leq$ are polymorphic over this class, as are the functions
|
315
|
129 |
\cdx{mono}, \cdx{min} and \cdx{max}. Three other
|
|
130 |
type classes --- \cldx{plus}, \cldx{minus} and \cldx{times} --- permit
|
104
|
131 |
overloading of the operators {\tt+}, {\tt-} and {\tt*}. In particular,
|
|
132 |
{\tt-} is overloaded for set difference and subtraction.
|
315
|
133 |
\index{*"+ symbol}
|
|
134 |
\index{*"- symbol}
|
|
135 |
\index{*"* symbol}
|
104
|
136 |
|
|
137 |
Figure~\ref{hol-constants} lists the constants (including infixes and
|
315
|
138 |
binders), while Fig.\ts\ref{hol-grammar} presents the grammar of
|
287
|
139 |
higher-order logic. Note that $a$\verb|~=|$b$ is translated to
|
315
|
140 |
$\neg(a=b)$.
|
|
141 |
|
|
142 |
\begin{warn}
|
|
143 |
\HOL\ has no if-and-only-if connective; logical equivalence is expressed
|
|
144 |
using equality. But equality has a high priority, as befitting a
|
|
145 |
relation, while if-and-only-if typically has the lowest priority. Thus,
|
|
146 |
$\neg\neg P=P$ abbreviates $\neg\neg (P=P)$ and not $(\neg\neg P)=P$.
|
|
147 |
When using $=$ to mean logical equivalence, enclose both operands in
|
|
148 |
parentheses.
|
|
149 |
\end{warn}
|
104
|
150 |
|
287
|
151 |
\subsection{Types}\label{HOL-types}
|
315
|
152 |
The type of formulae, \tydx{bool}, belongs to class \cldx{term}; thus,
|
|
153 |
formulae are terms. The built-in type~\tydx{fun}, which constructs function
|
|
154 |
types, is overloaded with arity {\tt(term,term)term}. Thus, $\sigma\To\tau$
|
|
155 |
belongs to class~{\tt term} if $\sigma$ and~$\tau$ do, allowing quantification
|
|
156 |
over functions.
|
104
|
157 |
|
315
|
158 |
Types in \HOL\ must be non-empty; otherwise the quantifier rules would be
|
|
159 |
unsound. I have commented on this elsewhere~\cite[\S7]{paulson-COLOG}.
|
|
160 |
|
|
161 |
\index{type definitions}
|
104
|
162 |
Gordon's {\sc hol} system supports {\bf type definitions}. A type is
|
|
163 |
defined by exhibiting an existing type~$\sigma$, a predicate~$P::\sigma\To
|
|
164 |
bool$, and a theorem of the form $\exists x::\sigma.P(x)$. Thus~$P$
|
|
165 |
specifies a non-empty subset of~$\sigma$, and the new type denotes this
|
|
166 |
subset. New function constants are generated to establish an isomorphism
|
|
167 |
between the new type and the subset. If type~$\sigma$ involves type
|
|
168 |
variables $\alpha@1$, \ldots, $\alpha@n$, then the type definition creates
|
|
169 |
a type constructor $(\alpha@1,\ldots,\alpha@n)ty$ rather than a particular
|
344
|
170 |
type. Melham~\cite{melham89} discusses type definitions at length, with
|
|
171 |
examples.
|
104
|
172 |
|
|
173 |
Isabelle does not support type definitions at present. Instead, they are
|
315
|
174 |
mimicked by explicit definitions of isomorphism functions. The definitions
|
|
175 |
should be supported by theorems of the form $\exists x::\sigma.P(x)$, but
|
|
176 |
Isabelle cannot enforce this.
|
104
|
177 |
|
|
178 |
|
|
179 |
\subsection{Binders}
|
|
180 |
Hilbert's {\bf description} operator~$\epsilon x.P[x]$ stands for some~$a$
|
306
|
181 |
satisfying~$P[a]$, if such exists. Since all terms in \HOL\ denote
|
104
|
182 |
something, a description is always meaningful, but we do not know its value
|
|
183 |
unless $P[x]$ defines it uniquely. We may write descriptions as
|
315
|
184 |
\cdx{Eps}($P$) or use the syntax
|
|
185 |
\hbox{\tt \at $x$.$P[x]$}.
|
|
186 |
|
|
187 |
Existential quantification is defined by
|
|
188 |
\[ \exists x.P(x) \;\equiv\; P(\epsilon x.P(x)). \]
|
104
|
189 |
The unique existence quantifier, $\exists!x.P[x]$, is defined in terms
|
|
190 |
of~$\exists$ and~$\forall$. An Isabelle binder, it admits nested
|
|
191 |
quantifications. For instance, $\exists!x y.P(x,y)$ abbreviates
|
|
192 |
$\exists!x. \exists!y.P(x,y)$; note that this does not mean that there
|
|
193 |
exists a unique pair $(x,y)$ satisfying~$P(x,y)$.
|
|
194 |
|
315
|
195 |
\index{*"! symbol}\index{*"? symbol}\index{HOL system@{\sc hol} system}
|
306
|
196 |
Quantifiers have two notations. As in Gordon's {\sc hol} system, \HOL\
|
104
|
197 |
uses~{\tt!}\ and~{\tt?}\ to stand for $\forall$ and $\exists$. The
|
|
198 |
existential quantifier must be followed by a space; thus {\tt?x} is an
|
|
199 |
unknown, while \verb'? x.f(x)=y' is a quantification. Isabelle's usual
|
315
|
200 |
notation for quantifiers, \sdx{ALL} and \sdx{EX}, is also
|
104
|
201 |
available. Both notations are accepted for input. The {\ML} reference
|
|
202 |
\ttindexbold{HOL_quantifiers} governs the output notation. If set to {\tt
|
|
203 |
true}, then~{\tt!}\ and~{\tt?}\ are displayed; this is the default. If set
|
|
204 |
to {\tt false}, then~{\tt ALL} and~{\tt EX} are displayed.
|
|
205 |
|
315
|
206 |
All these binders have priority 10.
|
|
207 |
|
|
208 |
|
|
209 |
\subsection{The \sdx{let} and \sdx{case} constructions}
|
|
210 |
Local abbreviations can be introduced by a {\tt let} construct whose
|
|
211 |
syntax appears in Fig.\ts\ref{hol-grammar}. Internally it is translated into
|
|
212 |
the constant~\cdx{Let}. It can be expanded by rewriting with its
|
|
213 |
definition, \tdx{Let_def}.
|
104
|
214 |
|
315
|
215 |
\HOL\ also defines the basic syntax
|
|
216 |
\[\dquotes"case"~e~"of"~c@1~"=>"~e@1~"|" \dots "|"~c@n~"=>"~e@n\]
|
|
217 |
as a uniform means of expressing {\tt case} constructs. Therefore {\tt
|
|
218 |
case} and \sdx{of} are reserved words. However, so far this is mere
|
|
219 |
syntax and has no logical meaning. By declaring translations, you can
|
|
220 |
cause instances of the {\tt case} construct to denote applications of
|
|
221 |
particular case operators. The patterns supplied for $c@1$,~\ldots,~$c@n$
|
|
222 |
distinguish among the different case operators. For an example, see the
|
|
223 |
case construct for lists on page~\pageref{hol-list} below.
|
|
224 |
|
306
|
225 |
|
315
|
226 |
\begin{figure}
|
|
227 |
\begin{ttbox}\makeatother
|
453
|
228 |
\tdx{refl} t = (t::'a)
|
315
|
229 |
\tdx{subst} [| s=t; P(s) |] ==> P(t::'a)
|
453
|
230 |
\tdx{ext} (!!x::'a. (f(x)::'b) = g(x)) ==> (\%x.f(x)) = (\%x.g(x))
|
315
|
231 |
\tdx{impI} (P ==> Q) ==> P-->Q
|
|
232 |
\tdx{mp} [| P-->Q; P |] ==> Q
|
|
233 |
\tdx{iff} (P-->Q) --> (Q-->P) --> (P=Q)
|
|
234 |
\tdx{selectI} P(x::'a) ==> P(@x.P(x))
|
|
235 |
\tdx{True_or_False} (P=True) | (P=False)
|
|
236 |
\end{ttbox}
|
|
237 |
\caption{The {\tt HOL} rules} \label{hol-rules}
|
|
238 |
\end{figure}
|
306
|
239 |
|
|
240 |
|
344
|
241 |
\begin{figure}\hfuzz=4pt%suppress "Overfull \hbox" message
|
287
|
242 |
\begin{ttbox}\makeatother
|
453
|
243 |
\tdx{True_def} True == ((\%x::bool.x)=(\%x.x))
|
344
|
244 |
\tdx{All_def} All == (\%P. P = (\%x.True))
|
|
245 |
\tdx{Ex_def} Ex == (\%P. P(@x.P(x)))
|
|
246 |
\tdx{False_def} False == (!P.P)
|
|
247 |
\tdx{not_def} not == (\%P. P-->False)
|
|
248 |
\tdx{and_def} op & == (\%P Q. !R. (P-->Q-->R) --> R)
|
|
249 |
\tdx{or_def} op | == (\%P Q. !R. (P-->R) --> (Q-->R) --> R)
|
|
250 |
\tdx{Ex1_def} Ex1 == (\%P. ? x. P(x) & (! y. P(y) --> y=x))
|
315
|
251 |
|
344
|
252 |
\tdx{Inv_def} Inv == (\%(f::'a=>'b) y. @x. f(x)=y)
|
|
253 |
\tdx{o_def} op o == (\%(f::'b=>'c) g (x::'a). f(g(x)))
|
|
254 |
\tdx{if_def} if == (\%P x y.@z::'a.(P=True --> z=x) & (P=False --> z=y))
|
|
255 |
\tdx{Let_def} Let(s,f) == f(s)
|
315
|
256 |
\end{ttbox}
|
|
257 |
\caption{The {\tt HOL} definitions} \label{hol-defs}
|
|
258 |
\end{figure}
|
|
259 |
|
|
260 |
|
|
261 |
\section{Rules of inference}
|
|
262 |
Figure~\ref{hol-rules} shows the inference rules of~\HOL{}, with
|
|
263 |
their~{\ML} names. Some of the rules deserve additional comments:
|
|
264 |
\begin{ttdescription}
|
|
265 |
\item[\tdx{ext}] expresses extensionality of functions.
|
|
266 |
\item[\tdx{iff}] asserts that logically equivalent formulae are
|
|
267 |
equal.
|
|
268 |
\item[\tdx{selectI}] gives the defining property of the Hilbert
|
|
269 |
$\epsilon$-operator. It is a form of the Axiom of Choice. The derived rule
|
|
270 |
\tdx{select_equality} (see below) is often easier to use.
|
|
271 |
\item[\tdx{True_or_False}] makes the logic classical.\footnote{In
|
|
272 |
fact, the $\epsilon$-operator already makes the logic classical, as
|
|
273 |
shown by Diaconescu; see Paulson~\cite{paulson-COLOG} for details.}
|
|
274 |
\end{ttdescription}
|
104
|
275 |
|
315
|
276 |
\HOL{} follows standard practice in higher-order logic: only a few
|
|
277 |
connectives are taken as primitive, with the remainder defined obscurely
|
344
|
278 |
(Fig.\ts\ref{hol-defs}). Gordon's {\sc hol} system expresses the
|
|
279 |
corresponding definitions \cite[page~270]{mgordon-hol} using
|
|
280 |
object-equality~({\tt=}), which is possible because equality in
|
|
281 |
higher-order logic may equate formulae and even functions over formulae.
|
|
282 |
But theory~\HOL{}, like all other Isabelle theories, uses
|
|
283 |
meta-equality~({\tt==}) for definitions.
|
315
|
284 |
|
344
|
285 |
Some of the rules mention type variables; for
|
|
286 |
example, {\tt refl} mentions the type variable~{\tt'a}. This allows you to
|
|
287 |
instantiate type variables explicitly by calling {\tt res_inst_tac}. By
|
|
288 |
default, explicit type variables have class \cldx{term}.
|
104
|
289 |
|
315
|
290 |
Include type constraints whenever you state a polymorphic goal. Type
|
|
291 |
inference may otherwise make the goal more polymorphic than you intended,
|
|
292 |
with confusing results.
|
|
293 |
|
|
294 |
\begin{warn}
|
|
295 |
If resolution fails for no obvious reason, try setting
|
|
296 |
\ttindex{show_types} to {\tt true}, causing Isabelle to display types of
|
|
297 |
terms. Possibly set \ttindex{show_sorts} to {\tt true} as well, causing
|
|
298 |
Isabelle to display sorts.
|
|
299 |
|
|
300 |
\index{unification!incompleteness of}
|
|
301 |
Where function types are involved, Isabelle's unification code does not
|
|
302 |
guarantee to find instantiations for type variables automatically. Be
|
|
303 |
prepared to use \ttindex{res_inst_tac} instead of {\tt resolve_tac},
|
|
304 |
possibly instantiating type variables. Setting
|
|
305 |
\ttindex{Unify.trace_types} to {\tt true} causes Isabelle to report
|
|
306 |
omitted search paths during unification.\index{tracing!of unification}
|
|
307 |
\end{warn}
|
104
|
308 |
|
|
309 |
|
287
|
310 |
\begin{figure}
|
104
|
311 |
\begin{ttbox}
|
315
|
312 |
\tdx{sym} s=t ==> t=s
|
|
313 |
\tdx{trans} [| r=s; s=t |] ==> r=t
|
|
314 |
\tdx{ssubst} [| t=s; P(s) |] ==> P(t::'a)
|
|
315 |
\tdx{box_equals} [| a=b; a=c; b=d |] ==> c=d
|
453
|
316 |
\tdx{arg_cong} x=y ==> f(x)=f(y)
|
|
317 |
\tdx{fun_cong} f=g ==> f(x)=g(x)
|
104
|
318 |
\subcaption{Equality}
|
|
319 |
|
315
|
320 |
\tdx{TrueI} True
|
|
321 |
\tdx{FalseE} False ==> P
|
104
|
322 |
|
315
|
323 |
\tdx{conjI} [| P; Q |] ==> P&Q
|
|
324 |
\tdx{conjunct1} [| P&Q |] ==> P
|
|
325 |
\tdx{conjunct2} [| P&Q |] ==> Q
|
|
326 |
\tdx{conjE} [| P&Q; [| P; Q |] ==> R |] ==> R
|
104
|
327 |
|
315
|
328 |
\tdx{disjI1} P ==> P|Q
|
|
329 |
\tdx{disjI2} Q ==> P|Q
|
|
330 |
\tdx{disjE} [| P | Q; P ==> R; Q ==> R |] ==> R
|
104
|
331 |
|
315
|
332 |
\tdx{notI} (P ==> False) ==> ~ P
|
|
333 |
\tdx{notE} [| ~ P; P |] ==> R
|
|
334 |
\tdx{impE} [| P-->Q; P; Q ==> R |] ==> R
|
104
|
335 |
\subcaption{Propositional logic}
|
|
336 |
|
315
|
337 |
\tdx{iffI} [| P ==> Q; Q ==> P |] ==> P=Q
|
|
338 |
\tdx{iffD1} [| P=Q; P |] ==> Q
|
|
339 |
\tdx{iffD2} [| P=Q; Q |] ==> P
|
|
340 |
\tdx{iffE} [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R
|
104
|
341 |
|
315
|
342 |
\tdx{eqTrueI} P ==> P=True
|
|
343 |
\tdx{eqTrueE} P=True ==> P
|
104
|
344 |
\subcaption{Logical equivalence}
|
|
345 |
|
|
346 |
\end{ttbox}
|
306
|
347 |
\caption{Derived rules for \HOL} \label{hol-lemmas1}
|
104
|
348 |
\end{figure}
|
|
349 |
|
|
350 |
|
287
|
351 |
\begin{figure}
|
|
352 |
\begin{ttbox}\makeatother
|
315
|
353 |
\tdx{allI} (!!x::'a. P(x)) ==> !x. P(x)
|
|
354 |
\tdx{spec} !x::'a.P(x) ==> P(x)
|
|
355 |
\tdx{allE} [| !x.P(x); P(x) ==> R |] ==> R
|
|
356 |
\tdx{all_dupE} [| !x.P(x); [| P(x); !x.P(x) |] ==> R |] ==> R
|
104
|
357 |
|
315
|
358 |
\tdx{exI} P(x) ==> ? x::'a.P(x)
|
|
359 |
\tdx{exE} [| ? x::'a.P(x); !!x. P(x) ==> Q |] ==> Q
|
104
|
360 |
|
315
|
361 |
\tdx{ex1I} [| P(a); !!x. P(x) ==> x=a |] ==> ?! x. P(x)
|
|
362 |
\tdx{ex1E} [| ?! x.P(x); !!x. [| P(x); ! y. P(y) --> y=x |] ==> R
|
104
|
363 |
|] ==> R
|
|
364 |
|
315
|
365 |
\tdx{select_equality} [| P(a); !!x. P(x) ==> x=a |] ==> (@x.P(x)) = a
|
104
|
366 |
\subcaption{Quantifiers and descriptions}
|
|
367 |
|
315
|
368 |
\tdx{ccontr} (~P ==> False) ==> P
|
|
369 |
\tdx{classical} (~P ==> P) ==> P
|
|
370 |
\tdx{excluded_middle} ~P | P
|
104
|
371 |
|
315
|
372 |
\tdx{disjCI} (~Q ==> P) ==> P|Q
|
|
373 |
\tdx{exCI} (! x. ~ P(x) ==> P(a)) ==> ? x.P(x)
|
|
374 |
\tdx{impCE} [| P-->Q; ~ P ==> R; Q ==> R |] ==> R
|
|
375 |
\tdx{iffCE} [| P=Q; [| P;Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R
|
|
376 |
\tdx{notnotD} ~~P ==> P
|
|
377 |
\tdx{swap} ~P ==> (~Q ==> P) ==> Q
|
104
|
378 |
\subcaption{Classical logic}
|
|
379 |
|
315
|
380 |
\tdx{if_True} if(True,x,y) = x
|
|
381 |
\tdx{if_False} if(False,x,y) = y
|
|
382 |
\tdx{if_P} P ==> if(P,x,y) = x
|
|
383 |
\tdx{if_not_P} ~ P ==> if(P,x,y) = y
|
|
384 |
\tdx{expand_if} P(if(Q,x,y)) = ((Q --> P(x)) & (~Q --> P(y)))
|
104
|
385 |
\subcaption{Conditionals}
|
|
386 |
\end{ttbox}
|
|
387 |
\caption{More derived rules} \label{hol-lemmas2}
|
|
388 |
\end{figure}
|
|
389 |
|
|
390 |
|
|
391 |
Some derived rules are shown in Figures~\ref{hol-lemmas1}
|
|
392 |
and~\ref{hol-lemmas2}, with their {\ML} names. These include natural rules
|
|
393 |
for the logical connectives, as well as sequent-style elimination rules for
|
|
394 |
conjunctions, implications, and universal quantifiers.
|
|
395 |
|
315
|
396 |
Note the equality rules: \tdx{ssubst} performs substitution in
|
|
397 |
backward proofs, while \tdx{box_equals} supports reasoning by
|
104
|
398 |
simplifying both sides of an equation.
|
|
399 |
|
|
400 |
|
|
401 |
\begin{figure}
|
|
402 |
\begin{center}
|
|
403 |
\begin{tabular}{rrr}
|
111
|
404 |
\it name &\it meta-type & \it description \\
|
315
|
405 |
\index{{}@\verb'{}' symbol}
|
|
406 |
\verb|{}| & $\alpha\,set$ & the empty set \\
|
|
407 |
\cdx{insert} & $[\alpha,\alpha\,set]\To \alpha\,set$
|
111
|
408 |
& insertion of element \\
|
315
|
409 |
\cdx{Collect} & $(\alpha\To bool)\To\alpha\,set$
|
111
|
410 |
& comprehension \\
|
315
|
411 |
\cdx{Compl} & $(\alpha\,set)\To\alpha\,set$
|
111
|
412 |
& complement \\
|
315
|
413 |
\cdx{INTER} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
|
111
|
414 |
& intersection over a set\\
|
315
|
415 |
\cdx{UNION} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
|
111
|
416 |
& union over a set\\
|
315
|
417 |
\cdx{Inter} & $((\alpha\,set)set)\To\alpha\,set$
|
111
|
418 |
&set of sets intersection \\
|
315
|
419 |
\cdx{Union} & $((\alpha\,set)set)\To\alpha\,set$
|
111
|
420 |
&set of sets union \\
|
315
|
421 |
\cdx{range} & $(\alpha\To\beta )\To\beta\,set$
|
111
|
422 |
& range of a function \\[1ex]
|
315
|
423 |
\cdx{Ball}~~\cdx{Bex} & $[\alpha\,set,\alpha\To bool]\To bool$
|
111
|
424 |
& bounded quantifiers \\
|
315
|
425 |
\cdx{mono} & $(\alpha\,set\To\beta\,set)\To bool$
|
111
|
426 |
& monotonicity \\
|
315
|
427 |
\cdx{inj}~~\cdx{surj}& $(\alpha\To\beta )\To bool$
|
111
|
428 |
& injective/surjective \\
|
315
|
429 |
\cdx{inj_onto} & $[\alpha\To\beta ,\alpha\,set]\To bool$
|
111
|
430 |
& injective over subset
|
104
|
431 |
\end{tabular}
|
|
432 |
\end{center}
|
|
433 |
\subcaption{Constants}
|
|
434 |
|
|
435 |
\begin{center}
|
|
436 |
\begin{tabular}{llrrr}
|
315
|
437 |
\it symbol &\it name &\it meta-type & \it priority & \it description \\
|
|
438 |
\sdx{INT} & \cdx{INTER1} & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 &
|
111
|
439 |
intersection over a type\\
|
315
|
440 |
\sdx{UN} & \cdx{UNION1} & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 &
|
111
|
441 |
union over a type
|
104
|
442 |
\end{tabular}
|
|
443 |
\end{center}
|
|
444 |
\subcaption{Binders}
|
|
445 |
|
|
446 |
\begin{center}
|
315
|
447 |
\index{*"`"` symbol}
|
|
448 |
\index{*": symbol}
|
|
449 |
\index{*"<"= symbol}
|
104
|
450 |
\begin{tabular}{rrrr}
|
315
|
451 |
\it symbol & \it meta-type & \it priority & \it description \\
|
111
|
452 |
\tt `` & $[\alpha\To\beta ,\alpha\,set]\To (\beta\,set)$
|
|
453 |
& Left 90 & image \\
|
315
|
454 |
\sdx{Int} & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
|
111
|
455 |
& Left 70 & intersection ($\inter$) \\
|
315
|
456 |
\sdx{Un} & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
|
111
|
457 |
& Left 65 & union ($\union$) \\
|
|
458 |
\tt: & $[\alpha ,\alpha\,set]\To bool$
|
|
459 |
& Left 50 & membership ($\in$) \\
|
|
460 |
\tt <= & $[\alpha\,set,\alpha\,set]\To bool$
|
|
461 |
& Left 50 & subset ($\subseteq$)
|
104
|
462 |
\end{tabular}
|
|
463 |
\end{center}
|
|
464 |
\subcaption{Infixes}
|
315
|
465 |
\caption{Syntax of the theory {\tt Set}} \label{hol-set-syntax}
|
104
|
466 |
\end{figure}
|
|
467 |
|
|
468 |
|
|
469 |
\begin{figure}
|
|
470 |
\begin{center} \tt\frenchspacing
|
315
|
471 |
\index{*"! symbol}
|
104
|
472 |
\begin{tabular}{rrr}
|
111
|
473 |
\it external & \it internal & \it description \\
|
315
|
474 |
$a$ \ttilde: $b$ & \ttilde($a$ : $b$) & \rm non-membership\\
|
|
475 |
\{$a@1$, $\ldots$\} & insert($a@1$, $\ldots$\{\}) & \rm finite set \\
|
111
|
476 |
\{$x$.$P[x]$\} & Collect($\lambda x.P[x]$) &
|
104
|
477 |
\rm comprehension \\
|
315
|
478 |
\sdx{INT} $x$:$A$.$B[x]$ & INTER($A$,$\lambda x.B[x]$) &
|
|
479 |
\rm intersection \\
|
|
480 |
\sdx{UN}{\tt\ } $x$:$A$.$B[x]$ & UNION($A$,$\lambda x.B[x]$) &
|
|
481 |
\rm union \\
|
|
482 |
\tt ! $x$:$A$.$P[x]$ or \sdx{ALL} $x$:$A$.$P[x]$ &
|
|
483 |
Ball($A$,$\lambda x.P[x]$) &
|
111
|
484 |
\rm bounded $\forall$ \\
|
315
|
485 |
\sdx{?} $x$:$A$.$P[x]$ or \sdx{EX}{\tt\ } $x$:$A$.$P[x]$ &
|
|
486 |
Bex($A$,$\lambda x.P[x]$) & \rm bounded $\exists$
|
104
|
487 |
\end{tabular}
|
|
488 |
\end{center}
|
|
489 |
\subcaption{Translations}
|
|
490 |
|
|
491 |
\dquotes
|
315
|
492 |
\[\begin{array}{rclcl}
|
104
|
493 |
term & = & \hbox{other terms\ldots} \\
|
111
|
494 |
& | & "\{\}" \\
|
|
495 |
& | & "\{ " term\; ("," term)^* " \}" \\
|
|
496 |
& | & "\{ " id " . " formula " \}" \\
|
|
497 |
& | & term " `` " term \\
|
|
498 |
& | & term " Int " term \\
|
|
499 |
& | & term " Un " term \\
|
|
500 |
& | & "INT~~" id ":" term " . " term \\
|
|
501 |
& | & "UN~~~" id ":" term " . " term \\
|
|
502 |
& | & "INT~~" id~id^* " . " term \\
|
|
503 |
& | & "UN~~~" id~id^* " . " term \\[2ex]
|
104
|
504 |
formula & = & \hbox{other formulae\ldots} \\
|
111
|
505 |
& | & term " : " term \\
|
|
506 |
& | & term " \ttilde: " term \\
|
|
507 |
& | & term " <= " term \\
|
315
|
508 |
& | & "!~" id ":" term " . " formula
|
111
|
509 |
& | & "ALL " id ":" term " . " formula \\
|
315
|
510 |
& | & "?~" id ":" term " . " formula
|
111
|
511 |
& | & "EX~~" id ":" term " . " formula
|
104
|
512 |
\end{array}
|
|
513 |
\]
|
|
514 |
\subcaption{Full Grammar}
|
315
|
515 |
\caption{Syntax of the theory {\tt Set} (continued)} \label{hol-set-syntax2}
|
104
|
516 |
\end{figure}
|
|
517 |
|
|
518 |
|
|
519 |
\section{A formulation of set theory}
|
|
520 |
Historically, higher-order logic gives a foundation for Russell and
|
|
521 |
Whitehead's theory of classes. Let us use modern terminology and call them
|
|
522 |
{\bf sets}, but note that these sets are distinct from those of {\ZF} set
|
|
523 |
theory, and behave more like {\ZF} classes.
|
|
524 |
\begin{itemize}
|
|
525 |
\item
|
|
526 |
Sets are given by predicates over some type~$\sigma$. Types serve to
|
|
527 |
define universes for sets, but type checking is still significant.
|
|
528 |
\item
|
|
529 |
There is a universal set (for each type). Thus, sets have complements, and
|
|
530 |
may be defined by absolute comprehension.
|
|
531 |
\item
|
|
532 |
Although sets may contain other sets as elements, the containing set must
|
|
533 |
have a more complex type.
|
|
534 |
\end{itemize}
|
306
|
535 |
Finite unions and intersections have the same behaviour in \HOL\ as they
|
|
536 |
do in~{\ZF}. In \HOL\ the intersection of the empty set is well-defined,
|
104
|
537 |
denoting the universal set for the given type.
|
|
538 |
|
315
|
539 |
|
|
540 |
\subsection{Syntax of set theory}\index{*set type}
|
|
541 |
\HOL's set theory is called \thydx{Set}. The type $\alpha\,set$ is
|
|
542 |
essentially the same as $\alpha\To bool$. The new type is defined for
|
|
543 |
clarity and to avoid complications involving function types in unification.
|
|
544 |
Since Isabelle does not support type definitions (as mentioned in
|
|
545 |
\S\ref{HOL-types}), the isomorphisms between the two types are declared
|
|
546 |
explicitly. Here they are natural: {\tt Collect} maps $\alpha\To bool$ to
|
|
547 |
$\alpha\,set$, while \hbox{\tt op :} maps in the other direction (ignoring
|
|
548 |
argument order).
|
104
|
549 |
|
|
550 |
Figure~\ref{hol-set-syntax} lists the constants, infixes, and syntax
|
|
551 |
translations. Figure~\ref{hol-set-syntax2} presents the grammar of the new
|
|
552 |
constructs. Infix operators include union and intersection ($A\union B$
|
|
553 |
and $A\inter B$), the subset and membership relations, and the image
|
315
|
554 |
operator~{\tt``}\@. Note that $a$\verb|~:|$b$ is translated to
|
|
555 |
$\neg(a\in b)$.
|
|
556 |
|
|
557 |
The {\tt\{\ldots\}} notation abbreviates finite sets constructed in the
|
|
558 |
obvious manner using~{\tt insert} and~$\{\}$:
|
104
|
559 |
\begin{eqnarray*}
|
315
|
560 |
\{a@1, \ldots, a@n\} & \equiv &
|
|
561 |
{\tt insert}(a@1,\ldots,{\tt insert}(a@n,\{\}))
|
104
|
562 |
\end{eqnarray*}
|
|
563 |
|
|
564 |
The set \hbox{\tt\{$x$.$P[x]$\}} consists of all $x$ (of suitable type)
|
|
565 |
that satisfy~$P[x]$, where $P[x]$ is a formula that may contain free
|
315
|
566 |
occurrences of~$x$. This syntax expands to \cdx{Collect}$(\lambda
|
|
567 |
x.P[x])$. It defines sets by absolute comprehension, which is impossible
|
|
568 |
in~{\ZF}; the type of~$x$ implicitly restricts the comprehension.
|
104
|
569 |
|
|
570 |
The set theory defines two {\bf bounded quantifiers}:
|
|
571 |
\begin{eqnarray*}
|
315
|
572 |
\forall x\in A.P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\
|
|
573 |
\exists x\in A.P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x]
|
104
|
574 |
\end{eqnarray*}
|
315
|
575 |
The constants~\cdx{Ball} and~\cdx{Bex} are defined
|
104
|
576 |
accordingly. Instead of {\tt Ball($A$,$P$)} and {\tt Bex($A$,$P$)} we may
|
315
|
577 |
write\index{*"! symbol}\index{*"? symbol}
|
|
578 |
\index{*ALL symbol}\index{*EX symbol}
|
|
579 |
%
|
|
580 |
\hbox{\tt !~$x$:$A$.$P[x]$} and \hbox{\tt ?~$x$:$A$.$P[x]$}. Isabelle's
|
|
581 |
usual quantifier symbols, \sdx{ALL} and \sdx{EX}, are also accepted
|
|
582 |
for input. As with the primitive quantifiers, the {\ML} reference
|
|
583 |
\ttindex{HOL_quantifiers} specifies which notation to use for output.
|
104
|
584 |
|
|
585 |
Unions and intersections over sets, namely $\bigcup@{x\in A}B[x]$ and
|
|
586 |
$\bigcap@{x\in A}B[x]$, are written
|
315
|
587 |
\sdx{UN}~\hbox{\tt$x$:$A$.$B[x]$} and
|
|
588 |
\sdx{INT}~\hbox{\tt$x$:$A$.$B[x]$}.
|
|
589 |
|
|
590 |
Unions and intersections over types, namely $\bigcup@x B[x]$ and $\bigcap@x
|
|
591 |
B[x]$, are written \sdx{UN}~\hbox{\tt$x$.$B[x]$} and
|
|
592 |
\sdx{INT}~\hbox{\tt$x$.$B[x]$}. They are equivalent to the previous
|
|
593 |
union and intersection operators when $A$ is the universal set.
|
|
594 |
|
|
595 |
The operators $\bigcup A$ and $\bigcap A$ act upon sets of sets. They are
|
|
596 |
not binders, but are equal to $\bigcup@{x\in A}x$ and $\bigcap@{x\in A}x$,
|
|
597 |
respectively.
|
|
598 |
|
|
599 |
|
|
600 |
\begin{figure} \underscoreon
|
|
601 |
\begin{ttbox}
|
|
602 |
\tdx{mem_Collect_eq} (a : \{x.P(x)\}) = P(a)
|
|
603 |
\tdx{Collect_mem_eq} \{x.x:A\} = A
|
104
|
604 |
|
315
|
605 |
\tdx{empty_def} \{\} == \{x.x=False\}
|
|
606 |
\tdx{insert_def} insert(a,B) == \{x.x=a\} Un B
|
|
607 |
\tdx{Ball_def} Ball(A,P) == ! x. x:A --> P(x)
|
|
608 |
\tdx{Bex_def} Bex(A,P) == ? x. x:A & P(x)
|
|
609 |
\tdx{subset_def} A <= B == ! x:A. x:B
|
|
610 |
\tdx{Un_def} A Un B == \{x.x:A | x:B\}
|
|
611 |
\tdx{Int_def} A Int B == \{x.x:A & x:B\}
|
|
612 |
\tdx{set_diff_def} A - B == \{x.x:A & x~:B\}
|
|
613 |
\tdx{Compl_def} Compl(A) == \{x. ~ x:A\}
|
|
614 |
\tdx{INTER_def} INTER(A,B) == \{y. ! x:A. y: B(x)\}
|
|
615 |
\tdx{UNION_def} UNION(A,B) == \{y. ? x:A. y: B(x)\}
|
|
616 |
\tdx{INTER1_def} INTER1(B) == INTER(\{x.True\}, B)
|
|
617 |
\tdx{UNION1_def} UNION1(B) == UNION(\{x.True\}, B)
|
|
618 |
\tdx{Inter_def} Inter(S) == (INT x:S. x)
|
|
619 |
\tdx{Union_def} Union(S) == (UN x:S. x)
|
|
620 |
\tdx{image_def} f``A == \{y. ? x:A. y=f(x)\}
|
|
621 |
\tdx{range_def} range(f) == \{y. ? x. y=f(x)\}
|
|
622 |
\tdx{mono_def} mono(f) == !A B. A <= B --> f(A) <= f(B)
|
|
623 |
\tdx{inj_def} inj(f) == ! x y. f(x)=f(y) --> x=y
|
|
624 |
\tdx{surj_def} surj(f) == ! y. ? x. y=f(x)
|
|
625 |
\tdx{inj_onto_def} inj_onto(f,A) == !x:A. !y:A. f(x)=f(y) --> x=y
|
|
626 |
\end{ttbox}
|
|
627 |
\caption{Rules of the theory {\tt Set}} \label{hol-set-rules}
|
|
628 |
\end{figure}
|
|
629 |
|
104
|
630 |
|
315
|
631 |
\begin{figure} \underscoreon
|
|
632 |
\begin{ttbox}
|
|
633 |
\tdx{CollectI} [| P(a) |] ==> a : \{x.P(x)\}
|
|
634 |
\tdx{CollectD} [| a : \{x.P(x)\} |] ==> P(a)
|
|
635 |
\tdx{CollectE} [| a : \{x.P(x)\}; P(a) ==> W |] ==> W
|
|
636 |
|
|
637 |
\tdx{ballI} [| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)
|
|
638 |
\tdx{bspec} [| ! x:A. P(x); x:A |] ==> P(x)
|
|
639 |
\tdx{ballE} [| ! x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q
|
|
640 |
|
|
641 |
\tdx{bexI} [| P(x); x:A |] ==> ? x:A. P(x)
|
|
642 |
\tdx{bexCI} [| ! x:A. ~ P(x) ==> P(a); a:A |] ==> ? x:A.P(x)
|
|
643 |
\tdx{bexE} [| ? x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q
|
|
644 |
\subcaption{Comprehension and Bounded quantifiers}
|
|
645 |
|
|
646 |
\tdx{subsetI} (!!x.x:A ==> x:B) ==> A <= B
|
|
647 |
\tdx{subsetD} [| A <= B; c:A |] ==> c:B
|
|
648 |
\tdx{subsetCE} [| A <= B; ~ (c:A) ==> P; c:B ==> P |] ==> P
|
|
649 |
|
|
650 |
\tdx{subset_refl} A <= A
|
|
651 |
\tdx{subset_trans} [| A<=B; B<=C |] ==> A<=C
|
|
652 |
|
471
|
653 |
\tdx{equalityI} [| A <= B; B <= A |] ==> A = B
|
315
|
654 |
\tdx{equalityD1} A = B ==> A<=B
|
|
655 |
\tdx{equalityD2} A = B ==> B<=A
|
|
656 |
\tdx{equalityE} [| A = B; [| A<=B; B<=A |] ==> P |] ==> P
|
|
657 |
|
|
658 |
\tdx{equalityCE} [| A = B; [| c:A; c:B |] ==> P;
|
|
659 |
[| ~ c:A; ~ c:B |] ==> P
|
|
660 |
|] ==> P
|
|
661 |
\subcaption{The subset and equality relations}
|
|
662 |
\end{ttbox}
|
|
663 |
\caption{Derived rules for set theory} \label{hol-set1}
|
|
664 |
\end{figure}
|
|
665 |
|
104
|
666 |
|
287
|
667 |
\begin{figure} \underscoreon
|
104
|
668 |
\begin{ttbox}
|
315
|
669 |
\tdx{emptyE} a : \{\} ==> P
|
|
670 |
|
|
671 |
\tdx{insertI1} a : insert(a,B)
|
|
672 |
\tdx{insertI2} a : B ==> a : insert(b,B)
|
|
673 |
\tdx{insertE} [| a : insert(b,A); a=b ==> P; a:A ==> P |] ==> P
|
104
|
674 |
|
315
|
675 |
\tdx{ComplI} [| c:A ==> False |] ==> c : Compl(A)
|
|
676 |
\tdx{ComplD} [| c : Compl(A) |] ==> ~ c:A
|
|
677 |
|
|
678 |
\tdx{UnI1} c:A ==> c : A Un B
|
|
679 |
\tdx{UnI2} c:B ==> c : A Un B
|
|
680 |
\tdx{UnCI} (~c:B ==> c:A) ==> c : A Un B
|
|
681 |
\tdx{UnE} [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P
|
104
|
682 |
|
315
|
683 |
\tdx{IntI} [| c:A; c:B |] ==> c : A Int B
|
|
684 |
\tdx{IntD1} c : A Int B ==> c:A
|
|
685 |
\tdx{IntD2} c : A Int B ==> c:B
|
|
686 |
\tdx{IntE} [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P
|
|
687 |
|
|
688 |
\tdx{UN_I} [| a:A; b: B(a) |] ==> b: (UN x:A. B(x))
|
|
689 |
\tdx{UN_E} [| b: (UN x:A. B(x)); !!x.[| x:A; b:B(x) |] ==> R |] ==> R
|
104
|
690 |
|
315
|
691 |
\tdx{INT_I} (!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))
|
|
692 |
\tdx{INT_D} [| b: (INT x:A. B(x)); a:A |] ==> b: B(a)
|
|
693 |
\tdx{INT_E} [| b: (INT x:A. B(x)); b: B(a) ==> R; ~ a:A ==> R |] ==> R
|
|
694 |
|
|
695 |
\tdx{UnionI} [| X:C; A:X |] ==> A : Union(C)
|
|
696 |
\tdx{UnionE} [| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R
|
|
697 |
|
|
698 |
\tdx{InterI} [| !!X. X:C ==> A:X |] ==> A : Inter(C)
|
|
699 |
\tdx{InterD} [| A : Inter(C); X:C |] ==> A:X
|
|
700 |
\tdx{InterE} [| A : Inter(C); A:X ==> R; ~ X:C ==> R |] ==> R
|
|
701 |
\end{ttbox}
|
|
702 |
\caption{Further derived rules for set theory} \label{hol-set2}
|
|
703 |
\end{figure}
|
|
704 |
|
104
|
705 |
|
315
|
706 |
\subsection{Axioms and rules of set theory}
|
|
707 |
Figure~\ref{hol-set-rules} presents the rules of theory \thydx{Set}. The
|
|
708 |
axioms \tdx{mem_Collect_eq} and \tdx{Collect_mem_eq} assert
|
|
709 |
that the functions {\tt Collect} and \hbox{\tt op :} are isomorphisms. Of
|
|
710 |
course, \hbox{\tt op :} also serves as the membership relation.
|
104
|
711 |
|
315
|
712 |
All the other axioms are definitions. They include the empty set, bounded
|
|
713 |
quantifiers, unions, intersections, complements and the subset relation.
|
|
714 |
They also include straightforward properties of functions: image~({\tt``}) and
|
|
715 |
{\tt range}, and predicates concerning monotonicity, injectiveness and
|
|
716 |
surjectiveness.
|
|
717 |
|
|
718 |
The predicate \cdx{inj_onto} is used for simulating type definitions.
|
|
719 |
The statement ${\tt inj_onto}(f,A)$ asserts that $f$ is injective on the
|
|
720 |
set~$A$, which specifies a subset of its domain type. In a type
|
|
721 |
definition, $f$ is the abstraction function and $A$ is the set of valid
|
|
722 |
representations; we should not expect $f$ to be injective outside of~$A$.
|
|
723 |
|
|
724 |
\begin{figure} \underscoreon
|
|
725 |
\begin{ttbox}
|
|
726 |
\tdx{Inv_f_f} inj(f) ==> Inv(f,f(x)) = x
|
|
727 |
\tdx{f_Inv_f} y : range(f) ==> f(Inv(f,y)) = y
|
104
|
728 |
|
315
|
729 |
%\tdx{Inv_injective}
|
|
730 |
% [| Inv(f,x)=Inv(f,y); x: range(f); y: range(f) |] ==> x=y
|
|
731 |
%
|
|
732 |
\tdx{imageI} [| x:A |] ==> f(x) : f``A
|
|
733 |
\tdx{imageE} [| b : f``A; !!x.[| b=f(x); x:A |] ==> P |] ==> P
|
|
734 |
|
|
735 |
\tdx{rangeI} f(x) : range(f)
|
|
736 |
\tdx{rangeE} [| b : range(f); !!x.[| b=f(x) |] ==> P |] ==> P
|
104
|
737 |
|
315
|
738 |
\tdx{monoI} [| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)
|
|
739 |
\tdx{monoD} [| mono(f); A <= B |] ==> f(A) <= f(B)
|
|
740 |
|
|
741 |
\tdx{injI} [| !! x y. f(x) = f(y) ==> x=y |] ==> inj(f)
|
|
742 |
\tdx{inj_inverseI} (!!x. g(f(x)) = x) ==> inj(f)
|
|
743 |
\tdx{injD} [| inj(f); f(x) = f(y) |] ==> x=y
|
|
744 |
|
|
745 |
\tdx{inj_ontoI} (!!x y. [| f(x)=f(y); x:A; y:A |] ==> x=y) ==> inj_onto(f,A)
|
|
746 |
\tdx{inj_ontoD} [| inj_onto(f,A); f(x)=f(y); x:A; y:A |] ==> x=y
|
|
747 |
|
|
748 |
\tdx{inj_onto_inverseI}
|
104
|
749 |
(!!x. x:A ==> g(f(x)) = x) ==> inj_onto(f,A)
|
315
|
750 |
\tdx{inj_onto_contraD}
|
104
|
751 |
[| inj_onto(f,A); x~=y; x:A; y:A |] ==> ~ f(x)=f(y)
|
|
752 |
\end{ttbox}
|
|
753 |
\caption{Derived rules involving functions} \label{hol-fun}
|
|
754 |
\end{figure}
|
|
755 |
|
|
756 |
|
287
|
757 |
\begin{figure} \underscoreon
|
104
|
758 |
\begin{ttbox}
|
315
|
759 |
\tdx{Union_upper} B:A ==> B <= Union(A)
|
|
760 |
\tdx{Union_least} [| !!X. X:A ==> X<=C |] ==> Union(A) <= C
|
104
|
761 |
|
315
|
762 |
\tdx{Inter_lower} B:A ==> Inter(A) <= B
|
|
763 |
\tdx{Inter_greatest} [| !!X. X:A ==> C<=X |] ==> C <= Inter(A)
|
104
|
764 |
|
315
|
765 |
\tdx{Un_upper1} A <= A Un B
|
|
766 |
\tdx{Un_upper2} B <= A Un B
|
|
767 |
\tdx{Un_least} [| A<=C; B<=C |] ==> A Un B <= C
|
104
|
768 |
|
315
|
769 |
\tdx{Int_lower1} A Int B <= A
|
|
770 |
\tdx{Int_lower2} A Int B <= B
|
|
771 |
\tdx{Int_greatest} [| C<=A; C<=B |] ==> C <= A Int B
|
104
|
772 |
\end{ttbox}
|
|
773 |
\caption{Derived rules involving subsets} \label{hol-subset}
|
|
774 |
\end{figure}
|
|
775 |
|
|
776 |
|
315
|
777 |
\begin{figure} \underscoreon \hfuzz=4pt%suppress "Overfull \hbox" message
|
104
|
778 |
\begin{ttbox}
|
315
|
779 |
\tdx{Int_absorb} A Int A = A
|
|
780 |
\tdx{Int_commute} A Int B = B Int A
|
|
781 |
\tdx{Int_assoc} (A Int B) Int C = A Int (B Int C)
|
|
782 |
\tdx{Int_Un_distrib} (A Un B) Int C = (A Int C) Un (B Int C)
|
104
|
783 |
|
315
|
784 |
\tdx{Un_absorb} A Un A = A
|
|
785 |
\tdx{Un_commute} A Un B = B Un A
|
|
786 |
\tdx{Un_assoc} (A Un B) Un C = A Un (B Un C)
|
|
787 |
\tdx{Un_Int_distrib} (A Int B) Un C = (A Un C) Int (B Un C)
|
104
|
788 |
|
315
|
789 |
\tdx{Compl_disjoint} A Int Compl(A) = \{x.False\}
|
|
790 |
\tdx{Compl_partition} A Un Compl(A) = \{x.True\}
|
|
791 |
\tdx{double_complement} Compl(Compl(A)) = A
|
|
792 |
\tdx{Compl_Un} Compl(A Un B) = Compl(A) Int Compl(B)
|
|
793 |
\tdx{Compl_Int} Compl(A Int B) = Compl(A) Un Compl(B)
|
104
|
794 |
|
315
|
795 |
\tdx{Union_Un_distrib} Union(A Un B) = Union(A) Un Union(B)
|
|
796 |
\tdx{Int_Union} A Int Union(B) = (UN C:B. A Int C)
|
|
797 |
\tdx{Un_Union_image} (UN x:C. A(x) Un B(x)) = Union(A``C) Un Union(B``C)
|
104
|
798 |
|
315
|
799 |
\tdx{Inter_Un_distrib} Inter(A Un B) = Inter(A) Int Inter(B)
|
|
800 |
\tdx{Un_Inter} A Un Inter(B) = (INT C:B. A Un C)
|
|
801 |
\tdx{Int_Inter_image} (INT x:C. A(x) Int B(x)) = Inter(A``C) Int Inter(B``C)
|
104
|
802 |
\end{ttbox}
|
|
803 |
\caption{Set equalities} \label{hol-equalities}
|
|
804 |
\end{figure}
|
|
805 |
|
|
806 |
|
315
|
807 |
Figures~\ref{hol-set1} and~\ref{hol-set2} present derived rules. Most are
|
|
808 |
obvious and resemble rules of Isabelle's {\ZF} set theory. Certain rules,
|
|
809 |
such as \tdx{subsetCE}, \tdx{bexCI} and \tdx{UnCI},
|
|
810 |
are designed for classical reasoning; the rules \tdx{subsetD},
|
|
811 |
\tdx{bexI}, \tdx{Un1} and~\tdx{Un2} are not
|
|
812 |
strictly necessary but yield more natural proofs. Similarly,
|
|
813 |
\tdx{equalityCE} supports classical reasoning about extensionality,
|
344
|
814 |
after the fashion of \tdx{iffCE}. See the file {\tt HOL/Set.ML} for
|
315
|
815 |
proofs pertaining to set theory.
|
104
|
816 |
|
315
|
817 |
Figure~\ref{hol-fun} presents derived inference rules involving functions.
|
|
818 |
They also include rules for \cdx{Inv}, which is defined in theory~{\tt
|
|
819 |
HOL}; note that ${\tt Inv}(f)$ applies the Axiom of Choice to yield an
|
|
820 |
inverse of~$f$. They also include natural deduction rules for the image
|
|
821 |
and range operators, and for the predicates {\tt inj} and {\tt inj_onto}.
|
|
822 |
Reasoning about function composition (the operator~\sdx{o}) and the
|
|
823 |
predicate~\cdx{surj} is done simply by expanding the definitions. See
|
|
824 |
the file {\tt HOL/fun.ML} for a complete listing of the derived rules.
|
104
|
825 |
|
|
826 |
Figure~\ref{hol-subset} presents lattice properties of the subset relation.
|
315
|
827 |
Unions form least upper bounds; non-empty intersections form greatest lower
|
|
828 |
bounds. Reasoning directly about subsets often yields clearer proofs than
|
|
829 |
reasoning about the membership relation. See the file {\tt HOL/subset.ML}.
|
104
|
830 |
|
315
|
831 |
Figure~\ref{hol-equalities} presents many common set equalities. They
|
|
832 |
include commutative, associative and distributive laws involving unions,
|
|
833 |
intersections and complements. The proofs are mostly trivial, using the
|
|
834 |
classical reasoner; see file {\tt HOL/equalities.ML}.
|
104
|
835 |
|
|
836 |
|
287
|
837 |
\begin{figure}
|
315
|
838 |
\begin{constants}
|
344
|
839 |
\it symbol & \it meta-type & & \it description \\
|
315
|
840 |
\cdx{Pair} & $[\alpha,\beta]\To \alpha\times\beta$
|
|
841 |
& & ordered pairs $\langle a,b\rangle$ \\
|
|
842 |
\cdx{fst} & $\alpha\times\beta \To \alpha$ & & first projection\\
|
|
843 |
\cdx{snd} & $\alpha\times\beta \To \beta$ & & second projection\\
|
|
844 |
\cdx{split} & $[\alpha\times\beta, [\alpha,\beta]\To\gamma] \To \gamma$
|
|
845 |
& & generalized projection\\
|
|
846 |
\cdx{Sigma} &
|
287
|
847 |
$[\alpha\,set, \alpha\To\beta\,set]\To(\alpha\times\beta)set$ &
|
315
|
848 |
& general sum of sets
|
|
849 |
\end{constants}
|
287
|
850 |
\begin{ttbox}\makeatletter
|
315
|
851 |
\tdx{fst_def} fst(p) == @a. ? b. p = <a,b>
|
|
852 |
\tdx{snd_def} snd(p) == @b. ? a. p = <a,b>
|
|
853 |
\tdx{split_def} split(p,c) == c(fst(p),snd(p))
|
|
854 |
\tdx{Sigma_def} Sigma(A,B) == UN x:A. UN y:B(x). \{<x,y>\}
|
104
|
855 |
|
|
856 |
|
315
|
857 |
\tdx{Pair_inject} [| <a, b> = <a',b'>; [| a=a'; b=b' |] ==> R |] ==> R
|
349
|
858 |
\tdx{fst_conv} fst(<a,b>) = a
|
|
859 |
\tdx{snd_conv} snd(<a,b>) = b
|
315
|
860 |
\tdx{split} split(<a,b>, c) = c(a,b)
|
104
|
861 |
|
315
|
862 |
\tdx{surjective_pairing} p = <fst(p),snd(p)>
|
287
|
863 |
|
315
|
864 |
\tdx{SigmaI} [| a:A; b:B(a) |] ==> <a,b> : Sigma(A,B)
|
287
|
865 |
|
315
|
866 |
\tdx{SigmaE} [| c: Sigma(A,B);
|
287
|
867 |
!!x y.[| x:A; y:B(x); c=<x,y> |] ==> P |] ==> P
|
104
|
868 |
\end{ttbox}
|
315
|
869 |
\caption{Type $\alpha\times\beta$}\label{hol-prod}
|
104
|
870 |
\end{figure}
|
|
871 |
|
|
872 |
|
287
|
873 |
\begin{figure}
|
315
|
874 |
\begin{constants}
|
344
|
875 |
\it symbol & \it meta-type & & \it description \\
|
315
|
876 |
\cdx{Inl} & $\alpha \To \alpha+\beta$ & & first injection\\
|
|
877 |
\cdx{Inr} & $\beta \To \alpha+\beta$ & & second injection\\
|
|
878 |
\cdx{sum_case} & $[\alpha+\beta, \alpha\To\gamma, \beta\To\gamma] \To\gamma$
|
|
879 |
& & conditional
|
|
880 |
\end{constants}
|
|
881 |
\begin{ttbox}\makeatletter
|
|
882 |
\tdx{sum_case_def} sum_case == (\%p f g. @z. (!x. p=Inl(x) --> z=f(x)) &
|
|
883 |
(!y. p=Inr(y) --> z=g(y)))
|
104
|
884 |
|
315
|
885 |
\tdx{Inl_not_Inr} ~ Inl(a)=Inr(b)
|
104
|
886 |
|
315
|
887 |
\tdx{inj_Inl} inj(Inl)
|
|
888 |
\tdx{inj_Inr} inj(Inr)
|
104
|
889 |
|
315
|
890 |
\tdx{sumE} [| !!x::'a. P(Inl(x)); !!y::'b. P(Inr(y)) |] ==> P(s)
|
104
|
891 |
|
315
|
892 |
\tdx{sum_case_Inl} sum_case(Inl(x), f, g) = f(x)
|
|
893 |
\tdx{sum_case_Inr} sum_case(Inr(x), f, g) = g(x)
|
104
|
894 |
|
315
|
895 |
\tdx{surjective_sum} sum_case(s, \%x::'a. f(Inl(x)), \%y::'b. f(Inr(y))) = f(s)
|
104
|
896 |
\end{ttbox}
|
315
|
897 |
\caption{Type $\alpha+\beta$}\label{hol-sum}
|
104
|
898 |
\end{figure}
|
|
899 |
|
|
900 |
|
344
|
901 |
\section{Generic packages and classical reasoning}
|
|
902 |
\HOL\ instantiates most of Isabelle's generic packages;
|
|
903 |
see {\tt HOL/ROOT.ML} for details.
|
|
904 |
\begin{itemize}
|
|
905 |
\item
|
|
906 |
Because it includes a general substitution rule, \HOL\ instantiates the
|
|
907 |
tactic {\tt hyp_subst_tac}, which substitutes for an equality
|
|
908 |
throughout a subgoal and its hypotheses.
|
|
909 |
\item
|
|
910 |
It instantiates the simplifier, defining~\ttindexbold{HOL_ss} as the
|
|
911 |
simplification set for higher-order logic. Equality~($=$), which also
|
|
912 |
expresses logical equivalence, may be used for rewriting. See the file
|
|
913 |
{\tt HOL/simpdata.ML} for a complete listing of the simplification
|
|
914 |
rules.
|
|
915 |
\item
|
|
916 |
It instantiates the classical reasoner, as described below.
|
|
917 |
\end{itemize}
|
|
918 |
\HOL\ derives classical introduction rules for $\disj$ and~$\exists$, as
|
|
919 |
well as classical elimination rules for~$\imp$ and~$\bimp$, and the swap
|
|
920 |
rule; recall Fig.\ts\ref{hol-lemmas2} above.
|
|
921 |
|
|
922 |
The classical reasoner is set up as the structure
|
|
923 |
{\tt Classical}. This structure is open, so {\ML} identifiers such
|
|
924 |
as {\tt step_tac}, {\tt fast_tac}, {\tt best_tac}, etc., refer to it.
|
|
925 |
\HOL\ defines the following classical rule sets:
|
|
926 |
\begin{ttbox}
|
|
927 |
prop_cs : claset
|
|
928 |
HOL_cs : claset
|
|
929 |
HOL_dup_cs : claset
|
|
930 |
set_cs : claset
|
|
931 |
\end{ttbox}
|
|
932 |
\begin{ttdescription}
|
|
933 |
\item[\ttindexbold{prop_cs}] contains the propositional rules, namely
|
|
934 |
those for~$\top$, $\bot$, $\conj$, $\disj$, $\neg$, $\imp$ and~$\bimp$,
|
|
935 |
along with the rule~{\tt refl}.
|
|
936 |
|
|
937 |
\item[\ttindexbold{HOL_cs}] extends {\tt prop_cs} with the safe rules
|
|
938 |
{\tt allI} and~{\tt exE} and the unsafe rules {\tt allE}
|
|
939 |
and~{\tt exI}, as well as rules for unique existence. Search using
|
|
940 |
this classical set is incomplete: quantified formulae are used at most
|
|
941 |
once.
|
|
942 |
|
|
943 |
\item[\ttindexbold{HOL_dup_cs}] extends {\tt prop_cs} with the safe rules
|
|
944 |
{\tt allI} and~{\tt exE} and the unsafe rules \tdx{all_dupE}
|
|
945 |
and~\tdx{exCI}, as well as rules for unique existence. Search using
|
|
946 |
this is complete --- quantified formulae may be duplicated --- but
|
|
947 |
frequently fails to terminate. It is generally unsuitable for
|
|
948 |
depth-first search.
|
|
949 |
|
|
950 |
\item[\ttindexbold{set_cs}] extends {\tt HOL_cs} with rules for the bounded
|
|
951 |
quantifiers, subsets, comprehensions, unions and intersections,
|
|
952 |
complements, finite sets, images and ranges.
|
|
953 |
\end{ttdescription}
|
|
954 |
\noindent
|
|
955 |
See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
|
|
956 |
{Chap.\ts\ref{chap:classical}}
|
|
957 |
for more discussion of classical proof methods.
|
|
958 |
|
|
959 |
|
104
|
960 |
\section{Types}
|
|
961 |
The basic higher-order logic is augmented with a tremendous amount of
|
315
|
962 |
material, including support for recursive function and type definitions. A
|
|
963 |
detailed discussion appears elsewhere~\cite{paulson-coind}. The simpler
|
|
964 |
definitions are the same as those used the {\sc hol} system, but my
|
|
965 |
treatment of recursive types differs from Melham's~\cite{melham89}. The
|
|
966 |
present section describes product, sum, natural number and list types.
|
104
|
967 |
|
315
|
968 |
\subsection{Product and sum types}\index{*"* type}\index{*"+ type}
|
|
969 |
Theory \thydx{Prod} defines the product type $\alpha\times\beta$, with
|
|
970 |
the ordered pair syntax {\tt<$a$,$b$>}. Theory \thydx{Sum} defines the
|
|
971 |
sum type $\alpha+\beta$. These use fairly standard constructions; see
|
|
972 |
Figs.\ts\ref{hol-prod} and~\ref{hol-sum}. Because Isabelle does not
|
|
973 |
support abstract type definitions, the isomorphisms between these types and
|
|
974 |
their representations are made explicitly.
|
104
|
975 |
|
|
976 |
Most of the definitions are suppressed, but observe that the projections
|
|
977 |
and conditionals are defined as descriptions. Their properties are easily
|
344
|
978 |
proved using \tdx{select_equality}.
|
104
|
979 |
|
287
|
980 |
\begin{figure}
|
315
|
981 |
\index{*"< symbol}
|
|
982 |
\index{*"* symbol}
|
344
|
983 |
\index{*div symbol}
|
|
984 |
\index{*mod symbol}
|
315
|
985 |
\index{*"+ symbol}
|
|
986 |
\index{*"- symbol}
|
|
987 |
\begin{constants}
|
|
988 |
\it symbol & \it meta-type & \it priority & \it description \\
|
|
989 |
\cdx{0} & $nat$ & & zero \\
|
|
990 |
\cdx{Suc} & $nat \To nat$ & & successor function\\
|
|
991 |
\cdx{nat_case} & $[nat, \alpha, nat\To\alpha] \To\alpha$
|
|
992 |
& & conditional\\
|
|
993 |
\cdx{nat_rec} & $[nat, \alpha, [nat, \alpha]\To\alpha] \To \alpha$
|
|
994 |
& & primitive recursor\\
|
|
995 |
\cdx{pred_nat} & $(nat\times nat) set$ & & predecessor relation\\
|
111
|
996 |
\tt * & $[nat,nat]\To nat$ & Left 70 & multiplication \\
|
344
|
997 |
\tt div & $[nat,nat]\To nat$ & Left 70 & division\\
|
|
998 |
\tt mod & $[nat,nat]\To nat$ & Left 70 & modulus\\
|
111
|
999 |
\tt + & $[nat,nat]\To nat$ & Left 65 & addition\\
|
|
1000 |
\tt - & $[nat,nat]\To nat$ & Left 65 & subtraction
|
315
|
1001 |
\end{constants}
|
104
|
1002 |
\subcaption{Constants and infixes}
|
|
1003 |
|
287
|
1004 |
\begin{ttbox}\makeatother
|
315
|
1005 |
\tdx{nat_case_def} nat_case == (\%n a f. @z. (n=0 --> z=a) &
|
344
|
1006 |
(!x. n=Suc(x) --> z=f(x)))
|
315
|
1007 |
\tdx{pred_nat_def} pred_nat == \{p. ? n. p = <n, Suc(n)>\}
|
|
1008 |
\tdx{less_def} m<n == <m,n>:pred_nat^+
|
|
1009 |
\tdx{nat_rec_def} nat_rec(n,c,d) ==
|
287
|
1010 |
wfrec(pred_nat, n, \%l g.nat_case(l, c, \%m.d(m,g(m))))
|
104
|
1011 |
|
344
|
1012 |
\tdx{add_def} m+n == nat_rec(m, n, \%u v.Suc(v))
|
|
1013 |
\tdx{diff_def} m-n == nat_rec(n, m, \%u v. nat_rec(v, 0, \%x y.x))
|
|
1014 |
\tdx{mult_def} m*n == nat_rec(m, 0, \%u v. n + v)
|
|
1015 |
\tdx{mod_def} m mod n == wfrec(trancl(pred_nat), m, \%j f. if(j<n,j,f(j-n)))
|
|
1016 |
\tdx{quo_def} m div n == wfrec(trancl(pred_nat),
|
287
|
1017 |
m, \%j f. if(j<n,0,Suc(f(j-n))))
|
104
|
1018 |
\subcaption{Definitions}
|
|
1019 |
\end{ttbox}
|
315
|
1020 |
\caption{Defining {\tt nat}, the type of natural numbers} \label{hol-nat1}
|
104
|
1021 |
\end{figure}
|
|
1022 |
|
|
1023 |
|
287
|
1024 |
\begin{figure} \underscoreon
|
104
|
1025 |
\begin{ttbox}
|
315
|
1026 |
\tdx{nat_induct} [| P(0); !!k. [| P(k) |] ==> P(Suc(k)) |] ==> P(n)
|
104
|
1027 |
|
315
|
1028 |
\tdx{Suc_not_Zero} Suc(m) ~= 0
|
|
1029 |
\tdx{inj_Suc} inj(Suc)
|
|
1030 |
\tdx{n_not_Suc_n} n~=Suc(n)
|
104
|
1031 |
\subcaption{Basic properties}
|
|
1032 |
|
315
|
1033 |
\tdx{pred_natI} <n, Suc(n)> : pred_nat
|
|
1034 |
\tdx{pred_natE}
|
104
|
1035 |
[| p : pred_nat; !!x n. [| p = <n, Suc(n)> |] ==> R |] ==> R
|
|
1036 |
|
315
|
1037 |
\tdx{nat_case_0} nat_case(0, a, f) = a
|
|
1038 |
\tdx{nat_case_Suc} nat_case(Suc(k), a, f) = f(k)
|
104
|
1039 |
|
315
|
1040 |
\tdx{wf_pred_nat} wf(pred_nat)
|
|
1041 |
\tdx{nat_rec_0} nat_rec(0,c,h) = c
|
|
1042 |
\tdx{nat_rec_Suc} nat_rec(Suc(n), c, h) = h(n, nat_rec(n,c,h))
|
104
|
1043 |
\subcaption{Case analysis and primitive recursion}
|
|
1044 |
|
315
|
1045 |
\tdx{less_trans} [| i<j; j<k |] ==> i<k
|
|
1046 |
\tdx{lessI} n < Suc(n)
|
|
1047 |
\tdx{zero_less_Suc} 0 < Suc(n)
|
104
|
1048 |
|
315
|
1049 |
\tdx{less_not_sym} n<m --> ~ m<n
|
|
1050 |
\tdx{less_not_refl} ~ n<n
|
|
1051 |
\tdx{not_less0} ~ n<0
|
104
|
1052 |
|
315
|
1053 |
\tdx{Suc_less_eq} (Suc(m) < Suc(n)) = (m<n)
|
|
1054 |
\tdx{less_induct} [| !!n. [| ! m. m<n --> P(m) |] ==> P(n) |] ==> P(n)
|
104
|
1055 |
|
315
|
1056 |
\tdx{less_linear} m<n | m=n | n<m
|
104
|
1057 |
\subcaption{The less-than relation}
|
|
1058 |
\end{ttbox}
|
344
|
1059 |
\caption{Derived rules for {\tt nat}} \label{hol-nat2}
|
104
|
1060 |
\end{figure}
|
|
1061 |
|
|
1062 |
|
315
|
1063 |
\subsection{The type of natural numbers, {\tt nat}}
|
|
1064 |
The theory \thydx{Nat} defines the natural numbers in a roundabout but
|
|
1065 |
traditional way. The axiom of infinity postulates an type~\tydx{ind} of
|
|
1066 |
individuals, which is non-empty and closed under an injective operation.
|
|
1067 |
The natural numbers are inductively generated by choosing an arbitrary
|
|
1068 |
individual for~0 and using the injective operation to take successors. As
|
344
|
1069 |
usual, the isomorphisms between~\tydx{nat} and its representation are made
|
315
|
1070 |
explicitly.
|
104
|
1071 |
|
315
|
1072 |
The definition makes use of a least fixed point operator \cdx{lfp},
|
|
1073 |
defined using the Knaster-Tarski theorem. This is used to define the
|
|
1074 |
operator \cdx{trancl}, for taking the transitive closure of a relation.
|
|
1075 |
Primitive recursion makes use of \cdx{wfrec}, an operator for recursion
|
|
1076 |
along arbitrary well-founded relations. The corresponding theories are
|
|
1077 |
called {\tt Lfp}, {\tt Trancl} and {\tt WF}\@. Elsewhere I have described
|
|
1078 |
similar constructions in the context of set theory~\cite{paulson-set-II}.
|
104
|
1079 |
|
315
|
1080 |
Type~\tydx{nat} is postulated to belong to class~\cldx{ord}, which
|
|
1081 |
overloads $<$ and $\leq$ on the natural numbers. As of this writing,
|
|
1082 |
Isabelle provides no means of verifying that such overloading is sensible;
|
|
1083 |
there is no means of specifying the operators' properties and verifying
|
|
1084 |
that instances of the operators satisfy those properties. To be safe, the
|
|
1085 |
\HOL\ theory includes no polymorphic axioms asserting general properties of
|
|
1086 |
$<$ and~$\leq$.
|
104
|
1087 |
|
315
|
1088 |
Theory \thydx{Arith} develops arithmetic on the natural numbers. It
|
|
1089 |
defines addition, multiplication, subtraction, division, and remainder.
|
|
1090 |
Many of their properties are proved: commutative, associative and
|
|
1091 |
distributive laws, identity and cancellation laws, etc. The most
|
|
1092 |
interesting result is perhaps the theorem $a \bmod b + (a/b)\times b = a$.
|
|
1093 |
Division and remainder are defined by repeated subtraction, which requires
|
|
1094 |
well-founded rather than primitive recursion. See Figs.\ts\ref{hol-nat1}
|
|
1095 |
and~\ref{hol-nat2}.
|
104
|
1096 |
|
315
|
1097 |
The predecessor relation, \cdx{pred_nat}, is shown to be well-founded.
|
|
1098 |
Recursion along this relation resembles primitive recursion, but is
|
|
1099 |
stronger because we are in higher-order logic; using primitive recursion to
|
|
1100 |
define a higher-order function, we can easily Ackermann's function, which
|
|
1101 |
is not primitive recursive \cite[page~104]{thompson91}.
|
|
1102 |
The transitive closure of \cdx{pred_nat} is~$<$. Many functions on the
|
|
1103 |
natural numbers are most easily expressed using recursion along~$<$.
|
|
1104 |
|
|
1105 |
The tactic {\tt\ttindex{nat_ind_tac} "$n$" $i$} performs induction over the
|
|
1106 |
variable~$n$ in subgoal~$i$.
|
104
|
1107 |
|
287
|
1108 |
\begin{figure}
|
315
|
1109 |
\index{#@{\tt\#} symbol}
|
|
1110 |
\index{"@@{\tt\at} symbol}
|
|
1111 |
\begin{constants}
|
|
1112 |
\it symbol & \it meta-type & \it priority & \it description \\
|
|
1113 |
\cdx{Nil} & $\alpha list$ & & empty list\\
|
|
1114 |
\tt \# & $[\alpha,\alpha list]\To \alpha list$ & Right 65 &
|
|
1115 |
list constructor \\
|
344
|
1116 |
\cdx{null} & $\alpha list \To bool$ & & emptiness test\\
|
315
|
1117 |
\cdx{hd} & $\alpha list \To \alpha$ & & head \\
|
|
1118 |
\cdx{tl} & $\alpha list \To \alpha list$ & & tail \\
|
|
1119 |
\cdx{ttl} & $\alpha list \To \alpha list$ & & total tail \\
|
|
1120 |
\tt\at & $[\alpha list,\alpha list]\To \alpha list$ & Left 65 & append \\
|
|
1121 |
\sdx{mem} & $[\alpha,\alpha list]\To bool$ & Left 55 & membership\\
|
|
1122 |
\cdx{map} & $(\alpha\To\beta) \To (\alpha list \To \beta list)$
|
|
1123 |
& & mapping functional\\
|
|
1124 |
\cdx{filter} & $(\alpha \To bool) \To (\alpha list \To \alpha list)$
|
|
1125 |
& & filter functional\\
|
|
1126 |
\cdx{list_all}& $(\alpha \To bool) \To (\alpha list \To bool)$
|
|
1127 |
& & forall functional\\
|
|
1128 |
\cdx{list_rec} & $[\alpha list, \beta, [\alpha ,\alpha list,
|
104
|
1129 |
\beta]\To\beta] \To \beta$
|
315
|
1130 |
& & list recursor
|
|
1131 |
\end{constants}
|
306
|
1132 |
\subcaption{Constants and infixes}
|
|
1133 |
|
|
1134 |
\begin{center} \tt\frenchspacing
|
|
1135 |
\begin{tabular}{rrr}
|
315
|
1136 |
\it external & \it internal & \it description \\{}
|
|
1137 |
\sdx{[]} & Nil & \rm empty list \\{}
|
|
1138 |
[$x@1$, $\dots$, $x@n$] & $x@1$ \# $\cdots$ \# $x@n$ \# [] &
|
306
|
1139 |
\rm finite list \\{}
|
344
|
1140 |
[$x$:$l$. $P$] & filter($\lambda x{.}P$, $l$) &
|
315
|
1141 |
\rm list comprehension
|
306
|
1142 |
\end{tabular}
|
|
1143 |
\end{center}
|
|
1144 |
\subcaption{Translations}
|
104
|
1145 |
|
|
1146 |
\begin{ttbox}
|
315
|
1147 |
\tdx{list_induct} [| P([]); !!x xs. [| P(xs) |] ==> P(x#xs)) |] ==> P(l)
|
104
|
1148 |
|
315
|
1149 |
\tdx{Cons_not_Nil} (x # xs) ~= []
|
|
1150 |
\tdx{Cons_Cons_eq} ((x # xs) = (y # ys)) = (x=y & xs=ys)
|
306
|
1151 |
\subcaption{Induction and freeness}
|
104
|
1152 |
\end{ttbox}
|
315
|
1153 |
\caption{The theory \thydx{List}} \label{hol-list}
|
104
|
1154 |
\end{figure}
|
|
1155 |
|
306
|
1156 |
\begin{figure}
|
|
1157 |
\begin{ttbox}\makeatother
|
471
|
1158 |
\tdx{list_rec_Nil} list_rec([],c,h) = c
|
|
1159 |
\tdx{list_rec_Cons} list_rec(a#l, c, h) = h(a, l, list_rec(l,c,h))
|
315
|
1160 |
|
471
|
1161 |
\tdx{list_case_Nil} list_case([],c,h) = c
|
|
1162 |
\tdx{list_case_Cons} list_case(x#xs, c, h) = h(x, xs)
|
315
|
1163 |
|
471
|
1164 |
\tdx{map_Nil} map(f,[]) = []
|
|
1165 |
\tdx{map_Cons} map(f, x \# xs) = f(x) \# map(f,xs)
|
315
|
1166 |
|
471
|
1167 |
\tdx{null_Nil} null([]) = True
|
|
1168 |
\tdx{null_Cons} null(x#xs) = False
|
315
|
1169 |
|
471
|
1170 |
\tdx{hd_Cons} hd(x#xs) = x
|
|
1171 |
\tdx{tl_Cons} tl(x#xs) = xs
|
315
|
1172 |
|
471
|
1173 |
\tdx{ttl_Nil} ttl([]) = []
|
|
1174 |
\tdx{ttl_Cons} ttl(x#xs) = xs
|
315
|
1175 |
|
471
|
1176 |
\tdx{append_Nil} [] @ ys = ys
|
|
1177 |
\tdx{append_Cons} (x#xs) \at ys = x # xs \at ys
|
315
|
1178 |
|
471
|
1179 |
\tdx{mem_Nil} x mem [] = False
|
|
1180 |
\tdx{mem_Cons} x mem (y#ys) = if(y=x, True, x mem ys)
|
315
|
1181 |
|
471
|
1182 |
\tdx{filter_Nil} filter(P, []) = []
|
|
1183 |
\tdx{filter_Cons} filter(P,x#xs) = if(P(x), x#filter(P,xs), filter(P,xs))
|
315
|
1184 |
|
471
|
1185 |
\tdx{list_all_Nil} list_all(P,[]) = True
|
|
1186 |
\tdx{list_all_Cons} list_all(P, x#xs) = (P(x) & list_all(P, xs))
|
306
|
1187 |
\end{ttbox}
|
|
1188 |
\caption{Rewrite rules for lists} \label{hol-list-simps}
|
|
1189 |
\end{figure}
|
104
|
1190 |
|
315
|
1191 |
|
|
1192 |
\subsection{The type constructor for lists, {\tt list}}
|
|
1193 |
\index{*list type}
|
|
1194 |
|
306
|
1195 |
\HOL's definition of lists is an example of an experimental method for
|
315
|
1196 |
handling recursive data types. Figure~\ref{hol-list} presents the theory
|
|
1197 |
\thydx{List}: the basic list operations with their types and properties.
|
|
1198 |
|
344
|
1199 |
The \sdx{case} construct is defined by the following translation:
|
315
|
1200 |
{\dquotes
|
|
1201 |
\begin{eqnarray*}
|
344
|
1202 |
\begin{array}{r@{\;}l@{}l}
|
315
|
1203 |
"case " e " of" & "[]" & " => " a\\
|
|
1204 |
"|" & x"\#"xs & " => " b
|
|
1205 |
\end{array}
|
|
1206 |
& \equiv &
|
344
|
1207 |
"list_case"(e, a, \lambda x\;xs.b)
|
|
1208 |
\end{eqnarray*}}%
|
315
|
1209 |
The theory includes \cdx{list_rec}, a primitive recursion operator
|
|
1210 |
for lists. It is derived from well-founded recursion, a general principle
|
|
1211 |
that can express arbitrary total recursive functions.
|
|
1212 |
|
|
1213 |
The simpset \ttindex{list_ss} contains, along with additional useful lemmas,
|
|
1214 |
the basic rewrite rules that appear in Fig.\ts\ref{hol-list-simps}.
|
|
1215 |
|
|
1216 |
The tactic {\tt\ttindex{list_ind_tac} "$xs$" $i$} performs induction over the
|
|
1217 |
variable~$xs$ in subgoal~$i$.
|
104
|
1218 |
|
|
1219 |
|
315
|
1220 |
\subsection{The type constructor for lazy lists, {\tt llist}}
|
|
1221 |
\index{*llist type}
|
|
1222 |
|
104
|
1223 |
The definition of lazy lists demonstrates methods for handling infinite
|
344
|
1224 |
data structures and coinduction in higher-order logic. Theory
|
|
1225 |
\thydx{LList} defines an operator for corecursion on lazy lists, which is
|
|
1226 |
used to define a few simple functions such as map and append. Corecursion
|
|
1227 |
cannot easily define operations such as filter, which can compute
|
|
1228 |
indefinitely before yielding the next element (if any!) of the lazy list.
|
|
1229 |
A coinduction principle is defined for proving equations on lazy lists.
|
315
|
1230 |
|
|
1231 |
I have written a paper discussing the treatment of lazy lists; it also
|
|
1232 |
covers finite lists~\cite{paulson-coind}.
|
104
|
1233 |
|
|
1234 |
|
464
|
1235 |
\section{Datatype declarations}
|
|
1236 |
\index{*datatype|(}
|
|
1237 |
|
|
1238 |
\underscoreon
|
|
1239 |
|
|
1240 |
It is often necessary to extend a theory with \ML-like datatypes. This
|
|
1241 |
extension consists of the new type, declarations of its constructors and
|
|
1242 |
rules that describe the new type. The theory definition section {\tt
|
|
1243 |
datatype} represents a compact way of doing this.
|
|
1244 |
|
|
1245 |
|
|
1246 |
\subsection{Foundations}
|
|
1247 |
|
|
1248 |
A datatype declaration has the following general structure:
|
|
1249 |
\[ \mbox{\tt datatype}~ (\alpha_1,\dots,\alpha_n)t ~=~
|
|
1250 |
c_1(\tau_{11},\dots,\tau_{1k_1}) ~\mid~ \dots ~\mid~
|
|
1251 |
c_m(\tau_{m1},\dots,\tau_{mk_m})
|
|
1252 |
\]
|
|
1253 |
where $\alpha_i$ are type variables, $c_i$ are distinct constructor names and
|
|
1254 |
$\tau_{ij}$ are one of the following:
|
|
1255 |
\begin{itemize}
|
|
1256 |
\item type variables $\alpha_1,\dots,\alpha_n$,
|
|
1257 |
\item types $(\beta_1,\dots,\beta_l)s$ where $s$ is a previously declared
|
|
1258 |
type or type synonym and $\{\beta_1,\dots,\beta_l\} \subseteq
|
|
1259 |
\{\alpha_1,\dots,\alpha_n\}$,
|
|
1260 |
\item the newly defined type $(\alpha_1,\dots,\alpha_n)t$ \footnote{This
|
|
1261 |
makes it a recursive type. To ensure that the new type is not empty at
|
|
1262 |
least one constructor must consist of only non-recursive type
|
|
1263 |
components.}
|
|
1264 |
\end{itemize}
|
|
1265 |
The constructors are automatically defined as functions of their respective
|
|
1266 |
type:
|
|
1267 |
\[ c_j : [\tau_{j1},\dots,\tau_{jk_j}] \To (\alpha_1,\dots,\alpha_n)t \]
|
|
1268 |
These functions have certain {\em freeness} properties:
|
|
1269 |
\begin{description}
|
465
|
1270 |
\item[\tt distinct] They are distinct:
|
|
1271 |
\[ c_i(x_1,\dots,x_{k_i}) \neq c_j(y_1,\dots,y_{k_j}) \qquad
|
|
1272 |
\mbox{for all}~ i \neq j.
|
|
1273 |
\]
|
464
|
1274 |
\item[\tt inject] They are injective:
|
|
1275 |
\[ (c_j(x_1,\dots,x_{k_j}) = c_j(y_1,\dots,y_{k_j})) =
|
|
1276 |
(x_1 = y_1 \land \dots \land x_{k_j} = y_{k_j})
|
|
1277 |
\]
|
|
1278 |
\end{description}
|
|
1279 |
Because the number of inequalities is quadratic in the number of
|
|
1280 |
constructors, a different method is used if their number exceeds
|
|
1281 |
a certain value, currently 4. In that case every constructor is mapped to a
|
|
1282 |
natural number
|
|
1283 |
\[
|
|
1284 |
\begin{array}{lcl}
|
|
1285 |
\mbox{\it t\_ord}(c_1(x_1,\dots,x_{k_1})) & = & 0 \\
|
|
1286 |
& \vdots & \\
|
|
1287 |
\mbox{\it t\_ord}(c_m(x_1,\dots,x_{k_m})) & = & m-1
|
|
1288 |
\end{array}
|
|
1289 |
\]
|
465
|
1290 |
and distinctness of constructors is expressed by:
|
464
|
1291 |
\[
|
|
1292 |
\mbox{\it t\_ord}(x) \neq \mbox{\it t\_ord}(y) \Imp x \neq y.
|
|
1293 |
\]
|
|
1294 |
In addition a structural induction axiom {\tt induct} is provided:
|
|
1295 |
\[
|
|
1296 |
\infer{P(x)}
|
|
1297 |
{\begin{array}{lcl}
|
|
1298 |
\Forall x_1\dots x_{k_1}.
|
|
1299 |
\List{P(x_{r_{11}}); \dots; P(x_{r_{1l_1}})} &
|
|
1300 |
\Imp & P(c_1(x_1,\dots,x_{k_1})) \\
|
|
1301 |
& \vdots & \\
|
|
1302 |
\Forall x_1\dots x_{k_m}.
|
|
1303 |
\List{P(x_{r_{m1}}); \dots; P(x_{r_{ml_m}})} &
|
|
1304 |
\Imp & P(c_m(x_1,\dots,x_{k_m}))
|
|
1305 |
\end{array}}
|
|
1306 |
\]
|
|
1307 |
where $\{r_{j1},\dots,r_{jl_j}\} = \{i \in \{1,\dots k_j\} ~\mid~ \tau_{ji}
|
|
1308 |
= (\alpha_1,\dots,\alpha_n)t \}$, i.e.\ the property $P$ can be assumed for
|
|
1309 |
all arguments of the recursive type.
|
|
1310 |
|
465
|
1311 |
The type also comes with an \ML-like \sdx{case}-construct:
|
464
|
1312 |
\[
|
|
1313 |
\begin{array}{rrcl}
|
465
|
1314 |
\mbox{\tt case}~e~\mbox{\tt of} & c_1(x_{11},\dots,x_{1k_1}) & \To & e_1 \\
|
464
|
1315 |
\vdots \\
|
465
|
1316 |
\mid & c_m(x_{m1},\dots,x_{mk_m}) & \To & e_m
|
464
|
1317 |
\end{array}
|
|
1318 |
\]
|
|
1319 |
In contrast to \ML, {\em all} constructors must be present, their order is
|
|
1320 |
fixed, and nested patterns are not supported.
|
|
1321 |
|
|
1322 |
|
|
1323 |
\subsection{Defining datatypes}
|
|
1324 |
|
|
1325 |
A datatype is defined in a theory definition file using the keyword {\tt
|
|
1326 |
datatype}. The definition following {\tt datatype} must conform to the
|
|
1327 |
syntax of {\em typedecl} specified in Fig.~\ref{datatype-grammar} and must
|
|
1328 |
obey the rules in the previous section. As a result the theory is extended
|
|
1329 |
with the new type, the constructors, and the theorems listed in the previous
|
|
1330 |
section.
|
|
1331 |
|
|
1332 |
\begin{figure}
|
|
1333 |
\begin{rail}
|
|
1334 |
typedecl : typevarlist id '=' (cons + '|')
|
|
1335 |
;
|
|
1336 |
cons : (id | string) ( () | '(' (typ + ',') ')' ) ( () | mixfix )
|
|
1337 |
;
|
|
1338 |
typ : typevarlist id
|
|
1339 |
| tid
|
|
1340 |
;
|
|
1341 |
typevarlist : () | tid | '(' (tid + ',') ')'
|
|
1342 |
;
|
|
1343 |
\end{rail}
|
|
1344 |
\caption{Syntax of datatype declarations}
|
|
1345 |
\label{datatype-grammar}
|
|
1346 |
\end{figure}
|
|
1347 |
|
465
|
1348 |
Reading the theory file produces a structure which, in addition to the usual
|
464
|
1349 |
components, contains a structure named $t$ for each datatype $t$ defined in
|
465
|
1350 |
the file.\footnote{Otherwise multiple datatypes in the same theory file would
|
|
1351 |
lead to name clashes.} Each structure $t$ contains the following elements:
|
464
|
1352 |
\begin{ttbox}
|
465
|
1353 |
val distinct : thm list
|
464
|
1354 |
val inject : thm list
|
465
|
1355 |
val induct : thm
|
464
|
1356 |
val cases : thm list
|
|
1357 |
val simps : thm list
|
|
1358 |
val induct_tac : string -> int -> tactic
|
|
1359 |
\end{ttbox}
|
465
|
1360 |
{\tt distinct}, {\tt inject} and {\tt induct} contain the theorems described
|
|
1361 |
above. For convenience {\tt distinct} contains inequalities in both
|
|
1362 |
directions.
|
464
|
1363 |
\begin{warn}
|
|
1364 |
If there are five or more constructors, the {\em t\_ord} scheme is used for
|
465
|
1365 |
{\tt distinct}. In this case the theory {\tt Arith} must be contained
|
|
1366 |
in the current theory, if necessary by including it explicitly.
|
464
|
1367 |
\end{warn}
|
465
|
1368 |
The reduction rules of the {\tt case}-construct are in {\tt cases}. All
|
|
1369 |
theorems from {\tt distinct}, {\tt inject} and {\tt cases} are combined in
|
464
|
1370 |
{\tt simps} for use with the simplifier. The tactic ``{\verb$induct_tac$~{\em
|
|
1371 |
var i}\/}'' applies structural induction over variable {\em var} to
|
|
1372 |
subgoal {\em i}.
|
|
1373 |
|
|
1374 |
|
|
1375 |
\subsection{Examples}
|
|
1376 |
|
|
1377 |
\subsubsection{The datatype $\alpha~list$}
|
|
1378 |
|
465
|
1379 |
We want to define the type $\alpha~list$.\footnote{Of course there is a list
|
|
1380 |
type in HOL already. This is only an example.} To do this we have to build
|
|
1381 |
a new theory that contains the type definition. We start from {\tt HOL}.
|
464
|
1382 |
\begin{ttbox}
|
|
1383 |
MyList = HOL +
|
|
1384 |
datatype 'a list = Nil | Cons ('a, 'a list)
|
|
1385 |
end
|
|
1386 |
\end{ttbox}
|
465
|
1387 |
After loading the theory (\verb$use_thy "MyList"$), we can prove
|
|
1388 |
$Cons(x,xs)\neq xs$. First we build a suitable simpset for the simplifier:
|
464
|
1389 |
\begin{ttbox}
|
|
1390 |
val mylist_ss = HOL_ss addsimps MyList.list.simps;
|
|
1391 |
goal MyList.thy "!x. Cons(x,xs) ~= xs";
|
|
1392 |
{\out Level 0}
|
|
1393 |
{\out ! x. Cons(x, xs) ~= xs}
|
|
1394 |
{\out 1. ! x. Cons(x, xs) ~= xs}
|
|
1395 |
\end{ttbox}
|
|
1396 |
This can be proved by the structural induction tactic:
|
|
1397 |
\begin{ttbox}
|
|
1398 |
by (MyList.list.induct_tac "xs" 1);
|
|
1399 |
{\out Level 1}
|
|
1400 |
{\out ! x. Cons(x, xs) ~= xs}
|
|
1401 |
{\out 1. ! x. Cons(x, Nil) ~= Nil}
|
|
1402 |
{\out 2. !!a list.}
|
|
1403 |
{\out ! x. Cons(x, list) ~= list ==>}
|
|
1404 |
{\out ! x. Cons(x, Cons(a, list)) ~= Cons(a, list)}
|
|
1405 |
\end{ttbox}
|
465
|
1406 |
The first subgoal can be proved with the simplifier and the distinctness
|
|
1407 |
axioms which are part of \verb$mylist_ss$.
|
464
|
1408 |
\begin{ttbox}
|
|
1409 |
by (simp_tac mylist_ss 1);
|
|
1410 |
{\out Level 2}
|
|
1411 |
{\out ! x. Cons(x, xs) ~= xs}
|
|
1412 |
{\out 1. !!a list.}
|
|
1413 |
{\out ! x. Cons(x, list) ~= list ==>}
|
|
1414 |
{\out ! x. Cons(x, Cons(a, list)) ~= Cons(a, list)}
|
|
1415 |
\end{ttbox}
|
465
|
1416 |
Using the freeness axioms we can quickly prove the remaining goal.
|
464
|
1417 |
\begin{ttbox}
|
|
1418 |
by (asm_simp_tac mylist_ss 1);
|
|
1419 |
{\out Level 3}
|
|
1420 |
{\out ! x. Cons(x, xs) ~= xs}
|
|
1421 |
{\out No subgoals!}
|
|
1422 |
\end{ttbox}
|
|
1423 |
Because both subgoals were proved by almost the same tactic we could have
|
|
1424 |
done that in one step using
|
|
1425 |
\begin{ttbox}
|
|
1426 |
by (ALLGOALS (asm_simp_tac mylist_ss));
|
|
1427 |
\end{ttbox}
|
|
1428 |
|
|
1429 |
|
|
1430 |
\subsubsection{The datatype $\alpha~list$ with mixfix syntax}
|
|
1431 |
|
|
1432 |
In this example we define the type $\alpha~list$ again but this time we want
|
|
1433 |
to write {\tt []} instead of {\tt Nil} and we want to use the infix operator
|
|
1434 |
\verb|#| instead of {\tt Cons}. To do this we simply add mixfix annotations
|
|
1435 |
after the constructor declarations as follows:
|
|
1436 |
\begin{ttbox}
|
|
1437 |
MyList = HOL +
|
|
1438 |
datatype 'a list = "[]" ("[]")
|
|
1439 |
| "#" ('a, 'a list) (infixr 70)
|
|
1440 |
end
|
|
1441 |
\end{ttbox}
|
|
1442 |
Now the theorem in the previous example can be written \verb|x#xs ~= xs|. The
|
|
1443 |
proof is the same.
|
|
1444 |
|
|
1445 |
\subsubsection{Defining functions on datatypes}
|
|
1446 |
|
|
1447 |
Normally one wants to define functions dealing with a newly defined type and
|
|
1448 |
prove properties of these functions. As an example let us define \verb|@| for
|
|
1449 |
concatenation and {\tt ttl} for the (total) tail of a list, i.e.\ the list
|
465
|
1450 |
without its first element:
|
464
|
1451 |
\begin{ttbox}
|
|
1452 |
List_fun = MyList +
|
|
1453 |
consts ttl :: "'a list => 'a list"
|
|
1454 |
"@" :: "['a list,'a list] => 'a list" (infixr 60)
|
|
1455 |
rules
|
|
1456 |
ttl_def "ttl (l) == case l of [] => [] | y#ys => ys"
|
|
1457 |
|
|
1458 |
app_Nil "[] @ ys = ys"
|
|
1459 |
app_Cons "(x#xs) @ ys = x#(xs @ ys)"
|
|
1460 |
end
|
|
1461 |
\end{ttbox}
|
|
1462 |
Let us have a look at the use of {\tt case} in the definition of {\tt ttl}.
|
|
1463 |
The expression {\tt case e of [] => [] | y\#ys => ys} evaluates to {\tt []}
|
|
1464 |
if \verb|e=[]| and to {\tt ys} if \verb|e=y#ys|. These properties are
|
|
1465 |
trivial to derive by simplification:
|
|
1466 |
\begin{ttbox}
|
|
1467 |
val mylist_ss = HOL_ss addsimps MyList.list.simps;
|
|
1468 |
|
|
1469 |
goalw List_fun.thy [List_fun.ttl_def] "ttl([]) = []";
|
|
1470 |
by (simp_tac mylist_ss 1);
|
|
1471 |
val ttl_Nil = result();
|
|
1472 |
|
|
1473 |
goalw List_fun.thy [List_fun.ttl_def] "ttl(y#ys) = ys";
|
|
1474 |
by (simp_tac mylist_ss 1);
|
|
1475 |
val ttl_Cons = result();
|
|
1476 |
|
|
1477 |
val list_fun_ss = mylist_ss addsimps
|
|
1478 |
[ttl_Nil, ttl_Cons, List_fun.app_Nil, List_fun.app_Cons];
|
|
1479 |
\end{ttbox}
|
|
1480 |
Note that we include the derived properties in our simpset, not the original
|
|
1481 |
definition of {\tt ttl}. The former are better behaved because they only
|
|
1482 |
apply if the argument is already a constructor.
|
|
1483 |
|
|
1484 |
One could have defined \verb$@$ with a single {\tt case}-construct
|
|
1485 |
\begin{ttbox}
|
|
1486 |
app_def "x @ y == case x of [] => y | z#zs => z # (zs @ y)"
|
|
1487 |
\end{ttbox}
|
|
1488 |
and derived \verb$app_Nil$ and \verb$app_Cons$ from it. But \verb$app_def$ is
|
|
1489 |
not easy to work with: the left-hand side matches a subterm of the right-hand
|
|
1490 |
side, which causes the simplifier to loop.
|
|
1491 |
|
|
1492 |
Here is a simple proof of the associativity of \verb$@$:
|
|
1493 |
\begin{ttbox}
|
|
1494 |
goal List_fun.thy "(x @ y) @ z = x @ (y @ z)";
|
|
1495 |
by (MyList.list.induct_tac "x" 1);
|
|
1496 |
by (simp_tac list_fun_ss 1);
|
|
1497 |
by (asm_simp_tac list_fun_ss 1);
|
|
1498 |
\end{ttbox}
|
|
1499 |
The last two steps can again be combined using {\tt ALLGOALS}.
|
|
1500 |
|
|
1501 |
|
|
1502 |
\subsubsection{A datatype for weekdays}
|
|
1503 |
|
|
1504 |
This example shows a datatype that consists of more than four constructors:
|
|
1505 |
\begin{ttbox}
|
|
1506 |
Days = Arith +
|
|
1507 |
datatype days = Mo | Tu | We | Th | Fr | Sa | So
|
|
1508 |
end
|
|
1509 |
\end{ttbox}
|
|
1510 |
Because there are more than four constructors, the theory must be based on
|
|
1511 |
{\tt Arith}. Inequality is defined via a function \verb|days_ord|. Although
|
465
|
1512 |
the expression \verb|Mo ~= Tu| is not directly contained in {\tt distinct},
|
|
1513 |
it can be proved by the simplifier if \verb$arith_ss$ is used:
|
464
|
1514 |
\begin{ttbox}
|
|
1515 |
val days_ss = arith_ss addsimps Days.days.simps;
|
|
1516 |
|
|
1517 |
goal Days.thy "Mo ~= Tu";
|
|
1518 |
by (simp_tac days_ss 1);
|
|
1519 |
\end{ttbox}
|
|
1520 |
Note that usually it is not necessary to derive these inequalities explicitly
|
|
1521 |
because the simplifier will dispose of them automatically.
|
|
1522 |
|
|
1523 |
\index{*datatype|)}
|
|
1524 |
\underscoreoff
|
|
1525 |
|
|
1526 |
|
|
1527 |
|
111
|
1528 |
\section{The examples directories}
|
344
|
1529 |
Directory {\tt HOL/Subst} contains Martin Coen's mechanisation of a theory of
|
111
|
1530 |
substitutions and unifiers. It is based on Paulson's previous
|
344
|
1531 |
mechanisation in {\LCF}~\cite{paulson85} of Manna and Waldinger's
|
111
|
1532 |
theory~\cite{mw81}.
|
|
1533 |
|
315
|
1534 |
Directory {\tt HOL/ex} contains other examples and experimental proofs in
|
|
1535 |
{\HOL}. Here is an overview of the more interesting files.
|
|
1536 |
\begin{ttdescription}
|
344
|
1537 |
\item[HOL/ex/cla.ML] demonstrates the classical reasoner on over sixty
|
|
1538 |
predicate calculus theorems, ranging from simple tautologies to
|
|
1539 |
moderately difficult problems involving equality and quantifiers.
|
|
1540 |
|
315
|
1541 |
\item[HOL/ex/meson.ML] contains an experimental implementation of the {\sc
|
|
1542 |
meson} proof procedure, inspired by Plaisted~\cite{plaisted90}. It is
|
|
1543 |
much more powerful than Isabelle's classical reasoner. But it is less
|
|
1544 |
useful in practice because it works only for pure logic; it does not
|
|
1545 |
accept derived rules for the set theory primitives, for example.
|
104
|
1546 |
|
315
|
1547 |
\item[HOL/ex/mesontest.ML] contains test data for the {\sc meson} proof
|
|
1548 |
procedure. These are mostly taken from Pelletier \cite{pelletier86}.
|
104
|
1549 |
|
315
|
1550 |
\item[HOL/ex/set.ML] proves Cantor's Theorem, which is presented in
|
|
1551 |
\S\ref{sec:hol-cantor} below, and the Schr\"oder-Bernstein Theorem.
|
|
1552 |
|
344
|
1553 |
\item[HOL/ex/InSort.ML] and {\tt HOL/ex/Qsort.ML} contain correctness
|
315
|
1554 |
proofs about insertion sort and quick sort.
|
104
|
1555 |
|
344
|
1556 |
\item[HOL/ex/PL.ML] proves the soundness and completeness of classical
|
315
|
1557 |
propositional logic, given a truth table semantics. The only connective
|
|
1558 |
is $\imp$. A Hilbert-style axiom system is specified, and its set of
|
344
|
1559 |
theorems defined inductively. A similar proof in \ZF{} is described
|
|
1560 |
elsewhere~\cite{paulson-set-II}.
|
104
|
1561 |
|
344
|
1562 |
\item[HOL/ex/Term.ML]
|
111
|
1563 |
contains proofs about an experimental recursive type definition;
|
315
|
1564 |
the recursion goes through the type constructor~\tydx{list}.
|
104
|
1565 |
|
344
|
1566 |
\item[HOL/ex/Simult.ML] defines primitives for solving mutually recursive
|
315
|
1567 |
equations over sets. It constructs sets of trees and forests as an
|
|
1568 |
example, including induction and recursion rules that handle the mutual
|
|
1569 |
recursion.
|
111
|
1570 |
|
344
|
1571 |
\item[HOL/ex/MT.ML] contains Jacob Frost's formalization~\cite{frost93} of
|
315
|
1572 |
Milner and Tofte's coinduction example~\cite{milner-coind}. This
|
|
1573 |
substantial proof concerns the soundness of a type system for a simple
|
|
1574 |
functional language. The semantics of recursion is given by a cyclic
|
|
1575 |
environment, which makes a coinductive argument appropriate.
|
|
1576 |
\end{ttdescription}
|
104
|
1577 |
|
|
1578 |
|
344
|
1579 |
\goodbreak
|
315
|
1580 |
\section{Example: Cantor's Theorem}\label{sec:hol-cantor}
|
104
|
1581 |
Cantor's Theorem states that every set has more subsets than it has
|
|
1582 |
elements. It has become a favourite example in higher-order logic since
|
|
1583 |
it is so easily expressed:
|
|
1584 |
\[ \forall f::[\alpha,\alpha]\To bool. \exists S::\alpha\To bool.
|
|
1585 |
\forall x::\alpha. f(x) \not= S
|
|
1586 |
\]
|
315
|
1587 |
%
|
104
|
1588 |
Viewing types as sets, $\alpha\To bool$ represents the powerset
|
|
1589 |
of~$\alpha$. This version states that for every function from $\alpha$ to
|
344
|
1590 |
its powerset, some subset is outside its range.
|
|
1591 |
|
|
1592 |
The Isabelle proof uses \HOL's set theory, with the type $\alpha\,set$ and
|
|
1593 |
the operator \cdx{range}. The set~$S$ is given as an unknown instead of a
|
315
|
1594 |
quantified variable so that we may inspect the subset found by the proof.
|
104
|
1595 |
\begin{ttbox}
|
|
1596 |
goal Set.thy "~ ?S : range(f :: 'a=>'a set)";
|
|
1597 |
{\out Level 0}
|
|
1598 |
{\out ~ ?S : range(f)}
|
|
1599 |
{\out 1. ~ ?S : range(f)}
|
|
1600 |
\end{ttbox}
|
315
|
1601 |
The first two steps are routine. The rule \tdx{rangeE} replaces
|
|
1602 |
$\Var{S}\in {\tt range}(f)$ by $\Var{S}=f(x)$ for some~$x$.
|
104
|
1603 |
\begin{ttbox}
|
|
1604 |
by (resolve_tac [notI] 1);
|
|
1605 |
{\out Level 1}
|
|
1606 |
{\out ~ ?S : range(f)}
|
|
1607 |
{\out 1. ?S : range(f) ==> False}
|
287
|
1608 |
\ttbreak
|
104
|
1609 |
by (eresolve_tac [rangeE] 1);
|
|
1610 |
{\out Level 2}
|
|
1611 |
{\out ~ ?S : range(f)}
|
|
1612 |
{\out 1. !!x. ?S = f(x) ==> False}
|
|
1613 |
\end{ttbox}
|
315
|
1614 |
Next, we apply \tdx{equalityCE}, reasoning that since $\Var{S}=f(x)$,
|
104
|
1615 |
we have $\Var{c}\in \Var{S}$ if and only if $\Var{c}\in f(x)$ for
|
|
1616 |
any~$\Var{c}$.
|
|
1617 |
\begin{ttbox}
|
|
1618 |
by (eresolve_tac [equalityCE] 1);
|
|
1619 |
{\out Level 3}
|
|
1620 |
{\out ~ ?S : range(f)}
|
|
1621 |
{\out 1. !!x. [| ?c3(x) : ?S; ?c3(x) : f(x) |] ==> False}
|
|
1622 |
{\out 2. !!x. [| ~ ?c3(x) : ?S; ~ ?c3(x) : f(x) |] ==> False}
|
|
1623 |
\end{ttbox}
|
315
|
1624 |
Now we use a bit of creativity. Suppose that~$\Var{S}$ has the form of a
|
104
|
1625 |
comprehension. Then $\Var{c}\in\{x.\Var{P}(x)\}$ implies
|
315
|
1626 |
$\Var{P}(\Var{c})$. Destruct-resolution using \tdx{CollectD}
|
|
1627 |
instantiates~$\Var{S}$ and creates the new assumption.
|
104
|
1628 |
\begin{ttbox}
|
|
1629 |
by (dresolve_tac [CollectD] 1);
|
|
1630 |
{\out Level 4}
|
|
1631 |
{\out ~ \{x. ?P7(x)\} : range(f)}
|
|
1632 |
{\out 1. !!x. [| ?c3(x) : f(x); ?P7(?c3(x)) |] ==> False}
|
|
1633 |
{\out 2. !!x. [| ~ ?c3(x) : \{x. ?P7(x)\}; ~ ?c3(x) : f(x) |] ==> False}
|
|
1634 |
\end{ttbox}
|
|
1635 |
Forcing a contradiction between the two assumptions of subgoal~1 completes
|
344
|
1636 |
the instantiation of~$S$. It is now the set $\{x. x\not\in f(x)\}$, which
|
|
1637 |
is the standard diagonal construction.
|
104
|
1638 |
\begin{ttbox}
|
|
1639 |
by (contr_tac 1);
|
|
1640 |
{\out Level 5}
|
|
1641 |
{\out ~ \{x. ~ x : f(x)\} : range(f)}
|
|
1642 |
{\out 1. !!x. [| ~ x : \{x. ~ x : f(x)\}; ~ x : f(x) |] ==> False}
|
|
1643 |
\end{ttbox}
|
315
|
1644 |
The rest should be easy. To apply \tdx{CollectI} to the negated
|
104
|
1645 |
assumption, we employ \ttindex{swap_res_tac}:
|
|
1646 |
\begin{ttbox}
|
|
1647 |
by (swap_res_tac [CollectI] 1);
|
|
1648 |
{\out Level 6}
|
|
1649 |
{\out ~ \{x. ~ x : f(x)\} : range(f)}
|
|
1650 |
{\out 1. !!x. [| ~ x : f(x); ~ False |] ==> ~ x : f(x)}
|
287
|
1651 |
\ttbreak
|
104
|
1652 |
by (assume_tac 1);
|
|
1653 |
{\out Level 7}
|
|
1654 |
{\out ~ \{x. ~ x : f(x)\} : range(f)}
|
|
1655 |
{\out No subgoals!}
|
|
1656 |
\end{ttbox}
|
|
1657 |
How much creativity is required? As it happens, Isabelle can prove this
|
|
1658 |
theorem automatically. The classical set \ttindex{set_cs} contains rules
|
315
|
1659 |
for most of the constructs of \HOL's set theory. We must augment it with
|
|
1660 |
\tdx{equalityCE} to break up set equalities, and then apply best-first
|
|
1661 |
search. Depth-first search would diverge, but best-first search
|
|
1662 |
successfully navigates through the large search space.
|
|
1663 |
\index{search!best-first}
|
104
|
1664 |
\begin{ttbox}
|
|
1665 |
choplev 0;
|
|
1666 |
{\out Level 0}
|
|
1667 |
{\out ~ ?S : range(f)}
|
|
1668 |
{\out 1. ~ ?S : range(f)}
|
287
|
1669 |
\ttbreak
|
104
|
1670 |
by (best_tac (set_cs addSEs [equalityCE]) 1);
|
|
1671 |
{\out Level 1}
|
|
1672 |
{\out ~ \{x. ~ x : f(x)\} : range(f)}
|
|
1673 |
{\out No subgoals!}
|
|
1674 |
\end{ttbox}
|
315
|
1675 |
|
|
1676 |
\index{higher-order logic|)}
|