| author | haftmann | 
| Sun, 17 Jun 2012 20:38:12 +0200 | |
| changeset 48106 | 22994525d0d4 | 
| parent 47108 | 2a1953f0d20d | 
| child 50104 | de19856feb54 | 
| permissions | -rw-r--r-- | 
| 43920 | 1 | (* Title: HOL/Library/Extended_Real.thy | 
| 41983 | 2 | Author: Johannes Hölzl, TU München | 
| 3 | Author: Robert Himmelmann, TU München | |
| 4 | Author: Armin Heller, TU München | |
| 5 | Author: Bogdan Grechuk, University of Edinburgh | |
| 6 | *) | |
| 41973 | 7 | |
| 8 | header {* Extended real number line *}
 | |
| 9 | ||
| 43920 | 10 | theory Extended_Real | 
| 43941 | 11 | imports Complex_Main Extended_Nat | 
| 41973 | 12 | begin | 
| 13 | ||
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 14 | text {*
 | 
| 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 15 | |
| 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 16 | For more lemmas about the extended real numbers go to | 
| 47082 | 17 |   @{file "~~/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy"}
 | 
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 18 | |
| 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 19 | *} | 
| 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 20 | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 21 | lemma (in complete_lattice) atLeast_eq_UNIV_iff: "{x..} = UNIV \<longleftrightarrow> x = bot"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 22 | proof | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 23 |   assume "{x..} = UNIV"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 24 | show "x = bot" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 25 | proof (rule ccontr) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 26 |     assume "x \<noteq> bot" then have "bot \<notin> {x..}" by (simp add: le_less)
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 27 |     then show False using `{x..} = UNIV` by simp
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 28 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 29 | qed auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 30 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 31 | lemma SUPR_pair: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 32 | "(SUP i : A. SUP j : B. f i j) = (SUP p : A \<times> B. f (fst p) (snd p))" | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 33 | by (rule antisym) (auto intro!: SUP_least SUP_upper2) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 34 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 35 | lemma INFI_pair: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 36 | "(INF i : A. INF j : B. f i j) = (INF p : A \<times> B. f (fst p) (snd p))" | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 37 | by (rule antisym) (auto intro!: INF_greatest INF_lower2) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 38 | |
| 41973 | 39 | subsection {* Definition and basic properties *}
 | 
| 40 | ||
| 43920 | 41 | datatype ereal = ereal real | PInfty | MInfty | 
| 41973 | 42 | |
| 43920 | 43 | instantiation ereal :: uminus | 
| 41973 | 44 | begin | 
| 43920 | 45 | fun uminus_ereal where | 
| 46 | "- (ereal r) = ereal (- r)" | |
| 43923 | 47 | | "- PInfty = MInfty" | 
| 48 | | "- MInfty = PInfty" | |
| 41973 | 49 | instance .. | 
| 50 | end | |
| 51 | ||
| 43923 | 52 | instantiation ereal :: infinity | 
| 53 | begin | |
| 54 | definition "(\<infinity>::ereal) = PInfty" | |
| 55 | instance .. | |
| 56 | end | |
| 41973 | 57 | |
| 43923 | 58 | declare [[coercion "ereal :: real \<Rightarrow> ereal"]] | 
| 41973 | 59 | |
| 43920 | 60 | lemma ereal_uminus_uminus[simp]: | 
| 61 | fixes a :: ereal shows "- (- a) = a" | |
| 41973 | 62 | by (cases a) simp_all | 
| 63 | ||
| 43923 | 64 | lemma | 
| 65 | shows PInfty_eq_infinity[simp]: "PInfty = \<infinity>" | |
| 66 | and MInfty_eq_minfinity[simp]: "MInfty = - \<infinity>" | |
| 67 | and MInfty_neq_PInfty[simp]: "\<infinity> \<noteq> - (\<infinity>::ereal)" "- \<infinity> \<noteq> (\<infinity>::ereal)" | |
| 68 | and MInfty_neq_ereal[simp]: "ereal r \<noteq> - \<infinity>" "- \<infinity> \<noteq> ereal r" | |
| 69 | and PInfty_neq_ereal[simp]: "ereal r \<noteq> \<infinity>" "\<infinity> \<noteq> ereal r" | |
| 70 | and PInfty_cases[simp]: "(case \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = y" | |
| 71 | and MInfty_cases[simp]: "(case - \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = z" | |
| 72 | by (simp_all add: infinity_ereal_def) | |
| 41973 | 73 | |
| 43933 | 74 | declare | 
| 75 | PInfty_eq_infinity[code_post] | |
| 76 | MInfty_eq_minfinity[code_post] | |
| 77 | ||
| 78 | lemma [code_unfold]: | |
| 79 | "\<infinity> = PInfty" | |
| 80 | "-PInfty = MInfty" | |
| 81 | by simp_all | |
| 82 | ||
| 43923 | 83 | lemma inj_ereal[simp]: "inj_on ereal A" | 
| 84 | unfolding inj_on_def by auto | |
| 41973 | 85 | |
| 43920 | 86 | lemma ereal_cases[case_names real PInf MInf, cases type: ereal]: | 
| 87 | assumes "\<And>r. x = ereal r \<Longrightarrow> P" | |
| 41973 | 88 | assumes "x = \<infinity> \<Longrightarrow> P" | 
| 89 | assumes "x = -\<infinity> \<Longrightarrow> P" | |
| 90 | shows P | |
| 91 | using assms by (cases x) auto | |
| 92 | ||
| 43920 | 93 | lemmas ereal2_cases = ereal_cases[case_product ereal_cases] | 
| 94 | lemmas ereal3_cases = ereal2_cases[case_product ereal_cases] | |
| 41973 | 95 | |
| 43920 | 96 | lemma ereal_uminus_eq_iff[simp]: | 
| 97 | fixes a b :: ereal shows "-a = -b \<longleftrightarrow> a = b" | |
| 98 | by (cases rule: ereal2_cases[of a b]) simp_all | |
| 41973 | 99 | |
| 43920 | 100 | function of_ereal :: "ereal \<Rightarrow> real" where | 
| 101 | "of_ereal (ereal r) = r" | | |
| 102 | "of_ereal \<infinity> = 0" | | |
| 103 | "of_ereal (-\<infinity>) = 0" | |
| 104 | by (auto intro: ereal_cases) | |
| 41973 | 105 | termination proof qed (rule wf_empty) | 
| 106 | ||
| 107 | defs (overloaded) | |
| 43920 | 108 | real_of_ereal_def [code_unfold]: "real \<equiv> of_ereal" | 
| 41973 | 109 | |
| 43920 | 110 | lemma real_of_ereal[simp]: | 
| 111 | "real (- x :: ereal) = - (real x)" | |
| 112 | "real (ereal r) = r" | |
| 43923 | 113 | "real (\<infinity>::ereal) = 0" | 
| 43920 | 114 | by (cases x) (simp_all add: real_of_ereal_def) | 
| 41973 | 115 | |
| 43920 | 116 | lemma range_ereal[simp]: "range ereal = UNIV - {\<infinity>, -\<infinity>}"
 | 
| 41973 | 117 | proof safe | 
| 43920 | 118 | fix x assume "x \<notin> range ereal" "x \<noteq> \<infinity>" | 
| 41973 | 119 | then show "x = -\<infinity>" by (cases x) auto | 
| 120 | qed auto | |
| 121 | ||
| 43920 | 122 | lemma ereal_range_uminus[simp]: "range uminus = (UNIV::ereal set)" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 123 | proof safe | 
| 43920 | 124 | fix x :: ereal show "x \<in> range uminus" by (intro image_eqI[of _ _ "-x"]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 125 | qed auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 126 | |
| 41973 | 127 | |
| 43920 | 128 | instantiation ereal :: abs | 
| 41976 | 129 | begin | 
| 43920 | 130 | function abs_ereal where | 
| 131 | "\<bar>ereal r\<bar> = ereal \<bar>r\<bar>" | |
| 43923 | 132 | | "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)" | 
| 133 | | "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)" | |
| 43920 | 134 | by (auto intro: ereal_cases) | 
| 41976 | 135 | termination proof qed (rule wf_empty) | 
| 136 | instance .. | |
| 137 | end | |
| 138 | ||
| 43923 | 139 | lemma abs_eq_infinity_cases[elim!]: "\<lbrakk> \<bar>x :: ereal\<bar> = \<infinity> ; x = \<infinity> \<Longrightarrow> P ; x = -\<infinity> \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P" | 
| 41976 | 140 | by (cases x) auto | 
| 141 | ||
| 43923 | 142 | lemma abs_neq_infinity_cases[elim!]: "\<lbrakk> \<bar>x :: ereal\<bar> \<noteq> \<infinity> ; \<And>r. x = ereal r \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P" | 
| 41976 | 143 | by (cases x) auto | 
| 144 | ||
| 43920 | 145 | lemma abs_ereal_uminus[simp]: "\<bar>- x\<bar> = \<bar>x::ereal\<bar>" | 
| 41976 | 146 | by (cases x) auto | 
| 147 | ||
| 41973 | 148 | subsubsection "Addition" | 
| 149 | ||
| 43920 | 150 | instantiation ereal :: comm_monoid_add | 
| 41973 | 151 | begin | 
| 152 | ||
| 43920 | 153 | definition "0 = ereal 0" | 
| 41973 | 154 | |
| 43920 | 155 | function plus_ereal where | 
| 156 | "ereal r + ereal p = ereal (r + p)" | | |
| 43923 | 157 | "\<infinity> + a = (\<infinity>::ereal)" | | 
| 158 | "a + \<infinity> = (\<infinity>::ereal)" | | |
| 43920 | 159 | "ereal r + -\<infinity> = - \<infinity>" | | 
| 43923 | 160 | "-\<infinity> + ereal p = -(\<infinity>::ereal)" | | 
| 161 | "-\<infinity> + -\<infinity> = -(\<infinity>::ereal)" | |
| 41973 | 162 | proof - | 
| 163 | case (goal1 P x) | |
| 164 | moreover then obtain a b where "x = (a, b)" by (cases x) auto | |
| 165 | ultimately show P | |
| 43920 | 166 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 167 | qed auto | 
| 168 | termination proof qed (rule wf_empty) | |
| 169 | ||
| 170 | lemma Infty_neq_0[simp]: | |
| 43923 | 171 | "(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> (\<infinity>::ereal)" | 
| 172 | "-(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> -(\<infinity>::ereal)" | |
| 43920 | 173 | by (simp_all add: zero_ereal_def) | 
| 41973 | 174 | |
| 43920 | 175 | lemma ereal_eq_0[simp]: | 
| 176 | "ereal r = 0 \<longleftrightarrow> r = 0" | |
| 177 | "0 = ereal r \<longleftrightarrow> r = 0" | |
| 178 | unfolding zero_ereal_def by simp_all | |
| 41973 | 179 | |
| 180 | instance | |
| 181 | proof | |
| 47082 | 182 | fix a b c :: ereal | 
| 183 | show "0 + a = a" | |
| 43920 | 184 | by (cases a) (simp_all add: zero_ereal_def) | 
| 47082 | 185 | show "a + b = b + a" | 
| 43920 | 186 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 47082 | 187 | show "a + b + c = a + (b + c)" | 
| 43920 | 188 | by (cases rule: ereal3_cases[of a b c]) simp_all | 
| 41973 | 189 | qed | 
| 190 | end | |
| 191 | ||
| 43920 | 192 | lemma real_of_ereal_0[simp]: "real (0::ereal) = 0" | 
| 193 | unfolding real_of_ereal_def zero_ereal_def by simp | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 194 | |
| 43920 | 195 | lemma abs_ereal_zero[simp]: "\<bar>0\<bar> = (0::ereal)" | 
| 196 | unfolding zero_ereal_def abs_ereal.simps by simp | |
| 41976 | 197 | |
| 43920 | 198 | lemma ereal_uminus_zero[simp]: | 
| 199 | "- 0 = (0::ereal)" | |
| 200 | by (simp add: zero_ereal_def) | |
| 41973 | 201 | |
| 43920 | 202 | lemma ereal_uminus_zero_iff[simp]: | 
| 203 | fixes a :: ereal shows "-a = 0 \<longleftrightarrow> a = 0" | |
| 41973 | 204 | by (cases a) simp_all | 
| 205 | ||
| 43920 | 206 | lemma ereal_plus_eq_PInfty[simp]: | 
| 43923 | 207 | fixes a b :: ereal shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" | 
| 43920 | 208 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 209 | |
| 43920 | 210 | lemma ereal_plus_eq_MInfty[simp]: | 
| 43923 | 211 | fixes a b :: ereal shows "a + b = -\<infinity> \<longleftrightarrow> | 
| 41973 | 212 | (a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>" | 
| 43920 | 213 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 214 | |
| 43920 | 215 | lemma ereal_add_cancel_left: | 
| 43923 | 216 | fixes a b :: ereal assumes "a \<noteq> -\<infinity>" | 
| 41973 | 217 | shows "a + b = a + c \<longleftrightarrow> (a = \<infinity> \<or> b = c)" | 
| 43920 | 218 | using assms by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 219 | |
| 43920 | 220 | lemma ereal_add_cancel_right: | 
| 43923 | 221 | fixes a b :: ereal assumes "a \<noteq> -\<infinity>" | 
| 41973 | 222 | shows "b + a = c + a \<longleftrightarrow> (a = \<infinity> \<or> b = c)" | 
| 43920 | 223 | using assms by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 224 | |
| 43920 | 225 | lemma ereal_real: | 
| 226 | "ereal (real x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)" | |
| 41973 | 227 | by (cases x) simp_all | 
| 228 | ||
| 43920 | 229 | lemma real_of_ereal_add: | 
| 230 | fixes a b :: ereal | |
| 47082 | 231 | shows "real (a + b) = | 
| 232 | (if (\<bar>a\<bar> = \<infinity>) \<and> (\<bar>b\<bar> = \<infinity>) \<or> (\<bar>a\<bar> \<noteq> \<infinity>) \<and> (\<bar>b\<bar> \<noteq> \<infinity>) then real a + real b else 0)" | |
| 43920 | 233 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 234 | |
| 43920 | 235 | subsubsection "Linear order on @{typ ereal}"
 | 
| 41973 | 236 | |
| 43920 | 237 | instantiation ereal :: linorder | 
| 41973 | 238 | begin | 
| 239 | ||
| 47082 | 240 | function less_ereal | 
| 241 | where | |
| 242 | " ereal x < ereal y \<longleftrightarrow> x < y" | |
| 243 | | "(\<infinity>::ereal) < a \<longleftrightarrow> False" | |
| 244 | | " a < -(\<infinity>::ereal) \<longleftrightarrow> False" | |
| 245 | | "ereal x < \<infinity> \<longleftrightarrow> True" | |
| 246 | | " -\<infinity> < ereal r \<longleftrightarrow> True" | |
| 247 | | " -\<infinity> < (\<infinity>::ereal) \<longleftrightarrow> True" | |
| 41973 | 248 | proof - | 
| 249 | case (goal1 P x) | |
| 250 | moreover then obtain a b where "x = (a,b)" by (cases x) auto | |
| 43920 | 251 | ultimately show P by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 252 | qed simp_all | 
| 253 | termination by (relation "{}") simp
 | |
| 254 | ||
| 43920 | 255 | definition "x \<le> (y::ereal) \<longleftrightarrow> x < y \<or> x = y" | 
| 41973 | 256 | |
| 43920 | 257 | lemma ereal_infty_less[simp]: | 
| 43923 | 258 | fixes x :: ereal | 
| 259 | shows "x < \<infinity> \<longleftrightarrow> (x \<noteq> \<infinity>)" | |
| 260 | "-\<infinity> < x \<longleftrightarrow> (x \<noteq> -\<infinity>)" | |
| 41973 | 261 | by (cases x, simp_all) (cases x, simp_all) | 
| 262 | ||
| 43920 | 263 | lemma ereal_infty_less_eq[simp]: | 
| 43923 | 264 | fixes x :: ereal | 
| 265 | shows "\<infinity> \<le> x \<longleftrightarrow> x = \<infinity>" | |
| 41973 | 266 | "x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>" | 
| 43920 | 267 | by (auto simp add: less_eq_ereal_def) | 
| 41973 | 268 | |
| 43920 | 269 | lemma ereal_less[simp]: | 
| 270 | "ereal r < 0 \<longleftrightarrow> (r < 0)" | |
| 271 | "0 < ereal r \<longleftrightarrow> (0 < r)" | |
| 43923 | 272 | "0 < (\<infinity>::ereal)" | 
| 273 | "-(\<infinity>::ereal) < 0" | |
| 43920 | 274 | by (simp_all add: zero_ereal_def) | 
| 41973 | 275 | |
| 43920 | 276 | lemma ereal_less_eq[simp]: | 
| 43923 | 277 | "x \<le> (\<infinity>::ereal)" | 
| 278 | "-(\<infinity>::ereal) \<le> x" | |
| 43920 | 279 | "ereal r \<le> ereal p \<longleftrightarrow> r \<le> p" | 
| 280 | "ereal r \<le> 0 \<longleftrightarrow> r \<le> 0" | |
| 281 | "0 \<le> ereal r \<longleftrightarrow> 0 \<le> r" | |
| 282 | by (auto simp add: less_eq_ereal_def zero_ereal_def) | |
| 41973 | 283 | |
| 43920 | 284 | lemma ereal_infty_less_eq2: | 
| 43923 | 285 | "a \<le> b \<Longrightarrow> a = \<infinity> \<Longrightarrow> b = (\<infinity>::ereal)" | 
| 286 | "a \<le> b \<Longrightarrow> b = -\<infinity> \<Longrightarrow> a = -(\<infinity>::ereal)" | |
| 41973 | 287 | by simp_all | 
| 288 | ||
| 289 | instance | |
| 290 | proof | |
| 47082 | 291 | fix x y z :: ereal | 
| 292 | show "x \<le> x" | |
| 41973 | 293 | by (cases x) simp_all | 
| 47082 | 294 | show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" | 
| 43920 | 295 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 296 | show "x \<le> y \<or> y \<le> x " | 
| 43920 | 297 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 298 |   { assume "x \<le> y" "y \<le> x" then show "x = y"
 | 
| 43920 | 299 | by (cases rule: ereal2_cases[of x y]) auto } | 
| 47082 | 300 |   { assume "x \<le> y" "y \<le> z" then show "x \<le> z"
 | 
| 43920 | 301 | by (cases rule: ereal3_cases[of x y z]) auto } | 
| 41973 | 302 | qed | 
| 47082 | 303 | |
| 41973 | 304 | end | 
| 305 | ||
| 43920 | 306 | instance ereal :: ordered_ab_semigroup_add | 
| 41978 | 307 | proof | 
| 43920 | 308 | fix a b c :: ereal assume "a \<le> b" then show "c + a \<le> c + b" | 
| 309 | by (cases rule: ereal3_cases[of a b c]) auto | |
| 41978 | 310 | qed | 
| 311 | ||
| 43920 | 312 | lemma real_of_ereal_positive_mono: | 
| 43923 | 313 | fixes x y :: ereal shows "\<lbrakk>0 \<le> x; x \<le> y; y \<noteq> \<infinity>\<rbrakk> \<Longrightarrow> real x \<le> real y" | 
| 43920 | 314 | by (cases rule: ereal2_cases[of x y]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 315 | |
| 43920 | 316 | lemma ereal_MInfty_lessI[intro, simp]: | 
| 43923 | 317 | fixes a :: ereal shows "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a" | 
| 41973 | 318 | by (cases a) auto | 
| 319 | ||
| 43920 | 320 | lemma ereal_less_PInfty[intro, simp]: | 
| 43923 | 321 | fixes a :: ereal shows "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>" | 
| 41973 | 322 | by (cases a) auto | 
| 323 | ||
| 43920 | 324 | lemma ereal_less_ereal_Ex: | 
| 325 | fixes a b :: ereal | |
| 326 | shows "x < ereal r \<longleftrightarrow> x = -\<infinity> \<or> (\<exists>p. p < r \<and> x = ereal p)" | |
| 41973 | 327 | by (cases x) auto | 
| 328 | ||
| 43920 | 329 | lemma less_PInf_Ex_of_nat: "x \<noteq> \<infinity> \<longleftrightarrow> (\<exists>n::nat. x < ereal (real n))" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 330 | proof (cases x) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 331 | case (real r) then show ?thesis | 
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 332 | using reals_Archimedean2[of r] by simp | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 333 | qed simp_all | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 334 | |
| 43920 | 335 | lemma ereal_add_mono: | 
| 336 | fixes a b c d :: ereal assumes "a \<le> b" "c \<le> d" shows "a + c \<le> b + d" | |
| 41973 | 337 | using assms | 
| 338 | apply (cases a) | |
| 43920 | 339 | apply (cases rule: ereal3_cases[of b c d], auto) | 
| 340 | apply (cases rule: ereal3_cases[of b c d], auto) | |
| 41973 | 341 | done | 
| 342 | ||
| 43920 | 343 | lemma ereal_minus_le_minus[simp]: | 
| 344 | fixes a b :: ereal shows "- a \<le> - b \<longleftrightarrow> b \<le> a" | |
| 345 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41973 | 346 | |
| 43920 | 347 | lemma ereal_minus_less_minus[simp]: | 
| 348 | fixes a b :: ereal shows "- a < - b \<longleftrightarrow> b < a" | |
| 349 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41973 | 350 | |
| 43920 | 351 | lemma ereal_le_real_iff: | 
| 352 | "x \<le> real y \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0))" | |
| 41973 | 353 | by (cases y) auto | 
| 354 | ||
| 43920 | 355 | lemma real_le_ereal_iff: | 
| 356 | "real y \<le> x \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x))" | |
| 41973 | 357 | by (cases y) auto | 
| 358 | ||
| 43920 | 359 | lemma ereal_less_real_iff: | 
| 360 | "x < real y \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0))" | |
| 41973 | 361 | by (cases y) auto | 
| 362 | ||
| 43920 | 363 | lemma real_less_ereal_iff: | 
| 364 | "real y < x \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x))" | |
| 41973 | 365 | by (cases y) auto | 
| 366 | ||
| 43920 | 367 | lemma real_of_ereal_pos: | 
| 368 | fixes x :: ereal shows "0 \<le> x \<Longrightarrow> 0 \<le> real x" by (cases x) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 369 | |
| 43920 | 370 | lemmas real_of_ereal_ord_simps = | 
| 371 | ereal_le_real_iff real_le_ereal_iff ereal_less_real_iff real_less_ereal_iff | |
| 41973 | 372 | |
| 43920 | 373 | lemma abs_ereal_ge0[simp]: "0 \<le> x \<Longrightarrow> \<bar>x :: ereal\<bar> = x" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 374 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 375 | |
| 43920 | 376 | lemma abs_ereal_less0[simp]: "x < 0 \<Longrightarrow> \<bar>x :: ereal\<bar> = -x" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 377 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 378 | |
| 43920 | 379 | lemma abs_ereal_pos[simp]: "0 \<le> \<bar>x :: ereal\<bar>" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 380 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 381 | |
| 43923 | 382 | lemma real_of_ereal_le_0[simp]: "real (x :: ereal) \<le> 0 \<longleftrightarrow> (x \<le> 0 \<or> x = \<infinity>)" | 
| 383 | by (cases x) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 384 | |
| 43923 | 385 | lemma abs_real_of_ereal[simp]: "\<bar>real (x :: ereal)\<bar> = real \<bar>x\<bar>" | 
| 386 | by (cases x) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 387 | |
| 43923 | 388 | lemma zero_less_real_of_ereal: | 
| 389 | fixes x :: ereal shows "0 < real x \<longleftrightarrow> (0 < x \<and> x \<noteq> \<infinity>)" | |
| 390 | by (cases x) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 391 | |
| 43920 | 392 | lemma ereal_0_le_uminus_iff[simp]: | 
| 393 | fixes a :: ereal shows "0 \<le> -a \<longleftrightarrow> a \<le> 0" | |
| 394 | by (cases rule: ereal2_cases[of a]) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 395 | |
| 43920 | 396 | lemma ereal_uminus_le_0_iff[simp]: | 
| 397 | fixes a :: ereal shows "-a \<le> 0 \<longleftrightarrow> 0 \<le> a" | |
| 398 | by (cases rule: ereal2_cases[of a]) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 399 | |
| 43923 | 400 | lemma ereal_dense2: "x < y \<Longrightarrow> \<exists>z. x < ereal z \<and> ereal z < y" | 
| 401 | using lt_ex gt_ex dense by (cases x y rule: ereal2_cases) auto | |
| 402 | ||
| 43920 | 403 | lemma ereal_dense: | 
| 404 | fixes x y :: ereal assumes "x < y" | |
| 43923 | 405 | shows "\<exists>z. x < z \<and> z < y" | 
| 406 | using ereal_dense2[OF `x < y`] by blast | |
| 41973 | 407 | |
| 43920 | 408 | lemma ereal_add_strict_mono: | 
| 409 | fixes a b c d :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 410 | assumes "a = b" "0 \<le> a" "a \<noteq> \<infinity>" "c < d" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 411 | shows "a + c < b + d" | 
| 43920 | 412 | using assms by (cases rule: ereal3_cases[case_product ereal_cases, of a b c d]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 413 | |
| 43923 | 414 | lemma ereal_less_add: | 
| 415 | fixes a b c :: ereal shows "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b" | |
| 43920 | 416 | by (cases rule: ereal2_cases[of b c]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 417 | |
| 43920 | 418 | lemma ereal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::ereal)" by auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 419 | |
| 43920 | 420 | lemma ereal_uminus_less_reorder: "- a < b \<longleftrightarrow> -b < (a::ereal)" | 
| 421 | by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 422 | |
| 43920 | 423 | lemma ereal_uminus_le_reorder: "- a \<le> b \<longleftrightarrow> -b \<le> (a::ereal)" | 
| 424 | by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_le_minus) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 425 | |
| 43920 | 426 | lemmas ereal_uminus_reorder = | 
| 427 | ereal_uminus_eq_reorder ereal_uminus_less_reorder ereal_uminus_le_reorder | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 428 | |
| 43920 | 429 | lemma ereal_bot: | 
| 430 | fixes x :: ereal assumes "\<And>B. x \<le> ereal B" shows "x = - \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 431 | proof (cases x) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 432 | case (real r) with assms[of "r - 1"] show ?thesis by auto | 
| 47082 | 433 | next | 
| 434 | case PInf with assms[of 0] show ?thesis by auto | |
| 435 | next | |
| 436 | case MInf then show ?thesis by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 437 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 438 | |
| 43920 | 439 | lemma ereal_top: | 
| 440 | fixes x :: ereal assumes "\<And>B. x \<ge> ereal B" shows "x = \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 441 | proof (cases x) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 442 | case (real r) with assms[of "r + 1"] show ?thesis by auto | 
| 47082 | 443 | next | 
| 444 | case MInf with assms[of 0] show ?thesis by auto | |
| 445 | next | |
| 446 | case PInf then show ?thesis by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 447 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 448 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 449 | lemma | 
| 43920 | 450 | shows ereal_max[simp]: "ereal (max x y) = max (ereal x) (ereal y)" | 
| 451 | and ereal_min[simp]: "ereal (min x y) = min (ereal x) (ereal y)" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 452 | by (simp_all add: min_def max_def) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 453 | |
| 43920 | 454 | lemma ereal_max_0: "max 0 (ereal r) = ereal (max 0 r)" | 
| 455 | by (auto simp: zero_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 456 | |
| 41978 | 457 | lemma | 
| 43920 | 458 | fixes f :: "nat \<Rightarrow> ereal" | 
| 41978 | 459 | shows incseq_uminus[simp]: "incseq (\<lambda>x. - f x) \<longleftrightarrow> decseq f" | 
| 460 | and decseq_uminus[simp]: "decseq (\<lambda>x. - f x) \<longleftrightarrow> incseq f" | |
| 461 | unfolding decseq_def incseq_def by auto | |
| 462 | ||
| 43920 | 463 | lemma incseq_ereal: "incseq f \<Longrightarrow> incseq (\<lambda>x. ereal (f x))" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 464 | unfolding incseq_def by auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 465 | |
| 43920 | 466 | lemma ereal_add_nonneg_nonneg: | 
| 467 | fixes a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b" | |
| 41978 | 468 | using add_mono[of 0 a 0 b] by simp | 
| 469 | ||
| 470 | lemma image_eqD: "f ` A = B \<Longrightarrow> (\<forall>x\<in>A. f x \<in> B)" | |
| 471 | by auto | |
| 472 | ||
| 473 | lemma incseq_setsumI: | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 474 |   fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add, ordered_ab_semigroup_add}"
 | 
| 41978 | 475 | assumes "\<And>i. 0 \<le> f i" | 
| 476 |   shows "incseq (\<lambda>i. setsum f {..< i})"
 | |
| 477 | proof (intro incseq_SucI) | |
| 478 |   fix n have "setsum f {..< n} + 0 \<le> setsum f {..<n} + f n"
 | |
| 479 | using assms by (rule add_left_mono) | |
| 480 |   then show "setsum f {..< n} \<le> setsum f {..< Suc n}"
 | |
| 481 | by auto | |
| 482 | qed | |
| 483 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 484 | lemma incseq_setsumI2: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 485 |   fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{comm_monoid_add, ordered_ab_semigroup_add}"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 486 | assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 487 | shows "incseq (\<lambda>i. \<Sum>n\<in>A. f n i)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 488 | using assms unfolding incseq_def by (auto intro: setsum_mono) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 489 | |
| 41973 | 490 | subsubsection "Multiplication" | 
| 491 | ||
| 43920 | 492 | instantiation ereal :: "{comm_monoid_mult, sgn}"
 | 
| 41973 | 493 | begin | 
| 494 | ||
| 43920 | 495 | definition "1 = ereal 1" | 
| 41973 | 496 | |
| 43920 | 497 | function sgn_ereal where | 
| 498 | "sgn (ereal r) = ereal (sgn r)" | |
| 43923 | 499 | | "sgn (\<infinity>::ereal) = 1" | 
| 500 | | "sgn (-\<infinity>::ereal) = -1" | |
| 43920 | 501 | by (auto intro: ereal_cases) | 
| 41976 | 502 | termination proof qed (rule wf_empty) | 
| 503 | ||
| 43920 | 504 | function times_ereal where | 
| 505 | "ereal r * ereal p = ereal (r * p)" | | |
| 506 | "ereal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" | | |
| 507 | "\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" | | |
| 508 | "ereal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" | | |
| 509 | "-\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" | | |
| 43923 | 510 | "(\<infinity>::ereal) * \<infinity> = \<infinity>" | | 
| 511 | "-(\<infinity>::ereal) * \<infinity> = -\<infinity>" | | |
| 512 | "(\<infinity>::ereal) * -\<infinity> = -\<infinity>" | | |
| 513 | "-(\<infinity>::ereal) * -\<infinity> = \<infinity>" | |
| 41973 | 514 | proof - | 
| 515 | case (goal1 P x) | |
| 516 | moreover then obtain a b where "x = (a, b)" by (cases x) auto | |
| 43920 | 517 | ultimately show P by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 518 | qed simp_all | 
| 519 | termination by (relation "{}") simp
 | |
| 520 | ||
| 521 | instance | |
| 522 | proof | |
| 47082 | 523 | fix a b c :: ereal show "1 * a = a" | 
| 43920 | 524 | by (cases a) (simp_all add: one_ereal_def) | 
| 47082 | 525 | show "a * b = b * a" | 
| 43920 | 526 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 47082 | 527 | show "a * b * c = a * (b * c)" | 
| 43920 | 528 | by (cases rule: ereal3_cases[of a b c]) | 
| 529 | (simp_all add: zero_ereal_def zero_less_mult_iff) | |
| 41973 | 530 | qed | 
| 531 | end | |
| 532 | ||
| 43920 | 533 | lemma real_of_ereal_le_1: | 
| 534 | fixes a :: ereal shows "a \<le> 1 \<Longrightarrow> real a \<le> 1" | |
| 535 | by (cases a) (auto simp: one_ereal_def) | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 536 | |
| 43920 | 537 | lemma abs_ereal_one[simp]: "\<bar>1\<bar> = (1::ereal)" | 
| 538 | unfolding one_ereal_def by simp | |
| 41976 | 539 | |
| 43920 | 540 | lemma ereal_mult_zero[simp]: | 
| 541 | fixes a :: ereal shows "a * 0 = 0" | |
| 542 | by (cases a) (simp_all add: zero_ereal_def) | |
| 41973 | 543 | |
| 43920 | 544 | lemma ereal_zero_mult[simp]: | 
| 545 | fixes a :: ereal shows "0 * a = 0" | |
| 546 | by (cases a) (simp_all add: zero_ereal_def) | |
| 41973 | 547 | |
| 43920 | 548 | lemma ereal_m1_less_0[simp]: | 
| 549 | "-(1::ereal) < 0" | |
| 550 | by (simp add: zero_ereal_def one_ereal_def) | |
| 41973 | 551 | |
| 43920 | 552 | lemma ereal_zero_m1[simp]: | 
| 553 | "1 \<noteq> (0::ereal)" | |
| 554 | by (simp add: zero_ereal_def one_ereal_def) | |
| 41973 | 555 | |
| 43920 | 556 | lemma ereal_times_0[simp]: | 
| 557 | fixes x :: ereal shows "0 * x = 0" | |
| 558 | by (cases x) (auto simp: zero_ereal_def) | |
| 41973 | 559 | |
| 43920 | 560 | lemma ereal_times[simp]: | 
| 43923 | 561 | "1 \<noteq> (\<infinity>::ereal)" "(\<infinity>::ereal) \<noteq> 1" | 
| 562 | "1 \<noteq> -(\<infinity>::ereal)" "-(\<infinity>::ereal) \<noteq> 1" | |
| 43920 | 563 | by (auto simp add: times_ereal_def one_ereal_def) | 
| 41973 | 564 | |
| 43920 | 565 | lemma ereal_plus_1[simp]: | 
| 566 | "1 + ereal r = ereal (r + 1)" "ereal r + 1 = ereal (r + 1)" | |
| 43923 | 567 | "1 + -(\<infinity>::ereal) = -\<infinity>" "-(\<infinity>::ereal) + 1 = -\<infinity>" | 
| 43920 | 568 | unfolding one_ereal_def by auto | 
| 41973 | 569 | |
| 43920 | 570 | lemma ereal_zero_times[simp]: | 
| 571 | fixes a b :: ereal shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | |
| 572 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41973 | 573 | |
| 43920 | 574 | lemma ereal_mult_eq_PInfty[simp]: | 
| 43923 | 575 | shows "a * b = (\<infinity>::ereal) \<longleftrightarrow> | 
| 41973 | 576 | (a = \<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = -\<infinity>)" | 
| 43920 | 577 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 578 | |
| 43920 | 579 | lemma ereal_mult_eq_MInfty[simp]: | 
| 43923 | 580 | shows "a * b = -(\<infinity>::ereal) \<longleftrightarrow> | 
| 41973 | 581 | (a = \<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = -\<infinity>)" | 
| 43920 | 582 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 583 | |
| 43920 | 584 | lemma ereal_0_less_1[simp]: "0 < (1::ereal)" | 
| 585 | by (simp_all add: zero_ereal_def one_ereal_def) | |
| 41973 | 586 | |
| 43920 | 587 | lemma ereal_zero_one[simp]: "0 \<noteq> (1::ereal)" | 
| 588 | by (simp_all add: zero_ereal_def one_ereal_def) | |
| 41973 | 589 | |
| 43920 | 590 | lemma ereal_mult_minus_left[simp]: | 
| 591 | fixes a b :: ereal shows "-a * b = - (a * b)" | |
| 592 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41973 | 593 | |
| 43920 | 594 | lemma ereal_mult_minus_right[simp]: | 
| 595 | fixes a b :: ereal shows "a * -b = - (a * b)" | |
| 596 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41973 | 597 | |
| 43920 | 598 | lemma ereal_mult_infty[simp]: | 
| 43923 | 599 | "a * (\<infinity>::ereal) = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" | 
| 41973 | 600 | by (cases a) auto | 
| 601 | ||
| 43920 | 602 | lemma ereal_infty_mult[simp]: | 
| 43923 | 603 | "(\<infinity>::ereal) * a = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" | 
| 41973 | 604 | by (cases a) auto | 
| 605 | ||
| 43920 | 606 | lemma ereal_mult_strict_right_mono: | 
| 43923 | 607 | assumes "a < b" and "0 < c" "c < (\<infinity>::ereal)" | 
| 41973 | 608 | shows "a * c < b * c" | 
| 609 | using assms | |
| 43920 | 610 | by (cases rule: ereal3_cases[of a b c]) | 
| 44142 | 611 | (auto simp: zero_le_mult_iff) | 
| 41973 | 612 | |
| 43920 | 613 | lemma ereal_mult_strict_left_mono: | 
| 43923 | 614 | "\<lbrakk> a < b ; 0 < c ; c < (\<infinity>::ereal)\<rbrakk> \<Longrightarrow> c * a < c * b" | 
| 43920 | 615 | using ereal_mult_strict_right_mono by (simp add: mult_commute[of c]) | 
| 41973 | 616 | |
| 43920 | 617 | lemma ereal_mult_right_mono: | 
| 618 | fixes a b c :: ereal shows "\<lbrakk>a \<le> b; 0 \<le> c\<rbrakk> \<Longrightarrow> a*c \<le> b*c" | |
| 41973 | 619 | using assms | 
| 620 | apply (cases "c = 0") apply simp | |
| 43920 | 621 | by (cases rule: ereal3_cases[of a b c]) | 
| 44142 | 622 | (auto simp: zero_le_mult_iff) | 
| 41973 | 623 | |
| 43920 | 624 | lemma ereal_mult_left_mono: | 
| 625 | fixes a b c :: ereal shows "\<lbrakk>a \<le> b; 0 \<le> c\<rbrakk> \<Longrightarrow> c * a \<le> c * b" | |
| 626 | using ereal_mult_right_mono by (simp add: mult_commute[of c]) | |
| 41973 | 627 | |
| 43920 | 628 | lemma zero_less_one_ereal[simp]: "0 \<le> (1::ereal)" | 
| 629 | by (simp add: one_ereal_def zero_ereal_def) | |
| 41978 | 630 | |
| 43920 | 631 | lemma ereal_0_le_mult[simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * (b :: ereal)" | 
| 632 | by (cases rule: ereal2_cases[of a b]) (auto simp: mult_nonneg_nonneg) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 633 | |
| 43920 | 634 | lemma ereal_right_distrib: | 
| 635 | fixes r a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b" | |
| 636 | by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 637 | |
| 43920 | 638 | lemma ereal_left_distrib: | 
| 639 | fixes r a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r" | |
| 640 | by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 641 | |
| 43920 | 642 | lemma ereal_mult_le_0_iff: | 
| 643 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 644 | shows "a * b \<le> 0 \<longleftrightarrow> (0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b)" | 
| 43920 | 645 | by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_le_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 646 | |
| 43920 | 647 | lemma ereal_zero_le_0_iff: | 
| 648 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 649 | shows "0 \<le> a * b \<longleftrightarrow> (0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0)" | 
| 43920 | 650 | by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_le_mult_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 651 | |
| 43920 | 652 | lemma ereal_mult_less_0_iff: | 
| 653 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 654 | shows "a * b < 0 \<longleftrightarrow> (0 < a \<and> b < 0) \<or> (a < 0 \<and> 0 < b)" | 
| 43920 | 655 | by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_less_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 656 | |
| 43920 | 657 | lemma ereal_zero_less_0_iff: | 
| 658 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 659 | shows "0 < a * b \<longleftrightarrow> (0 < a \<and> 0 < b) \<or> (a < 0 \<and> b < 0)" | 
| 43920 | 660 | by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_less_mult_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 661 | |
| 43920 | 662 | lemma ereal_distrib: | 
| 663 | fixes a b c :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 664 | assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>" "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>" "\<bar>c\<bar> \<noteq> \<infinity>" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 665 | shows "(a + b) * c = a * c + b * c" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 666 | using assms | 
| 43920 | 667 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 668 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 669 | instance ereal :: numeral .. | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 670 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 671 | lemma numeral_eq_ereal [simp]: "numeral w = ereal (numeral w)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 672 | apply (induct w rule: num_induct) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 673 | apply (simp only: numeral_One one_ereal_def) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 674 | apply (simp only: numeral_inc ereal_plus_1) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 675 | done | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 676 | |
| 43920 | 677 | lemma ereal_le_epsilon: | 
| 678 | fixes x y :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 679 | assumes "ALL e. 0 < e --> x <= y + e" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 680 | shows "x <= y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 681 | proof- | 
| 43920 | 682 | { assume a: "EX r. y = ereal r"
 | 
| 47082 | 683 | then obtain r where r_def: "y = ereal r" by auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 684 |   { assume "x=(-\<infinity>)" hence ?thesis by auto }
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 685 | moreover | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 686 |   { assume "~(x=(-\<infinity>))"
 | 
| 47082 | 687 | then obtain p where p_def: "x = ereal p" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 688 | using a assms[rule_format, of 1] by (cases x) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 689 |     { fix e have "0 < e --> p <= r + e"
 | 
| 43920 | 690 | using assms[rule_format, of "ereal e"] p_def r_def by auto } | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 691 | hence "p <= r" apply (subst field_le_epsilon) by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 692 | hence ?thesis using r_def p_def by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 693 | } ultimately have ?thesis by blast | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 694 | } | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 695 | moreover | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 696 | { assume "y=(-\<infinity>) | y=\<infinity>" hence ?thesis
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 697 | using assms[rule_format, of 1] by (cases x) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 698 | } ultimately show ?thesis by (cases y) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 699 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 700 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 701 | |
| 43920 | 702 | lemma ereal_le_epsilon2: | 
| 703 | fixes x y :: ereal | |
| 704 | assumes "ALL e. 0 < e --> x <= y + ereal e" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 705 | shows "x <= y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 706 | proof- | 
| 43920 | 707 | { fix e :: ereal assume "e>0"
 | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 708 |   { assume "e=\<infinity>" hence "x<=y+e" by auto }
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 709 | moreover | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 710 |   { assume "e~=\<infinity>"
 | 
| 47082 | 711 | then obtain r where "e = ereal r" using `e>0` apply (cases e) by auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 712 | hence "x<=y+e" using assms[rule_format, of r] `e>0` by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 713 | } ultimately have "x<=y+e" by blast | 
| 47082 | 714 | } then show ?thesis using ereal_le_epsilon by auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 715 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 716 | |
| 43920 | 717 | lemma ereal_le_real: | 
| 718 | fixes x y :: ereal | |
| 719 | assumes "ALL z. x <= ereal z --> y <= ereal z" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 720 | shows "y <= x" | 
| 44142 | 721 | by (metis assms ereal_bot ereal_cases ereal_infty_less_eq(2) ereal_less_eq(1) linorder_le_cases) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 722 | |
| 43920 | 723 | lemma ereal_le_ereal: | 
| 724 | fixes x y :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 725 | assumes "\<And>B. B < x \<Longrightarrow> B <= y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 726 | shows "x <= y" | 
| 43920 | 727 | by (metis assms ereal_dense leD linorder_le_less_linear) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 728 | |
| 43920 | 729 | lemma ereal_ge_ereal: | 
| 730 | fixes x y :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 731 | assumes "ALL B. B>x --> B >= y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 732 | shows "x >= y" | 
| 43920 | 733 | by (metis assms ereal_dense leD linorder_le_less_linear) | 
| 41978 | 734 | |
| 43920 | 735 | lemma setprod_ereal_0: | 
| 736 | fixes f :: "'a \<Rightarrow> ereal" | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 737 | shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> (finite A \<and> (\<exists>i\<in>A. f i = 0))" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 738 | proof cases | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 739 | assume "finite A" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 740 | then show ?thesis by (induct A) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 741 | qed auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 742 | |
| 43920 | 743 | lemma setprod_ereal_pos: | 
| 744 | fixes f :: "'a \<Rightarrow> ereal" assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" shows "0 \<le> (\<Prod>i\<in>I. f i)" | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 745 | proof cases | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 746 | assume "finite I" from this pos show ?thesis by induct auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 747 | qed simp | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 748 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 749 | lemma setprod_PInf: | 
| 43923 | 750 | fixes f :: "'a \<Rightarrow> ereal" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 751 | assumes "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 752 | shows "(\<Prod>i\<in>I. f i) = \<infinity> \<longleftrightarrow> finite I \<and> (\<exists>i\<in>I. f i = \<infinity>) \<and> (\<forall>i\<in>I. f i \<noteq> 0)" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 753 | proof cases | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 754 | assume "finite I" from this assms show ?thesis | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 755 | proof (induct I) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 756 | case (insert i I) | 
| 43920 | 757 | then have pos: "0 \<le> f i" "0 \<le> setprod f I" by (auto intro!: setprod_ereal_pos) | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 758 | from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> setprod f I * f i = \<infinity>" by auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 759 | also have "\<dots> \<longleftrightarrow> (setprod f I = \<infinity> \<or> f i = \<infinity>) \<and> f i \<noteq> 0 \<and> setprod f I \<noteq> 0" | 
| 43920 | 760 | using setprod_ereal_pos[of I f] pos | 
| 761 | by (cases rule: ereal2_cases[of "f i" "setprod f I"]) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 762 | also have "\<dots> \<longleftrightarrow> finite (insert i I) \<and> (\<exists>j\<in>insert i I. f j = \<infinity>) \<and> (\<forall>j\<in>insert i I. f j \<noteq> 0)" | 
| 43920 | 763 | using insert by (auto simp: setprod_ereal_0) | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 764 | finally show ?case . | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 765 | qed simp | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 766 | qed simp | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 767 | |
| 43920 | 768 | lemma setprod_ereal: "(\<Prod>i\<in>A. ereal (f i)) = ereal (setprod f A)" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 769 | proof cases | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 770 | assume "finite A" then show ?thesis | 
| 43920 | 771 | by induct (auto simp: one_ereal_def) | 
| 772 | qed (simp add: one_ereal_def) | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 773 | |
| 41978 | 774 | subsubsection {* Power *}
 | 
| 775 | ||
| 43920 | 776 | lemma ereal_power[simp]: "(ereal x) ^ n = ereal (x^n)" | 
| 777 | by (induct n) (auto simp: one_ereal_def) | |
| 41978 | 778 | |
| 43923 | 779 | lemma ereal_power_PInf[simp]: "(\<infinity>::ereal) ^ n = (if n = 0 then 1 else \<infinity>)" | 
| 43920 | 780 | by (induct n) (auto simp: one_ereal_def) | 
| 41978 | 781 | |
| 43920 | 782 | lemma ereal_power_uminus[simp]: | 
| 783 | fixes x :: ereal | |
| 41978 | 784 | shows "(- x) ^ n = (if even n then x ^ n else - (x^n))" | 
| 43920 | 785 | by (induct n) (auto simp: one_ereal_def) | 
| 41978 | 786 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 787 | lemma ereal_power_numeral[simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 788 | "(numeral num :: ereal) ^ n = ereal (numeral num ^ n)" | 
| 43920 | 789 | by (induct n) (auto simp: one_ereal_def) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 790 | |
| 43920 | 791 | lemma zero_le_power_ereal[simp]: | 
| 792 | fixes a :: ereal assumes "0 \<le> a" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 793 | shows "0 \<le> a ^ n" | 
| 43920 | 794 | using assms by (induct n) (auto simp: ereal_zero_le_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 795 | |
| 41973 | 796 | subsubsection {* Subtraction *}
 | 
| 797 | ||
| 43920 | 798 | lemma ereal_minus_minus_image[simp]: | 
| 799 | fixes S :: "ereal set" | |
| 41973 | 800 | shows "uminus ` uminus ` S = S" | 
| 801 | by (auto simp: image_iff) | |
| 802 | ||
| 43920 | 803 | lemma ereal_uminus_lessThan[simp]: | 
| 804 |   fixes a :: ereal shows "uminus ` {..<a} = {-a<..}"
 | |
| 47082 | 805 | proof - | 
| 806 |   {
 | |
| 807 | fix x assume "-a < x" | |
| 808 | then have "- x < - (- a)" by (simp del: ereal_uminus_uminus) | |
| 809 | then have "- x < a" by simp | |
| 810 | } | |
| 811 | then show ?thesis by (auto intro!: image_eqI) | |
| 812 | qed | |
| 41973 | 813 | |
| 43920 | 814 | lemma ereal_uminus_greaterThan[simp]: | 
| 815 |   "uminus ` {(a::ereal)<..} = {..<-a}"
 | |
| 816 | by (metis ereal_uminus_lessThan ereal_uminus_uminus | |
| 817 | ereal_minus_minus_image) | |
| 41973 | 818 | |
| 43920 | 819 | instantiation ereal :: minus | 
| 41973 | 820 | begin | 
| 43920 | 821 | definition "x - y = x + -(y::ereal)" | 
| 41973 | 822 | instance .. | 
| 823 | end | |
| 824 | ||
| 43920 | 825 | lemma ereal_minus[simp]: | 
| 826 | "ereal r - ereal p = ereal (r - p)" | |
| 827 | "-\<infinity> - ereal r = -\<infinity>" | |
| 828 | "ereal r - \<infinity> = -\<infinity>" | |
| 43923 | 829 | "(\<infinity>::ereal) - x = \<infinity>" | 
| 830 | "-(\<infinity>::ereal) - \<infinity> = -\<infinity>" | |
| 41973 | 831 | "x - -y = x + y" | 
| 832 | "x - 0 = x" | |
| 833 | "0 - x = -x" | |
| 43920 | 834 | by (simp_all add: minus_ereal_def) | 
| 41973 | 835 | |
| 43920 | 836 | lemma ereal_x_minus_x[simp]: | 
| 43923 | 837 | "x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0::ereal)" | 
| 41973 | 838 | by (cases x) simp_all | 
| 839 | ||
| 43920 | 840 | lemma ereal_eq_minus_iff: | 
| 841 | fixes x y z :: ereal | |
| 41973 | 842 | shows "x = z - y \<longleftrightarrow> | 
| 41976 | 843 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y = z) \<and> | 
| 41973 | 844 | (y = -\<infinity> \<longrightarrow> x = \<infinity>) \<and> | 
| 845 | (y = \<infinity> \<longrightarrow> z = \<infinity> \<longrightarrow> x = \<infinity>) \<and> | |
| 846 | (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>)" | |
| 43920 | 847 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 848 | |
| 43920 | 849 | lemma ereal_eq_minus: | 
| 850 | fixes x y z :: ereal | |
| 41976 | 851 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x = z - y \<longleftrightarrow> x + y = z" | 
| 43920 | 852 | by (auto simp: ereal_eq_minus_iff) | 
| 41973 | 853 | |
| 43920 | 854 | lemma ereal_less_minus_iff: | 
| 855 | fixes x y z :: ereal | |
| 41973 | 856 | shows "x < z - y \<longleftrightarrow> | 
| 857 | (y = \<infinity> \<longrightarrow> z = \<infinity> \<and> x \<noteq> \<infinity>) \<and> | |
| 858 | (y = -\<infinity> \<longrightarrow> x \<noteq> \<infinity>) \<and> | |
| 41976 | 859 | (\<bar>y\<bar> \<noteq> \<infinity>\<longrightarrow> x + y < z)" | 
| 43920 | 860 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 861 | |
| 43920 | 862 | lemma ereal_less_minus: | 
| 863 | fixes x y z :: ereal | |
| 41976 | 864 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x < z - y \<longleftrightarrow> x + y < z" | 
| 43920 | 865 | by (auto simp: ereal_less_minus_iff) | 
| 41973 | 866 | |
| 43920 | 867 | lemma ereal_le_minus_iff: | 
| 868 | fixes x y z :: ereal | |
| 41973 | 869 | shows "x \<le> z - y \<longleftrightarrow> | 
| 870 | (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and> | |
| 41976 | 871 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)" | 
| 43920 | 872 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 873 | |
| 43920 | 874 | lemma ereal_le_minus: | 
| 875 | fixes x y z :: ereal | |
| 41976 | 876 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x \<le> z - y \<longleftrightarrow> x + y \<le> z" | 
| 43920 | 877 | by (auto simp: ereal_le_minus_iff) | 
| 41973 | 878 | |
| 43920 | 879 | lemma ereal_minus_less_iff: | 
| 880 | fixes x y z :: ereal | |
| 41973 | 881 | shows "x - y < z \<longleftrightarrow> | 
| 882 | y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and> | |
| 883 | (y \<noteq> \<infinity> \<longrightarrow> x < z + y)" | |
| 43920 | 884 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 885 | |
| 43920 | 886 | lemma ereal_minus_less: | 
| 887 | fixes x y z :: ereal | |
| 41976 | 888 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y < z \<longleftrightarrow> x < z + y" | 
| 43920 | 889 | by (auto simp: ereal_minus_less_iff) | 
| 41973 | 890 | |
| 43920 | 891 | lemma ereal_minus_le_iff: | 
| 892 | fixes x y z :: ereal | |
| 41973 | 893 | shows "x - y \<le> z \<longleftrightarrow> | 
| 894 | (y = -\<infinity> \<longrightarrow> z = \<infinity>) \<and> | |
| 895 | (y = \<infinity> \<longrightarrow> x = \<infinity> \<longrightarrow> z = \<infinity>) \<and> | |
| 41976 | 896 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x \<le> z + y)" | 
| 43920 | 897 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 898 | |
| 43920 | 899 | lemma ereal_minus_le: | 
| 900 | fixes x y z :: ereal | |
| 41976 | 901 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y \<le> z \<longleftrightarrow> x \<le> z + y" | 
| 43920 | 902 | by (auto simp: ereal_minus_le_iff) | 
| 41973 | 903 | |
| 43920 | 904 | lemma ereal_minus_eq_minus_iff: | 
| 905 | fixes a b c :: ereal | |
| 41973 | 906 | shows "a - b = a - c \<longleftrightarrow> | 
| 907 | b = c \<or> a = \<infinity> \<or> (a = -\<infinity> \<and> b \<noteq> -\<infinity> \<and> c \<noteq> -\<infinity>)" | |
| 43920 | 908 | by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 909 | |
| 43920 | 910 | lemma ereal_add_le_add_iff: | 
| 43923 | 911 | fixes a b c :: ereal | 
| 912 | shows "c + a \<le> c + b \<longleftrightarrow> | |
| 41973 | 913 | a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)" | 
| 43920 | 914 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps) | 
| 41973 | 915 | |
| 43920 | 916 | lemma ereal_mult_le_mult_iff: | 
| 43923 | 917 | fixes a b c :: ereal | 
| 918 | shows "\<bar>c\<bar> \<noteq> \<infinity> \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 43920 | 919 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: mult_le_cancel_left) | 
| 41973 | 920 | |
| 43920 | 921 | lemma ereal_minus_mono: | 
| 922 | fixes A B C D :: ereal assumes "A \<le> B" "D \<le> C" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 923 | shows "A - C \<le> B - D" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 924 | using assms | 
| 43920 | 925 | by (cases rule: ereal3_cases[case_product ereal_cases, of A B C D]) simp_all | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 926 | |
| 43920 | 927 | lemma real_of_ereal_minus: | 
| 43923 | 928 | fixes a b :: ereal | 
| 929 | shows "real (a - b) = (if \<bar>a\<bar> = \<infinity> \<or> \<bar>b\<bar> = \<infinity> then 0 else real a - real b)" | |
| 43920 | 930 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 931 | |
| 43920 | 932 | lemma ereal_diff_positive: | 
| 933 | fixes a b :: ereal shows "a \<le> b \<Longrightarrow> 0 \<le> b - a" | |
| 934 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 935 | |
| 43920 | 936 | lemma ereal_between: | 
| 937 | fixes x e :: ereal | |
| 41976 | 938 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" "0 < e" | 
| 41973 | 939 | shows "x - e < x" "x < x + e" | 
| 940 | using assms apply (cases x, cases e) apply auto | |
| 47082 | 941 | using assms apply (cases x, cases e) apply auto | 
| 942 | done | |
| 41973 | 943 | |
| 944 | subsubsection {* Division *}
 | |
| 945 | ||
| 43920 | 946 | instantiation ereal :: inverse | 
| 41973 | 947 | begin | 
| 948 | ||
| 43920 | 949 | function inverse_ereal where | 
| 950 | "inverse (ereal r) = (if r = 0 then \<infinity> else ereal (inverse r))" | | |
| 43923 | 951 | "inverse (\<infinity>::ereal) = 0" | | 
| 952 | "inverse (-\<infinity>::ereal) = 0" | |
| 43920 | 953 | by (auto intro: ereal_cases) | 
| 41973 | 954 | termination by (relation "{}") simp
 | 
| 955 | ||
| 43920 | 956 | definition "x / y = x * inverse (y :: ereal)" | 
| 41973 | 957 | |
| 47082 | 958 | instance .. | 
| 41973 | 959 | end | 
| 960 | ||
| 43920 | 961 | lemma real_of_ereal_inverse[simp]: | 
| 962 | fixes a :: ereal | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 963 | shows "real (inverse a) = 1 / real a" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 964 | by (cases a) (auto simp: inverse_eq_divide) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 965 | |
| 43920 | 966 | lemma ereal_inverse[simp]: | 
| 43923 | 967 | "inverse (0::ereal) = \<infinity>" | 
| 43920 | 968 | "inverse (1::ereal) = 1" | 
| 969 | by (simp_all add: one_ereal_def zero_ereal_def) | |
| 41973 | 970 | |
| 43920 | 971 | lemma ereal_divide[simp]: | 
| 972 | "ereal r / ereal p = (if p = 0 then ereal r * \<infinity> else ereal (r / p))" | |
| 973 | unfolding divide_ereal_def by (auto simp: divide_real_def) | |
| 41973 | 974 | |
| 43920 | 975 | lemma ereal_divide_same[simp]: | 
| 43923 | 976 | fixes x :: ereal shows "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)" | 
| 41973 | 977 | by (cases x) | 
| 43920 | 978 | (simp_all add: divide_real_def divide_ereal_def one_ereal_def) | 
| 41973 | 979 | |
| 43920 | 980 | lemma ereal_inv_inv[simp]: | 
| 43923 | 981 | fixes x :: ereal shows "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)" | 
| 41973 | 982 | by (cases x) auto | 
| 983 | ||
| 43920 | 984 | lemma ereal_inverse_minus[simp]: | 
| 43923 | 985 | fixes x :: ereal shows "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)" | 
| 41973 | 986 | by (cases x) simp_all | 
| 987 | ||
| 43920 | 988 | lemma ereal_uminus_divide[simp]: | 
| 989 | fixes x y :: ereal shows "- x / y = - (x / y)" | |
| 990 | unfolding divide_ereal_def by simp | |
| 41973 | 991 | |
| 43920 | 992 | lemma ereal_divide_Infty[simp]: | 
| 43923 | 993 | fixes x :: ereal shows "x / \<infinity> = 0" "x / -\<infinity> = 0" | 
| 43920 | 994 | unfolding divide_ereal_def by simp_all | 
| 41973 | 995 | |
| 43920 | 996 | lemma ereal_divide_one[simp]: | 
| 997 | "x / 1 = (x::ereal)" | |
| 998 | unfolding divide_ereal_def by simp | |
| 41973 | 999 | |
| 43920 | 1000 | lemma ereal_divide_ereal[simp]: | 
| 1001 | "\<infinity> / ereal r = (if 0 \<le> r then \<infinity> else -\<infinity>)" | |
| 1002 | unfolding divide_ereal_def by simp | |
| 41973 | 1003 | |
| 43920 | 1004 | lemma zero_le_divide_ereal[simp]: | 
| 1005 | fixes a :: ereal assumes "0 \<le> a" "0 \<le> b" | |
| 41978 | 1006 | shows "0 \<le> a / b" | 
| 43920 | 1007 | using assms by (cases rule: ereal2_cases[of a b]) (auto simp: zero_le_divide_iff) | 
| 41978 | 1008 | |
| 43920 | 1009 | lemma ereal_le_divide_pos: | 
| 43923 | 1010 | fixes x y z :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z" | 
| 43920 | 1011 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1012 | |
| 43920 | 1013 | lemma ereal_divide_le_pos: | 
| 43923 | 1014 | fixes x y z :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y" | 
| 43920 | 1015 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1016 | |
| 43920 | 1017 | lemma ereal_le_divide_neg: | 
| 43923 | 1018 | fixes x y z :: ereal shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y" | 
| 43920 | 1019 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1020 | |
| 43920 | 1021 | lemma ereal_divide_le_neg: | 
| 43923 | 1022 | fixes x y z :: ereal shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z" | 
| 43920 | 1023 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1024 | |
| 43920 | 1025 | lemma ereal_inverse_antimono_strict: | 
| 1026 | fixes x y :: ereal | |
| 41973 | 1027 | shows "0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> inverse y < inverse x" | 
| 43920 | 1028 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 1029 | |
| 43920 | 1030 | lemma ereal_inverse_antimono: | 
| 1031 | fixes x y :: ereal | |
| 41973 | 1032 | shows "0 \<le> x \<Longrightarrow> x <= y \<Longrightarrow> inverse y <= inverse x" | 
| 43920 | 1033 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 1034 | |
| 1035 | lemma inverse_inverse_Pinfty_iff[simp]: | |
| 43923 | 1036 | fixes x :: ereal shows "inverse x = \<infinity> \<longleftrightarrow> x = 0" | 
| 41973 | 1037 | by (cases x) auto | 
| 1038 | ||
| 43920 | 1039 | lemma ereal_inverse_eq_0: | 
| 43923 | 1040 | fixes x :: ereal shows "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>" | 
| 41973 | 1041 | by (cases x) auto | 
| 1042 | ||
| 43920 | 1043 | lemma ereal_0_gt_inverse: | 
| 1044 | fixes x :: ereal shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1045 | by (cases x) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1046 | |
| 43920 | 1047 | lemma ereal_mult_less_right: | 
| 43923 | 1048 | fixes a b c :: ereal | 
| 41973 | 1049 | assumes "b * a < c * a" "0 < a" "a < \<infinity>" | 
| 1050 | shows "b < c" | |
| 1051 | using assms | |
| 43920 | 1052 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 1053 | (auto split: split_if_asm simp: zero_less_mult_iff zero_le_mult_iff) | 
| 1054 | ||
| 43920 | 1055 | lemma ereal_power_divide: | 
| 43923 | 1056 | fixes x y :: ereal shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n" | 
| 43920 | 1057 | by (cases rule: ereal2_cases[of x y]) | 
| 1058 | (auto simp: one_ereal_def zero_ereal_def power_divide not_le | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1059 | power_less_zero_eq zero_le_power_iff) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1060 | |
| 43920 | 1061 | lemma ereal_le_mult_one_interval: | 
| 1062 | fixes x y :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1063 | assumes y: "y \<noteq> -\<infinity>" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1064 | assumes z: "\<And>z. \<lbrakk> 0 < z ; z < 1 \<rbrakk> \<Longrightarrow> z * x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1065 | shows "x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1066 | proof (cases x) | 
| 43920 | 1067 | case PInf with z[of "1 / 2"] show "x \<le> y" by (simp add: one_ereal_def) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1068 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1069 | case (real r) note r = this | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1070 | show "x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1071 | proof (cases y) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1072 | case (real p) note p = this | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1073 | have "r \<le> p" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1074 | proof (rule field_le_mult_one_interval) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1075 | fix z :: real assume "0 < z" and "z < 1" | 
| 43920 | 1076 | with z[of "ereal z"] | 
| 1077 | show "z * r \<le> p" using p r by (auto simp: zero_le_mult_iff one_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1078 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1079 | then show "x \<le> y" using p r by simp | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1080 | qed (insert y, simp_all) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1081 | qed simp | 
| 41978 | 1082 | |
| 45934 | 1083 | lemma ereal_divide_right_mono[simp]: | 
| 1084 | fixes x y z :: ereal | |
| 1085 | assumes "x \<le> y" "0 < z" shows "x / z \<le> y / z" | |
| 1086 | using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_right_mono) | |
| 1087 | ||
| 1088 | lemma ereal_divide_left_mono[simp]: | |
| 1089 | fixes x y z :: ereal | |
| 1090 | assumes "y \<le> x" "0 < z" "0 < x * y" | |
| 1091 | shows "z / x \<le> z / y" | |
| 1092 | using assms by (cases x y z rule: ereal3_cases) | |
| 1093 | (auto intro: divide_left_mono simp: field_simps sign_simps split: split_if_asm) | |
| 1094 | ||
| 1095 | lemma ereal_divide_zero_left[simp]: | |
| 1096 | fixes a :: ereal | |
| 1097 | shows "0 / a = 0" | |
| 1098 | by (cases a) (auto simp: zero_ereal_def) | |
| 1099 | ||
| 1100 | lemma ereal_times_divide_eq_left[simp]: | |
| 1101 | fixes a b c :: ereal | |
| 1102 | shows "b / c * a = b * a / c" | |
| 1103 | by (cases a b c rule: ereal3_cases) (auto simp: field_simps sign_simps) | |
| 1104 | ||
| 41973 | 1105 | subsection "Complete lattice" | 
| 1106 | ||
| 43920 | 1107 | instantiation ereal :: lattice | 
| 41973 | 1108 | begin | 
| 43920 | 1109 | definition [simp]: "sup x y = (max x y :: ereal)" | 
| 1110 | definition [simp]: "inf x y = (min x y :: ereal)" | |
| 47082 | 1111 | instance by default simp_all | 
| 41973 | 1112 | end | 
| 1113 | ||
| 43920 | 1114 | instantiation ereal :: complete_lattice | 
| 41973 | 1115 | begin | 
| 1116 | ||
| 43923 | 1117 | definition "bot = (-\<infinity>::ereal)" | 
| 1118 | definition "top = (\<infinity>::ereal)" | |
| 41973 | 1119 | |
| 43923 | 1120 | definition "Sup S = (LEAST z. \<forall>x\<in>S. x \<le> z :: ereal)" | 
| 1121 | definition "Inf S = (GREATEST z. \<forall>x\<in>S. z \<le> x :: ereal)" | |
| 41973 | 1122 | |
| 43920 | 1123 | lemma ereal_complete_Sup: | 
| 1124 |   fixes S :: "ereal set" assumes "S \<noteq> {}"
 | |
| 41973 | 1125 | shows "\<exists>x. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z)" | 
| 1126 | proof cases | |
| 43920 | 1127 | assume "\<exists>x. \<forall>a\<in>S. a \<le> ereal x" | 
| 1128 | then obtain y where y: "\<And>a. a\<in>S \<Longrightarrow> a \<le> ereal y" by auto | |
| 41973 | 1129 | then have "\<infinity> \<notin> S" by force | 
| 1130 | show ?thesis | |
| 1131 | proof cases | |
| 1132 |     assume "S = {-\<infinity>}"
 | |
| 1133 | then show ?thesis by (auto intro!: exI[of _ "-\<infinity>"]) | |
| 1134 | next | |
| 1135 |     assume "S \<noteq> {-\<infinity>}"
 | |
| 1136 |     with `S \<noteq> {}` `\<infinity> \<notin> S` obtain x where "x \<in> S - {-\<infinity>}" "x \<noteq> \<infinity>" by auto
 | |
| 1137 |     with y `\<infinity> \<notin> S` have "\<forall>z\<in>real ` (S - {-\<infinity>}). z \<le> y"
 | |
| 43920 | 1138 | by (auto simp: real_of_ereal_ord_simps) | 
| 44669 
8e6cdb9c00a7
remove redundant lemma reals_complete2 in favor of complete_real
 huffman parents: 
44520diff
changeset | 1139 |     with complete_real[of "real ` (S - {-\<infinity>})"] `x \<in> S - {-\<infinity>}`
 | 
| 41973 | 1140 | obtain s where s: | 
| 1141 |        "\<forall>y\<in>S - {-\<infinity>}. real y \<le> s" "\<And>z. (\<forall>y\<in>S - {-\<infinity>}. real y \<le> z) \<Longrightarrow> s \<le> z"
 | |
| 1142 | by auto | |
| 1143 | show ?thesis | |
| 43920 | 1144 | proof (safe intro!: exI[of _ "ereal s"]) | 
| 1145 | fix z assume "z \<in> S" with `\<infinity> \<notin> S` show "z \<le> ereal s" | |
| 41973 | 1146 | proof (cases z) | 
| 1147 | case (real r) | |
| 1148 | then show ?thesis | |
| 43920 | 1149 | using s(1)[rule_format, of z] `z \<in> S` `z = ereal r` by auto | 
| 41973 | 1150 | qed auto | 
| 1151 | next | |
| 1152 | fix z assume *: "\<forall>y\<in>S. y \<le> z" | |
| 43920 | 1153 |       with `S \<noteq> {-\<infinity>}` `S \<noteq> {}` show "ereal s \<le> z"
 | 
| 41973 | 1154 | proof (cases z) | 
| 1155 | case (real u) | |
| 1156 | with * have "s \<le> u" | |
| 43920 | 1157 | by (intro s(2)[of u]) (auto simp: real_of_ereal_ord_simps) | 
| 41973 | 1158 | then show ?thesis using real by simp | 
| 1159 | qed auto | |
| 1160 | qed | |
| 1161 | qed | |
| 1162 | next | |
| 43920 | 1163 | assume *: "\<not> (\<exists>x. \<forall>a\<in>S. a \<le> ereal x)" | 
| 41973 | 1164 | show ?thesis | 
| 1165 | proof (safe intro!: exI[of _ \<infinity>]) | |
| 1166 | fix y assume **: "\<forall>z\<in>S. z \<le> y" | |
| 1167 | with * show "\<infinity> \<le> y" | |
| 1168 | proof (cases y) | |
| 1169 | case MInf with * ** show ?thesis by (force simp: not_le) | |
| 1170 | qed auto | |
| 1171 | qed simp | |
| 1172 | qed | |
| 1173 | ||
| 43920 | 1174 | lemma ereal_complete_Inf: | 
| 1175 |   fixes S :: "ereal set" assumes "S ~= {}"
 | |
| 41973 | 1176 | shows "EX x. (ALL y:S. x <= y) & (ALL z. (ALL y:S. z <= y) --> z <= x)" | 
| 1177 | proof- | |
| 1178 | def S1 == "uminus ` S" | |
| 1179 | hence "S1 ~= {}" using assms by auto
 | |
| 47082 | 1180 | then obtain x where x_def: "(ALL y:S1. y <= x) & (ALL z. (ALL y:S1. y <= z) --> x <= z)" | 
| 43920 | 1181 | using ereal_complete_Sup[of S1] by auto | 
| 41973 | 1182 | { fix z assume "ALL y:S. z <= y"
 | 
| 1183 | hence "ALL y:S1. y <= -z" unfolding S1_def by auto | |
| 1184 | hence "x <= -z" using x_def by auto | |
| 1185 | hence "z <= -x" | |
| 43920 | 1186 | apply (subst ereal_uminus_uminus[symmetric]) | 
| 1187 | unfolding ereal_minus_le_minus . } | |
| 41973 | 1188 | moreover have "(ALL y:S. -x <= y)" | 
| 1189 | using x_def unfolding S1_def | |
| 1190 | apply simp | |
| 43920 | 1191 | apply (subst (3) ereal_uminus_uminus[symmetric]) | 
| 1192 | unfolding ereal_minus_le_minus by simp | |
| 41973 | 1193 | ultimately show ?thesis by auto | 
| 1194 | qed | |
| 1195 | ||
| 43920 | 1196 | lemma ereal_complete_uminus_eq: | 
| 1197 | fixes S :: "ereal set" | |
| 41973 | 1198 | shows "(\<forall>y\<in>uminus`S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>uminus`S. y \<le> z) \<longrightarrow> x \<le> z) | 
| 1199 | \<longleftrightarrow> (\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)" | |
| 43920 | 1200 | by simp (metis ereal_minus_le_minus ereal_uminus_uminus) | 
| 41973 | 1201 | |
| 43920 | 1202 | lemma ereal_Sup_uminus_image_eq: | 
| 1203 | fixes S :: "ereal set" | |
| 41973 | 1204 | shows "Sup (uminus ` S) = - Inf S" | 
| 1205 | proof cases | |
| 1206 |   assume "S = {}"
 | |
| 43920 | 1207 | moreover have "(THE x. All (op \<le> x)) = (-\<infinity>::ereal)" | 
| 1208 | by (rule the_equality) (auto intro!: ereal_bot) | |
| 1209 | moreover have "(SOME x. \<forall>y. y \<le> x) = (\<infinity>::ereal)" | |
| 1210 | by (rule some_equality) (auto intro!: ereal_top) | |
| 1211 | ultimately show ?thesis unfolding Inf_ereal_def Sup_ereal_def | |
| 41973 | 1212 | Least_def Greatest_def GreatestM_def by simp | 
| 1213 | next | |
| 1214 |   assume "S \<noteq> {}"
 | |
| 43920 | 1215 | with ereal_complete_Sup[of "uminus`S"] | 
| 41973 | 1216 | obtain x where x: "(\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)" | 
| 43920 | 1217 | unfolding ereal_complete_uminus_eq by auto | 
| 41973 | 1218 | show "Sup (uminus ` S) = - Inf S" | 
| 43920 | 1219 | unfolding Inf_ereal_def Greatest_def GreatestM_def | 
| 41973 | 1220 | proof (intro someI2[of _ _ "\<lambda>x. Sup (uminus`S) = - x"]) | 
| 1221 | show "(\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>y. (\<forall>z\<in>S. y \<le> z) \<longrightarrow> y \<le> -x)" | |
| 1222 | using x . | |
| 1223 | fix x' assume "(\<forall>y\<in>S. x' \<le> y) \<and> (\<forall>y. (\<forall>z\<in>S. y \<le> z) \<longrightarrow> y \<le> x')" | |
| 1224 | then have "(\<forall>y\<in>uminus`S. y \<le> - x') \<and> (\<forall>y. (\<forall>z\<in>uminus`S. z \<le> y) \<longrightarrow> - x' \<le> y)" | |
| 43920 | 1225 | unfolding ereal_complete_uminus_eq by simp | 
| 41973 | 1226 | then show "Sup (uminus ` S) = -x'" | 
| 43920 | 1227 | unfolding Sup_ereal_def ereal_uminus_eq_iff | 
| 41973 | 1228 | by (intro Least_equality) auto | 
| 1229 | qed | |
| 1230 | qed | |
| 1231 | ||
| 1232 | instance | |
| 1233 | proof | |
| 43920 | 1234 |   { fix x :: ereal and A
 | 
| 1235 | show "bot <= x" by (cases x) (simp_all add: bot_ereal_def) | |
| 1236 | show "x <= top" by (simp add: top_ereal_def) } | |
| 41973 | 1237 | |
| 43920 | 1238 |   { fix x :: ereal and A assume "x : A"
 | 
| 1239 | with ereal_complete_Sup[of A] | |
| 41973 | 1240 | obtain s where s: "\<forall>y\<in>A. y <= s" "\<forall>z. (\<forall>y\<in>A. y <= z) \<longrightarrow> s <= z" by auto | 
| 1241 | hence "x <= s" using `x : A` by auto | |
| 43920 | 1242 | also have "... = Sup A" using s unfolding Sup_ereal_def | 
| 41973 | 1243 | by (auto intro!: Least_equality[symmetric]) | 
| 1244 | finally show "x <= Sup A" . } | |
| 1245 | note le_Sup = this | |
| 1246 | ||
| 43920 | 1247 |   { fix x :: ereal and A assume *: "!!z. (z : A ==> z <= x)"
 | 
| 41973 | 1248 | show "Sup A <= x" | 
| 1249 |     proof (cases "A = {}")
 | |
| 1250 | case True | |
| 43920 | 1251 | hence "Sup A = -\<infinity>" unfolding Sup_ereal_def | 
| 41973 | 1252 | by (auto intro!: Least_equality) | 
| 1253 | thus "Sup A <= x" by simp | |
| 1254 | next | |
| 1255 | case False | |
| 43920 | 1256 | with ereal_complete_Sup[of A] | 
| 41973 | 1257 | obtain s where s: "\<forall>y\<in>A. y <= s" "\<forall>z. (\<forall>y\<in>A. y <= z) \<longrightarrow> s <= z" by auto | 
| 1258 | hence "Sup A = s" | |
| 43920 | 1259 | unfolding Sup_ereal_def by (auto intro!: Least_equality) | 
| 41973 | 1260 | also have "s <= x" using * s by auto | 
| 1261 | finally show "Sup A <= x" . | |
| 1262 | qed } | |
| 1263 | note Sup_le = this | |
| 1264 | ||
| 43920 | 1265 |   { fix x :: ereal and A assume "x \<in> A"
 | 
| 41973 | 1266 | with le_Sup[of "-x" "uminus`A"] show "Inf A \<le> x" | 
| 43920 | 1267 | unfolding ereal_Sup_uminus_image_eq by simp } | 
| 41973 | 1268 | |
| 43920 | 1269 |   { fix x :: ereal and A assume *: "!!z. (z : A ==> x <= z)"
 | 
| 41973 | 1270 | with Sup_le[of "uminus`A" "-x"] show "x \<le> Inf A" | 
| 43920 | 1271 | unfolding ereal_Sup_uminus_image_eq by force } | 
| 41973 | 1272 | qed | 
| 43941 | 1273 | |
| 41973 | 1274 | end | 
| 1275 | ||
| 43941 | 1276 | instance ereal :: complete_linorder .. | 
| 1277 | ||
| 43920 | 1278 | lemma ereal_SUPR_uminus: | 
| 1279 | fixes f :: "'a => ereal" | |
| 41973 | 1280 | shows "(SUP i : R. -(f i)) = -(INF i : R. f i)" | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1281 | unfolding SUP_def INF_def | 
| 43920 | 1282 | using ereal_Sup_uminus_image_eq[of "f`R"] | 
| 41973 | 1283 | by (simp add: image_image) | 
| 1284 | ||
| 43920 | 1285 | lemma ereal_INFI_uminus: | 
| 1286 | fixes f :: "'a => ereal" | |
| 41973 | 1287 | shows "(INF i : R. -(f i)) = -(SUP i : R. f i)" | 
| 43920 | 1288 | using ereal_SUPR_uminus[of _ "\<lambda>x. - f x"] by simp | 
| 41973 | 1289 | |
| 43920 | 1290 | lemma ereal_Inf_uminus_image_eq: "Inf (uminus ` S) = - Sup (S::ereal set)" | 
| 1291 | using ereal_Sup_uminus_image_eq[of "uminus ` S"] by (simp add: image_image) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1292 | |
| 43920 | 1293 | lemma ereal_inj_on_uminus[intro, simp]: "inj_on uminus (A :: ereal set)" | 
| 41973 | 1294 | by (auto intro!: inj_onI) | 
| 1295 | ||
| 43920 | 1296 | lemma ereal_image_uminus_shift: | 
| 1297 | fixes X Y :: "ereal set" shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y" | |
| 41973 | 1298 | proof | 
| 1299 | assume "uminus ` X = Y" | |
| 1300 | then have "uminus ` uminus ` X = uminus ` Y" | |
| 1301 | by (simp add: inj_image_eq_iff) | |
| 1302 | then show "X = uminus ` Y" by (simp add: image_image) | |
| 1303 | qed (simp add: image_image) | |
| 1304 | ||
| 43920 | 1305 | lemma Inf_ereal_iff: | 
| 1306 | fixes z :: ereal | |
| 41973 | 1307 | shows "(!!x. x:X ==> z <= x) ==> (EX x:X. x<y) <-> Inf X < y" | 
| 1308 | by (metis complete_lattice_class.Inf_greatest complete_lattice_class.Inf_lower less_le_not_le linear | |
| 1309 | order_less_le_trans) | |
| 1310 | ||
| 1311 | lemma Sup_eq_MInfty: | |
| 43920 | 1312 |   fixes S :: "ereal set" shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}"
 | 
| 41973 | 1313 | proof | 
| 1314 | assume a: "Sup S = -\<infinity>" | |
| 1315 | with complete_lattice_class.Sup_upper[of _ S] | |
| 1316 |   show "S={} \<or> S={-\<infinity>}" by auto
 | |
| 1317 | next | |
| 1318 |   assume "S={} \<or> S={-\<infinity>}" then show "Sup S = -\<infinity>"
 | |
| 43920 | 1319 | unfolding Sup_ereal_def by (auto intro!: Least_equality) | 
| 41973 | 1320 | qed | 
| 1321 | ||
| 1322 | lemma Inf_eq_PInfty: | |
| 43920 | 1323 |   fixes S :: "ereal set" shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}"
 | 
| 41973 | 1324 | using Sup_eq_MInfty[of "uminus`S"] | 
| 43920 | 1325 | unfolding ereal_Sup_uminus_image_eq ereal_image_uminus_shift by simp | 
| 41973 | 1326 | |
| 43923 | 1327 | lemma Inf_eq_MInfty: | 
| 1328 | fixes S :: "ereal set" shows "-\<infinity> \<in> S \<Longrightarrow> Inf S = -\<infinity>" | |
| 43920 | 1329 | unfolding Inf_ereal_def | 
| 41973 | 1330 | by (auto intro!: Greatest_equality) | 
| 1331 | ||
| 43923 | 1332 | lemma Sup_eq_PInfty: | 
| 1333 | fixes S :: "ereal set" shows "\<infinity> \<in> S \<Longrightarrow> Sup S = \<infinity>" | |
| 43920 | 1334 | unfolding Sup_ereal_def | 
| 41973 | 1335 | by (auto intro!: Least_equality) | 
| 1336 | ||
| 43920 | 1337 | lemma ereal_SUPI: | 
| 1338 | fixes x :: ereal | |
| 41973 | 1339 | assumes "!!i. i : A ==> f i <= x" | 
| 1340 | assumes "!!y. (!!i. i : A ==> f i <= y) ==> x <= y" | |
| 1341 | shows "(SUP i:A. f i) = x" | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1342 | unfolding SUP_def Sup_ereal_def | 
| 41973 | 1343 | using assms by (auto intro!: Least_equality) | 
| 1344 | ||
| 43920 | 1345 | lemma ereal_INFI: | 
| 1346 | fixes x :: ereal | |
| 41973 | 1347 | assumes "!!i. i : A ==> f i >= x" | 
| 1348 | assumes "!!y. (!!i. i : A ==> f i >= y) ==> x >= y" | |
| 1349 | shows "(INF i:A. f i) = x" | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1350 | unfolding INF_def Inf_ereal_def | 
| 41973 | 1351 | using assms by (auto intro!: Greatest_equality) | 
| 1352 | ||
| 43920 | 1353 | lemma Sup_ereal_close: | 
| 1354 | fixes e :: ereal | |
| 41976 | 1355 |   assumes "0 < e" and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}"
 | 
| 41973 | 1356 | shows "\<exists>x\<in>S. Sup S - e < x" | 
| 41976 | 1357 | using assms by (cases e) (auto intro!: less_Sup_iff[THEN iffD1]) | 
| 41973 | 1358 | |
| 43920 | 1359 | lemma Inf_ereal_close: | 
| 1360 | fixes e :: ereal assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>" "0 < e" | |
| 41973 | 1361 | shows "\<exists>x\<in>X. x < Inf X + e" | 
| 1362 | proof (rule Inf_less_iff[THEN iffD1]) | |
| 1363 | show "Inf X < Inf X + e" using assms | |
| 41976 | 1364 | by (cases e) auto | 
| 41973 | 1365 | qed | 
| 1366 | ||
| 43920 | 1367 | lemma SUP_nat_Infty: "(SUP i::nat. ereal (real i)) = \<infinity>" | 
| 41973 | 1368 | proof - | 
| 43923 | 1369 |   { fix x ::ereal assume "x \<noteq> \<infinity>"
 | 
| 43920 | 1370 | then have "\<exists>k::nat. x < ereal (real k)" | 
| 41973 | 1371 | proof (cases x) | 
| 1372 | case MInf then show ?thesis by (intro exI[of _ 0]) auto | |
| 1373 | next | |
| 1374 | case (real r) | |
| 1375 | moreover obtain k :: nat where "r < real k" | |
| 1376 | using ex_less_of_nat by (auto simp: real_eq_of_nat) | |
| 1377 | ultimately show ?thesis by auto | |
| 1378 | qed simp } | |
| 1379 | then show ?thesis | |
| 43920 | 1380 | using SUP_eq_top_iff[of UNIV "\<lambda>n::nat. ereal (real n)"] | 
| 1381 | by (auto simp: top_ereal_def) | |
| 41973 | 1382 | qed | 
| 1383 | ||
| 43920 | 1384 | lemma ereal_le_Sup: | 
| 1385 | fixes x :: ereal | |
| 41973 | 1386 | shows "(x <= (SUP i:A. f i)) <-> (ALL y. y < x --> (EX i. i : A & y <= f i))" | 
| 1387 | (is "?lhs <-> ?rhs") | |
| 1388 | proof- | |
| 1389 | { assume "?rhs"
 | |
| 1390 |   { assume "~(x <= (SUP i:A. f i))" hence "(SUP i:A. f i)<x" by (simp add: not_le)
 | |
| 47082 | 1391 | then obtain y where y_def: "(SUP i:A. f i)<y & y<x" using ereal_dense by auto | 
| 1392 | then obtain i where "i : A & y <= f i" using `?rhs` by auto | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1393 | hence "y <= (SUP i:A. f i)" using SUP_upper[of i A f] by auto | 
| 41973 | 1394 | hence False using y_def by auto | 
| 1395 | } hence "?lhs" by auto | |
| 1396 | } | |
| 1397 | moreover | |
| 1398 | { assume "?lhs" hence "?rhs"
 | |
| 45236 
ac4a2a66707d
replacing metis proofs with facts xt1 by new proof with more readable names
 bulwahn parents: 
45036diff
changeset | 1399 | by (metis less_SUP_iff order_less_imp_le order_less_le_trans) | 
| 41973 | 1400 | } ultimately show ?thesis by auto | 
| 1401 | qed | |
| 1402 | ||
| 43920 | 1403 | lemma ereal_Inf_le: | 
| 1404 | fixes x :: ereal | |
| 41973 | 1405 | shows "((INF i:A. f i) <= x) <-> (ALL y. x < y --> (EX i. i : A & f i <= y))" | 
| 1406 | (is "?lhs <-> ?rhs") | |
| 1407 | proof- | |
| 1408 | { assume "?rhs"
 | |
| 1409 |   { assume "~((INF i:A. f i) <= x)" hence "x < (INF i:A. f i)" by (simp add: not_le)
 | |
| 47082 | 1410 | then obtain y where y_def: "x<y & y<(INF i:A. f i)" using ereal_dense by auto | 
| 1411 | then obtain i where "i : A & f i <= y" using `?rhs` by auto | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1412 | hence "(INF i:A. f i) <= y" using INF_lower[of i A f] by auto | 
| 41973 | 1413 | hence False using y_def by auto | 
| 1414 | } hence "?lhs" by auto | |
| 1415 | } | |
| 1416 | moreover | |
| 1417 | { assume "?lhs" hence "?rhs"
 | |
| 45236 
ac4a2a66707d
replacing metis proofs with facts xt1 by new proof with more readable names
 bulwahn parents: 
45036diff
changeset | 1418 | by (metis INF_less_iff order_le_less order_less_le_trans) | 
| 41973 | 1419 | } ultimately show ?thesis by auto | 
| 1420 | qed | |
| 1421 | ||
| 1422 | lemma Inf_less: | |
| 43920 | 1423 | fixes x :: ereal | 
| 41973 | 1424 | assumes "(INF i:A. f i) < x" | 
| 1425 | shows "EX i. i : A & f i <= x" | |
| 1426 | proof(rule ccontr) | |
| 1427 | assume "~ (EX i. i : A & f i <= x)" | |
| 1428 | hence "ALL i:A. f i > x" by auto | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1429 | hence "(INF i:A. f i) >= x" apply (subst INF_greatest) by auto | 
| 41973 | 1430 | thus False using assms by auto | 
| 1431 | qed | |
| 1432 | ||
| 1433 | lemma same_INF: | |
| 1434 | assumes "ALL e:A. f e = g e" | |
| 1435 | shows "(INF e:A. f e) = (INF e:A. g e)" | |
| 1436 | proof- | |
| 1437 | have "f ` A = g ` A" unfolding image_def using assms by auto | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1438 | thus ?thesis unfolding INF_def by auto | 
| 41973 | 1439 | qed | 
| 1440 | ||
| 1441 | lemma same_SUP: | |
| 1442 | assumes "ALL e:A. f e = g e" | |
| 1443 | shows "(SUP e:A. f e) = (SUP e:A. g e)" | |
| 1444 | proof- | |
| 1445 | have "f ` A = g ` A" unfolding image_def using assms by auto | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1446 | thus ?thesis unfolding SUP_def by auto | 
| 41973 | 1447 | qed | 
| 1448 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1449 | lemma SUPR_eq: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1450 | assumes "\<forall>i\<in>A. \<exists>j\<in>B. f i \<le> g j" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1451 | assumes "\<forall>j\<in>B. \<exists>i\<in>A. g j \<le> f i" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1452 | shows "(SUP i:A. f i) = (SUP j:B. g j)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1453 | proof (intro antisym) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1454 | show "(SUP i:A. f i) \<le> (SUP j:B. g j)" | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1455 | using assms by (metis SUP_least SUP_upper2) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1456 | show "(SUP i:B. g i) \<le> (SUP j:A. f j)" | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1457 | using assms by (metis SUP_least SUP_upper2) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1458 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1459 | |
| 43920 | 1460 | lemma SUP_ereal_le_addI: | 
| 43923 | 1461 | fixes f :: "'i \<Rightarrow> ereal" | 
| 41978 | 1462 | assumes "\<And>i. f i + y \<le> z" and "y \<noteq> -\<infinity>" | 
| 1463 | shows "SUPR UNIV f + y \<le> z" | |
| 1464 | proof (cases y) | |
| 1465 | case (real r) | |
| 43920 | 1466 | then have "\<And>i. f i \<le> z - y" using assms by (simp add: ereal_le_minus_iff) | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1467 | then have "SUPR UNIV f \<le> z - y" by (rule SUP_least) | 
| 43920 | 1468 | then show ?thesis using real by (simp add: ereal_le_minus_iff) | 
| 41978 | 1469 | qed (insert assms, auto) | 
| 1470 | ||
| 43920 | 1471 | lemma SUPR_ereal_add: | 
| 1472 | fixes f g :: "nat \<Rightarrow> ereal" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1473 | assumes "incseq f" "incseq g" and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>" | 
| 41978 | 1474 | shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g" | 
| 43920 | 1475 | proof (rule ereal_SUPI) | 
| 41978 | 1476 | fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> f i + g i \<le> y" | 
| 1477 | have f: "SUPR UNIV f \<noteq> -\<infinity>" using pos | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1478 | unfolding SUP_def Sup_eq_MInfty by (auto dest: image_eqD) | 
| 41978 | 1479 |   { fix j
 | 
| 1480 |     { fix i
 | |
| 1481 | have "f i + g j \<le> f i + g (max i j)" | |
| 1482 | using `incseq g`[THEN incseqD] by (rule add_left_mono) auto | |
| 1483 | also have "\<dots> \<le> f (max i j) + g (max i j)" | |
| 1484 | using `incseq f`[THEN incseqD] by (rule add_right_mono) auto | |
| 1485 | also have "\<dots> \<le> y" using * by auto | |
| 1486 | finally have "f i + g j \<le> y" . } | |
| 1487 | then have "SUPR UNIV f + g j \<le> y" | |
| 43920 | 1488 | using assms(4)[of j] by (intro SUP_ereal_le_addI) auto | 
| 41978 | 1489 | then have "g j + SUPR UNIV f \<le> y" by (simp add: ac_simps) } | 
| 1490 | then have "SUPR UNIV g + SUPR UNIV f \<le> y" | |
| 43920 | 1491 | using f by (rule SUP_ereal_le_addI) | 
| 41978 | 1492 | then show "SUPR UNIV f + SUPR UNIV g \<le> y" by (simp add: ac_simps) | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1493 | qed (auto intro!: add_mono SUP_upper) | 
| 41978 | 1494 | |
| 43920 | 1495 | lemma SUPR_ereal_add_pos: | 
| 1496 | fixes f g :: "nat \<Rightarrow> ereal" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1497 | assumes inc: "incseq f" "incseq g" and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1498 | shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g" | 
| 43920 | 1499 | proof (intro SUPR_ereal_add inc) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1500 | fix i show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>" using pos[of i] by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1501 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1502 | |
| 43920 | 1503 | lemma SUPR_ereal_setsum: | 
| 1504 | fixes f g :: "'a \<Rightarrow> nat \<Rightarrow> ereal" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1505 | assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1506 | shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUPR UNIV (f n))" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1507 | proof cases | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1508 | assume "finite A" then show ?thesis using assms | 
| 43920 | 1509 | by induct (auto simp: incseq_setsumI2 setsum_nonneg SUPR_ereal_add_pos) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1510 | qed simp | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1511 | |
| 43920 | 1512 | lemma SUPR_ereal_cmult: | 
| 1513 | fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" "0 \<le> c" | |
| 41978 | 1514 | shows "(SUP i. c * f i) = c * SUPR UNIV f" | 
| 43920 | 1515 | proof (rule ereal_SUPI) | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1516 | fix i have "f i \<le> SUPR UNIV f" by (rule SUP_upper) auto | 
| 41978 | 1517 | then show "c * f i \<le> c * SUPR UNIV f" | 
| 43920 | 1518 | using `0 \<le> c` by (rule ereal_mult_left_mono) | 
| 41978 | 1519 | next | 
| 1520 | fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> c * f i \<le> y" | |
| 1521 | show "c * SUPR UNIV f \<le> y" | |
| 1522 | proof cases | |
| 1523 | assume c: "0 < c \<and> c \<noteq> \<infinity>" | |
| 1524 | with * have "SUPR UNIV f \<le> y / c" | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1525 | by (intro SUP_least) (auto simp: ereal_le_divide_pos) | 
| 41978 | 1526 | with c show ?thesis | 
| 43920 | 1527 | by (auto simp: ereal_le_divide_pos) | 
| 41978 | 1528 | next | 
| 1529 |     { assume "c = \<infinity>" have ?thesis
 | |
| 1530 | proof cases | |
| 1531 | assume "\<forall>i. f i = 0" | |
| 1532 |         moreover then have "range f = {0}" by auto
 | |
| 44918 | 1533 | ultimately show "c * SUPR UNIV f \<le> y" using * | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1534 | by (auto simp: SUP_def min_max.sup_absorb1) | 
| 41978 | 1535 | next | 
| 1536 | assume "\<not> (\<forall>i. f i = 0)" | |
| 1537 | then obtain i where "f i \<noteq> 0" by auto | |
| 1538 | with *[of i] `c = \<infinity>` `0 \<le> f i` show ?thesis by (auto split: split_if_asm) | |
| 1539 | qed } | |
| 1540 | moreover assume "\<not> (0 < c \<and> c \<noteq> \<infinity>)" | |
| 1541 | ultimately show ?thesis using * `0 \<le> c` by auto | |
| 1542 | qed | |
| 1543 | qed | |
| 1544 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1545 | lemma SUP_PInfty: | 
| 43920 | 1546 | fixes f :: "'a \<Rightarrow> ereal" | 
| 1547 | assumes "\<And>n::nat. \<exists>i\<in>A. ereal (real n) \<le> f i" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1548 | shows "(SUP i:A. f i) = \<infinity>" | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1549 | unfolding SUP_def Sup_eq_top_iff[where 'a=ereal, unfolded top_ereal_def] | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1550 | apply simp | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1551 | proof safe | 
| 43923 | 1552 | fix x :: ereal assume "x \<noteq> \<infinity>" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1553 | show "\<exists>i\<in>A. x < f i" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1554 | proof (cases x) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1555 | case PInf with `x \<noteq> \<infinity>` show ?thesis by simp | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1556 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1557 | case MInf with assms[of "0"] show ?thesis by force | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1558 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1559 | case (real r) | 
| 43920 | 1560 | with less_PInf_Ex_of_nat[of x] obtain n :: nat where "x < ereal (real n)" by auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1561 | moreover from assms[of n] guess i .. | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1562 | ultimately show ?thesis | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1563 | by (auto intro!: bexI[of _ i]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1564 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1565 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1566 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1567 | lemma Sup_countable_SUPR: | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1568 |   assumes "A \<noteq> {}"
 | 
| 43920 | 1569 | shows "\<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> A \<and> Sup A = SUPR UNIV f" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1570 | proof (cases "Sup A") | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1571 | case (real r) | 
| 43920 | 1572 | have "\<forall>n::nat. \<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1573 | proof | 
| 43920 | 1574 | fix n ::nat have "\<exists>x\<in>A. Sup A - 1 / ereal (real n) < x" | 
| 1575 | using assms real by (intro Sup_ereal_close) (auto simp: one_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1576 | then guess x .. | 
| 43920 | 1577 | then show "\<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)" | 
| 1578 | by (auto intro!: exI[of _ x] simp: ereal_minus_less_iff) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1579 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1580 | from choice[OF this] guess f .. note f = this | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1581 | have "SUPR UNIV f = Sup A" | 
| 43920 | 1582 | proof (rule ereal_SUPI) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1583 | fix i show "f i \<le> Sup A" using f | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1584 | by (auto intro!: complete_lattice_class.Sup_upper) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1585 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1586 | fix y assume bound: "\<And>i. i \<in> UNIV \<Longrightarrow> f i \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1587 | show "Sup A \<le> y" | 
| 43920 | 1588 | proof (rule ereal_le_epsilon, intro allI impI) | 
| 1589 | fix e :: ereal assume "0 < e" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1590 | show "Sup A \<le> y + e" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1591 | proof (cases e) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1592 | case (real r) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1593 | hence "0 < r" using `0 < e` by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1594 | then obtain n ::nat where *: "1 / real n < r" "0 < n" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1595 | using ex_inverse_of_nat_less by (auto simp: real_eq_of_nat inverse_eq_divide) | 
| 44918 | 1596 | have "Sup A \<le> f n + 1 / ereal (real n)" using f[THEN spec, of n] | 
| 1597 | by auto | |
| 43920 | 1598 | also have "1 / ereal (real n) \<le> e" using real * by (auto simp: one_ereal_def ) | 
| 1599 | with bound have "f n + 1 / ereal (real n) \<le> y + e" by (rule add_mono) simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1600 | finally show "Sup A \<le> y + e" . | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1601 | qed (insert `0 < e`, auto) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1602 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1603 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1604 | with f show ?thesis by (auto intro!: exI[of _ f]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1605 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1606 | case PInf | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1607 |   from `A \<noteq> {}` obtain x where "x \<in> A" by auto
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1608 | show ?thesis | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1609 | proof cases | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1610 | assume "\<infinity> \<in> A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1611 | moreover then have "\<infinity> \<le> Sup A" by (intro complete_lattice_class.Sup_upper) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1612 | ultimately show ?thesis by (auto intro!: exI[of _ "\<lambda>x. \<infinity>"]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1613 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1614 | assume "\<infinity> \<notin> A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1615 | have "\<exists>x\<in>A. 0 \<le> x" | 
| 43920 | 1616 | by (metis Infty_neq_0 PInf complete_lattice_class.Sup_least ereal_infty_less_eq2 linorder_linear) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1617 | then obtain x where "x \<in> A" "0 \<le> x" by auto | 
| 43920 | 1618 | have "\<forall>n::nat. \<exists>f. f \<in> A \<and> x + ereal (real n) \<le> f" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1619 | proof (rule ccontr) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1620 | assume "\<not> ?thesis" | 
| 43920 | 1621 | then have "\<exists>n::nat. Sup A \<le> x + ereal (real n)" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1622 | by (simp add: Sup_le_iff not_le less_imp_le Ball_def) (metis less_imp_le) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1623 | then show False using `x \<in> A` `\<infinity> \<notin> A` PInf | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1624 | by(cases x) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1625 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1626 | from choice[OF this] guess f .. note f = this | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1627 | have "SUPR UNIV f = \<infinity>" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1628 | proof (rule SUP_PInfty) | 
| 43920 | 1629 | fix n :: nat show "\<exists>i\<in>UNIV. ereal (real n) \<le> f i" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1630 | using f[THEN spec, of n] `0 \<le> x` | 
| 43920 | 1631 | by (cases rule: ereal2_cases[of "f n" x]) (auto intro!: exI[of _ n]) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1632 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1633 | then show ?thesis using f PInf by (auto intro!: exI[of _ f]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1634 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1635 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1636 | case MInf | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1637 |   with `A \<noteq> {}` have "A = {-\<infinity>}" by (auto simp: Sup_eq_MInfty)
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1638 | then show ?thesis using MInf by (auto intro!: exI[of _ "\<lambda>x. -\<infinity>"]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1639 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1640 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1641 | lemma SUPR_countable_SUPR: | 
| 43920 | 1642 |   "A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> g`A \<and> SUPR A g = SUPR UNIV f"
 | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1643 | using Sup_countable_SUPR[of "g`A"] by (auto simp: SUP_def) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1644 | |
| 43920 | 1645 | lemma Sup_ereal_cadd: | 
| 1646 |   fixes A :: "ereal set" assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
 | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1647 | shows "Sup ((\<lambda>x. a + x) ` A) = a + Sup A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1648 | proof (rule antisym) | 
| 43920 | 1649 | have *: "\<And>a::ereal. \<And>A. Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1650 | by (auto intro!: add_mono complete_lattice_class.Sup_least complete_lattice_class.Sup_upper) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1651 | then show "Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A" . | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1652 | show "a + Sup A \<le> Sup ((\<lambda>x. a + x) ` A)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1653 | proof (cases a) | 
| 44918 | 1654 |     case PInf with `A \<noteq> {}` show ?thesis by (auto simp: image_constant min_max.sup_absorb1)
 | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1655 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1656 | case (real r) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1657 | then have **: "op + (- a) ` op + a ` A = A" | 
| 43920 | 1658 | by (auto simp: image_iff ac_simps zero_ereal_def[symmetric]) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1659 | from *[of "-a" "(\<lambda>x. a + x) ` A"] real show ?thesis unfolding ** | 
| 43920 | 1660 | by (cases rule: ereal2_cases[of "Sup A" "Sup (op + a ` A)"]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1661 | qed (insert `a \<noteq> -\<infinity>`, auto) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1662 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1663 | |
| 43920 | 1664 | lemma Sup_ereal_cminus: | 
| 1665 |   fixes A :: "ereal set" assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
 | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1666 | shows "Sup ((\<lambda>x. a - x) ` A) = a - Inf A" | 
| 43920 | 1667 | using Sup_ereal_cadd[of "uminus ` A" a] assms | 
| 1668 | by (simp add: comp_def image_image minus_ereal_def | |
| 1669 | ereal_Sup_uminus_image_eq) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1670 | |
| 43920 | 1671 | lemma SUPR_ereal_cminus: | 
| 43923 | 1672 | fixes f :: "'i \<Rightarrow> ereal" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1673 |   fixes A assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1674 | shows "(SUP x:A. a - f x) = a - (INF x:A. f x)" | 
| 43920 | 1675 | using Sup_ereal_cminus[of "f`A" a] assms | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1676 | unfolding SUP_def INF_def image_image by auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1677 | |
| 43920 | 1678 | lemma Inf_ereal_cminus: | 
| 1679 |   fixes A :: "ereal set" assumes "A \<noteq> {}" and "\<bar>a\<bar> \<noteq> \<infinity>"
 | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1680 | shows "Inf ((\<lambda>x. a - x) ` A) = a - Sup A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1681 | proof - | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1682 |   { fix x have "-a - -x = -(a - x)" using assms by (cases x) auto }
 | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1683 | moreover then have "(\<lambda>x. -a - x)`uminus`A = uminus ` (\<lambda>x. a - x) ` A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1684 | by (auto simp: image_image) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1685 | ultimately show ?thesis | 
| 43920 | 1686 | using Sup_ereal_cminus[of "uminus ` A" "-a"] assms | 
| 1687 | by (auto simp add: ereal_Sup_uminus_image_eq ereal_Inf_uminus_image_eq) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1688 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1689 | |
| 43920 | 1690 | lemma INFI_ereal_cminus: | 
| 43923 | 1691 |   fixes a :: ereal assumes "A \<noteq> {}" and "\<bar>a\<bar> \<noteq> \<infinity>"
 | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1692 | shows "(INF x:A. a - f x) = a - (SUP x:A. f x)" | 
| 43920 | 1693 | using Inf_ereal_cminus[of "f`A" a] assms | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1694 | unfolding SUP_def INF_def image_image | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1695 | by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1696 | |
| 43920 | 1697 | lemma uminus_ereal_add_uminus_uminus: | 
| 1698 | fixes a b :: ereal shows "a \<noteq> \<infinity> \<Longrightarrow> b \<noteq> \<infinity> \<Longrightarrow> - (- a + - b) = a + b" | |
| 1699 | by (cases rule: ereal2_cases[of a b]) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1700 | |
| 43920 | 1701 | lemma INFI_ereal_add: | 
| 43923 | 1702 | fixes f :: "nat \<Rightarrow> ereal" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1703 | assumes "decseq f" "decseq g" and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1704 | shows "(INF i. f i + g i) = INFI UNIV f + INFI UNIV g" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1705 | proof - | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1706 | have INF_less: "(INF i. f i) < \<infinity>" "(INF i. g i) < \<infinity>" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1707 | using assms unfolding INF_less_iff by auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1708 |   { fix i from fin[of i] have "- ((- f i) + (- g i)) = f i + g i"
 | 
| 43920 | 1709 | by (rule uminus_ereal_add_uminus_uminus) } | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1710 | then have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1711 | by simp | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1712 | also have "\<dots> = INFI UNIV f + INFI UNIV g" | 
| 43920 | 1713 | unfolding ereal_INFI_uminus | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1714 | using assms INF_less | 
| 43920 | 1715 | by (subst SUPR_ereal_add) | 
| 1716 | (auto simp: ereal_SUPR_uminus intro!: uminus_ereal_add_uminus_uminus) | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1717 | finally show ?thesis . | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1718 | qed | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1719 | |
| 45934 | 1720 | subsection "Relation to @{typ enat}"
 | 
| 1721 | ||
| 1722 | definition "ereal_of_enat n = (case n of enat n \<Rightarrow> ereal (real n) | \<infinity> \<Rightarrow> \<infinity>)" | |
| 1723 | ||
| 1724 | declare [[coercion "ereal_of_enat :: enat \<Rightarrow> ereal"]] | |
| 1725 | declare [[coercion "(\<lambda>n. ereal (real n)) :: nat \<Rightarrow> ereal"]] | |
| 1726 | ||
| 1727 | lemma ereal_of_enat_simps[simp]: | |
| 1728 | "ereal_of_enat (enat n) = ereal n" | |
| 1729 | "ereal_of_enat \<infinity> = \<infinity>" | |
| 1730 | by (simp_all add: ereal_of_enat_def) | |
| 1731 | ||
| 1732 | lemma ereal_of_enat_le_iff[simp]: | |
| 1733 | "ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n" | |
| 1734 | by (cases m n rule: enat2_cases) auto | |
| 1735 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 1736 | lemma numeral_le_ereal_of_enat_iff[simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 1737 | shows "numeral m \<le> ereal_of_enat n \<longleftrightarrow> numeral m \<le> n" | 
| 45934 | 1738 | by (cases n) (auto dest: natceiling_le intro: natceiling_le_eq[THEN iffD1]) | 
| 1739 | ||
| 1740 | lemma ereal_of_enat_ge_zero_cancel_iff[simp]: | |
| 1741 | "0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n" | |
| 1742 | by (cases n) (auto simp: enat_0[symmetric]) | |
| 1743 | ||
| 1744 | lemma ereal_of_enat_gt_zero_cancel_iff[simp]: | |
| 1745 | "0 < ereal_of_enat n \<longleftrightarrow> 0 < n" | |
| 1746 | by (cases n) (auto simp: enat_0[symmetric]) | |
| 1747 | ||
| 1748 | lemma ereal_of_enat_zero[simp]: | |
| 1749 | "ereal_of_enat 0 = 0" | |
| 1750 | by (auto simp: enat_0[symmetric]) | |
| 1751 | ||
| 1752 | lemma ereal_of_enat_add: | |
| 1753 | "ereal_of_enat (m + n) = ereal_of_enat m + ereal_of_enat n" | |
| 1754 | by (cases m n rule: enat2_cases) auto | |
| 1755 | ||
| 1756 | lemma ereal_of_enat_sub: | |
| 1757 | assumes "n \<le> m" shows "ereal_of_enat (m - n) = ereal_of_enat m - ereal_of_enat n " | |
| 1758 | using assms by (cases m n rule: enat2_cases) auto | |
| 1759 | ||
| 1760 | lemma ereal_of_enat_mult: | |
| 1761 | "ereal_of_enat (m * n) = ereal_of_enat m * ereal_of_enat n" | |
| 1762 | by (cases m n rule: enat2_cases) auto | |
| 1763 | ||
| 1764 | lemmas ereal_of_enat_pushin = ereal_of_enat_add ereal_of_enat_sub ereal_of_enat_mult | |
| 1765 | lemmas ereal_of_enat_pushout = ereal_of_enat_pushin[symmetric] | |
| 1766 | ||
| 1767 | ||
| 43920 | 1768 | subsection "Limits on @{typ ereal}"
 | 
| 41973 | 1769 | |
| 1770 | subsubsection "Topological space" | |
| 1771 | ||
| 43920 | 1772 | instantiation ereal :: topological_space | 
| 41973 | 1773 | begin | 
| 1774 | ||
| 43920 | 1775 | definition "open A \<longleftrightarrow> open (ereal -` A) | 
| 1776 |        \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {ereal x <..} \<subseteq> A))
 | |
| 1777 |        \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A))"
 | |
| 41973 | 1778 | |
| 43920 | 1779 | lemma open_PInfty: "open A \<Longrightarrow> \<infinity> \<in> A \<Longrightarrow> (\<exists>x. {ereal x<..} \<subseteq> A)"
 | 
| 1780 | unfolding open_ereal_def by auto | |
| 41973 | 1781 | |
| 43920 | 1782 | lemma open_MInfty: "open A \<Longrightarrow> -\<infinity> \<in> A \<Longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A)"
 | 
| 1783 | unfolding open_ereal_def by auto | |
| 41973 | 1784 | |
| 43920 | 1785 | lemma open_PInfty2: assumes "open A" "\<infinity> \<in> A" obtains x where "{ereal x<..} \<subseteq> A"
 | 
| 41973 | 1786 | using open_PInfty[OF assms] by auto | 
| 1787 | ||
| 43920 | 1788 | lemma open_MInfty2: assumes "open A" "-\<infinity> \<in> A" obtains x where "{..<ereal x} \<subseteq> A"
 | 
| 41973 | 1789 | using open_MInfty[OF assms] by auto | 
| 1790 | ||
| 43920 | 1791 | lemma ereal_openE: assumes "open A" obtains x y where | 
| 1792 | "open (ereal -` A)" | |
| 1793 |   "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A"
 | |
| 1794 |   "-\<infinity> \<in> A \<Longrightarrow> {..<ereal y} \<subseteq> A"
 | |
| 1795 | using assms open_ereal_def by auto | |
| 41973 | 1796 | |
| 1797 | instance | |
| 1798 | proof | |
| 43920 | 1799 | let ?U = "UNIV::ereal set" | 
| 1800 | show "open ?U" unfolding open_ereal_def | |
| 41975 | 1801 | by (auto intro!: exI[of _ 0]) | 
| 41973 | 1802 | next | 
| 43920 | 1803 | fix S T::"ereal set" assume "open S" and "open T" | 
| 1804 | from `open S`[THEN ereal_openE] guess xS yS . | |
| 1805 | moreover from `open T`[THEN ereal_openE] guess xT yT . | |
| 41975 | 1806 | ultimately have | 
| 43920 | 1807 | "open (ereal -` (S \<inter> T))" | 
| 1808 |     "\<infinity> \<in> S \<inter> T \<Longrightarrow> {ereal (max xS xT) <..} \<subseteq> S \<inter> T"
 | |
| 1809 |     "-\<infinity> \<in> S \<inter> T \<Longrightarrow> {..< ereal (min yS yT)} \<subseteq> S \<inter> T"
 | |
| 41975 | 1810 | by auto | 
| 43920 | 1811 | then show "open (S Int T)" unfolding open_ereal_def by blast | 
| 41973 | 1812 | next | 
| 43920 | 1813 | fix K :: "ereal set set" assume "\<forall>S\<in>K. open S" | 
| 1814 | then have *: "\<forall>S. \<exists>x y. S \<in> K \<longrightarrow> open (ereal -` S) \<and> | |
| 1815 |     (\<infinity> \<in> S \<longrightarrow> {ereal x <..} \<subseteq> S) \<and> (-\<infinity> \<in> S \<longrightarrow> {..< ereal y} \<subseteq> S)"
 | |
| 1816 | by (auto simp: open_ereal_def) | |
| 1817 | then show "open (Union K)" unfolding open_ereal_def | |
| 41975 | 1818 | proof (intro conjI impI) | 
| 43920 | 1819 | show "open (ereal -` \<Union>K)" | 
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 1820 | using *[THEN choice] by (auto simp: vimage_Union) | 
| 41975 | 1821 | qed ((metis UnionE Union_upper subset_trans *)+) | 
| 41973 | 1822 | qed | 
| 1823 | end | |
| 1824 | ||
| 43920 | 1825 | lemma open_ereal: "open S \<Longrightarrow> open (ereal ` S)" | 
| 1826 | by (auto simp: inj_vimage_image_eq open_ereal_def) | |
| 41976 | 1827 | |
| 43920 | 1828 | lemma open_ereal_vimage: "open S \<Longrightarrow> open (ereal -` S)" | 
| 1829 | unfolding open_ereal_def by auto | |
| 41976 | 1830 | |
| 43920 | 1831 | lemma open_ereal_lessThan[intro, simp]: "open {..< a :: ereal}"
 | 
| 41975 | 1832 | proof - | 
| 43920 | 1833 |   have "\<And>x. ereal -` {..<ereal x} = {..< x}"
 | 
| 1834 |     "ereal -` {..< \<infinity>} = UNIV" "ereal -` {..< -\<infinity>} = {}" by auto
 | |
| 1835 | then show ?thesis by (cases a) (auto simp: open_ereal_def) | |
| 41975 | 1836 | qed | 
| 1837 | ||
| 43920 | 1838 | lemma open_ereal_greaterThan[intro, simp]: | 
| 1839 |   "open {a :: ereal <..}"
 | |
| 41975 | 1840 | proof - | 
| 43920 | 1841 |   have "\<And>x. ereal -` {ereal x<..} = {x<..}"
 | 
| 1842 |     "ereal -` {\<infinity><..} = {}" "ereal -` {-\<infinity><..} = UNIV" by auto
 | |
| 1843 | then show ?thesis by (cases a) (auto simp: open_ereal_def) | |
| 41975 | 1844 | qed | 
| 1845 | ||
| 43920 | 1846 | lemma ereal_open_greaterThanLessThan[intro, simp]: "open {a::ereal <..< b}"
 | 
| 41973 | 1847 | unfolding greaterThanLessThan_def by auto | 
| 1848 | ||
| 43920 | 1849 | lemma closed_ereal_atLeast[simp, intro]: "closed {a :: ereal ..}"
 | 
| 41973 | 1850 | proof - | 
| 1851 |   have "- {a ..} = {..< a}" by auto
 | |
| 1852 |   then show "closed {a ..}"
 | |
| 43920 | 1853 | unfolding closed_def using open_ereal_lessThan by auto | 
| 41973 | 1854 | qed | 
| 1855 | ||
| 43920 | 1856 | lemma closed_ereal_atMost[simp, intro]: "closed {.. b :: ereal}"
 | 
| 41973 | 1857 | proof - | 
| 1858 |   have "- {.. b} = {b <..}" by auto
 | |
| 1859 |   then show "closed {.. b}"
 | |
| 43920 | 1860 | unfolding closed_def using open_ereal_greaterThan by auto | 
| 41973 | 1861 | qed | 
| 1862 | ||
| 43920 | 1863 | lemma closed_ereal_atLeastAtMost[simp, intro]: | 
| 1864 |   shows "closed {a :: ereal .. b}"
 | |
| 41973 | 1865 | unfolding atLeastAtMost_def by auto | 
| 1866 | ||
| 43920 | 1867 | lemma closed_ereal_singleton: | 
| 1868 |   "closed {a :: ereal}"
 | |
| 1869 | by (metis atLeastAtMost_singleton closed_ereal_atLeastAtMost) | |
| 41973 | 1870 | |
| 43920 | 1871 | lemma ereal_open_cont_interval: | 
| 43923 | 1872 | fixes S :: "ereal set" | 
| 41976 | 1873 | assumes "open S" "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>" | 
| 41973 | 1874 |   obtains e where "e>0" "{x-e <..< x+e} \<subseteq> S"
 | 
| 1875 | proof- | |
| 43920 | 1876 | from `open S` have "open (ereal -` S)" by (rule ereal_openE) | 
| 1877 | then obtain e where "0 < e" and e: "\<And>y. dist y (real x) < e \<Longrightarrow> ereal y \<in> S" | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 1878 | using assms unfolding open_dist by force | 
| 41975 | 1879 | show thesis | 
| 1880 | proof (intro that subsetI) | |
| 43920 | 1881 | show "0 < ereal e" using `0 < e` by auto | 
| 1882 |     fix y assume "y \<in> {x - ereal e<..<x + ereal e}"
 | |
| 1883 | with assms obtain t where "y = ereal t" "dist t (real x) < e" | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 1884 | apply (cases y) by (auto simp: dist_real_def) | 
| 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 1885 | then show "y \<in> S" using e[of t] by auto | 
| 41975 | 1886 | qed | 
| 41973 | 1887 | qed | 
| 1888 | ||
| 43920 | 1889 | lemma ereal_open_cont_interval2: | 
| 43923 | 1890 | fixes S :: "ereal set" | 
| 41976 | 1891 | assumes "open S" "x \<in> S" and x: "\<bar>x\<bar> \<noteq> \<infinity>" | 
| 41973 | 1892 |   obtains a b where "a < x" "x < b" "{a <..< b} \<subseteq> S"
 | 
| 1893 | proof- | |
| 43920 | 1894 | guess e using ereal_open_cont_interval[OF assms] . | 
| 1895 | with that[of "x-e" "x+e"] ereal_between[OF x, of e] | |
| 41973 | 1896 | show thesis by auto | 
| 1897 | qed | |
| 1898 | ||
| 43920 | 1899 | instance ereal :: t2_space | 
| 41973 | 1900 | proof | 
| 43920 | 1901 | fix x y :: ereal assume "x ~= y" | 
| 1902 |   let "?P x (y::ereal)" = "EX U V. open U & open V & x : U & y : V & U Int V = {}"
 | |
| 41973 | 1903 | |
| 43920 | 1904 |   { fix x y :: ereal assume "x < y"
 | 
| 1905 | from ereal_dense[OF this] obtain z where z: "x < z" "z < y" by auto | |
| 41973 | 1906 | have "?P x y" | 
| 1907 |       apply (rule exI[of _ "{..<z}"])
 | |
| 1908 |       apply (rule exI[of _ "{z<..}"])
 | |
| 1909 | using z by auto } | |
| 1910 | note * = this | |
| 1911 | ||
| 1912 | from `x ~= y` | |
| 1913 |   show "EX U V. open U & open V & x : U & y : V & U Int V = {}"
 | |
| 1914 | proof (cases rule: linorder_cases) | |
| 1915 | assume "x = y" with `x ~= y` show ?thesis by simp | |
| 1916 | next assume "x < y" from *[OF this] show ?thesis by auto | |
| 1917 | next assume "y < x" from *[OF this] show ?thesis by auto | |
| 1918 | qed | |
| 1919 | qed | |
| 1920 | ||
| 1921 | subsubsection {* Convergent sequences *}
 | |
| 1922 | ||
| 43920 | 1923 | lemma lim_ereal[simp]: | 
| 1924 | "((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net" (is "?l = ?r") | |
| 41973 | 1925 | proof (intro iffI topological_tendstoI) | 
| 1926 | fix S assume "?l" "open S" "x \<in> S" | |
| 1927 | then show "eventually (\<lambda>x. f x \<in> S) net" | |
| 43920 | 1928 | using `?l`[THEN topological_tendstoD, OF open_ereal, OF `open S`] | 
| 41973 | 1929 | by (simp add: inj_image_mem_iff) | 
| 1930 | next | |
| 43920 | 1931 | fix S assume "?r" "open S" "ereal x \<in> S" | 
| 1932 | show "eventually (\<lambda>x. ereal (f x) \<in> S) net" | |
| 1933 | using `?r`[THEN topological_tendstoD, OF open_ereal_vimage, OF `open S`] | |
| 1934 | using `ereal x \<in> S` by auto | |
| 41973 | 1935 | qed | 
| 1936 | ||
| 43920 | 1937 | lemma lim_real_of_ereal[simp]: | 
| 1938 | assumes lim: "(f ---> ereal x) net" | |
| 41973 | 1939 | shows "((\<lambda>x. real (f x)) ---> x) net" | 
| 1940 | proof (intro topological_tendstoI) | |
| 1941 | fix S assume "open S" "x \<in> S" | |
| 43920 | 1942 | then have S: "open S" "ereal x \<in> ereal ` S" | 
| 41973 | 1943 | by (simp_all add: inj_image_mem_iff) | 
| 43920 | 1944 | have "\<forall>x. f x \<in> ereal ` S \<longrightarrow> real (f x) \<in> S" by auto | 
| 1945 | from this lim[THEN topological_tendstoD, OF open_ereal, OF S] | |
| 41973 | 1946 | show "eventually (\<lambda>x. real (f x) \<in> S) net" | 
| 1947 | by (rule eventually_mono) | |
| 1948 | qed | |
| 1949 | ||
| 43920 | 1950 | lemma Lim_PInfty: "f ----> \<infinity> <-> (ALL B. EX N. ALL n>=N. f n >= ereal B)" (is "?l = ?r") | 
| 43923 | 1951 | proof | 
| 1952 | assume ?r | |
| 1953 | show ?l | |
| 1954 | apply(rule topological_tendstoI) | |
| 41973 | 1955 | unfolding eventually_sequentially | 
| 43923 | 1956 | proof- | 
| 1957 | fix S :: "ereal set" assume "open S" "\<infinity> : S" | |
| 41973 | 1958 | from open_PInfty[OF this] guess B .. note B=this | 
| 1959 | from `?r`[rule_format,of "B+1"] guess N .. note N=this | |
| 1960 | show "EX N. ALL n>=N. f n : S" apply(rule_tac x=N in exI) | |
| 1961 | proof safe case goal1 | |
| 43920 | 1962 | have "ereal B < ereal (B + 1)" by auto | 
| 41973 | 1963 | also have "... <= f n" using goal1 N by auto | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44669diff
changeset | 1964 | finally show ?case using B by fastforce | 
| 41973 | 1965 | qed | 
| 1966 | qed | |
| 43923 | 1967 | next | 
| 1968 | assume ?l | |
| 1969 | show ?r | |
| 43920 | 1970 |   proof fix B::real have "open {ereal B<..}" "\<infinity> : {ereal B<..}" by auto
 | 
| 41973 | 1971 | from topological_tendstoD[OF `?l` this,unfolded eventually_sequentially] | 
| 1972 | guess N .. note N=this | |
| 43920 | 1973 | show "EX N. ALL n>=N. ereal B <= f n" apply(rule_tac x=N in exI) using N by auto | 
| 41973 | 1974 | qed | 
| 1975 | qed | |
| 1976 | ||
| 1977 | ||
| 43920 | 1978 | lemma Lim_MInfty: "f ----> (-\<infinity>) <-> (ALL B. EX N. ALL n>=N. f n <= ereal B)" (is "?l = ?r") | 
| 43923 | 1979 | proof | 
| 1980 | assume ?r | |
| 1981 | show ?l | |
| 1982 | apply(rule topological_tendstoI) | |
| 41973 | 1983 | unfolding eventually_sequentially | 
| 43923 | 1984 | proof- | 
| 1985 | fix S :: "ereal set" | |
| 1986 | assume "open S" "(-\<infinity>) : S" | |
| 41973 | 1987 | from open_MInfty[OF this] guess B .. note B=this | 
| 1988 | from `?r`[rule_format,of "B-(1::real)"] guess N .. note N=this | |
| 1989 | show "EX N. ALL n>=N. f n : S" apply(rule_tac x=N in exI) | |
| 1990 | proof safe case goal1 | |
| 43920 | 1991 | have "ereal (B - 1) >= f n" using goal1 N by auto | 
| 1992 | also have "... < ereal B" by auto | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44669diff
changeset | 1993 | finally show ?case using B by fastforce | 
| 41973 | 1994 | qed | 
| 1995 | qed | |
| 1996 | next assume ?l show ?r | |
| 43920 | 1997 |   proof fix B::real have "open {..<ereal B}" "(-\<infinity>) : {..<ereal B}" by auto
 | 
| 41973 | 1998 | from topological_tendstoD[OF `?l` this,unfolded eventually_sequentially] | 
| 1999 | guess N .. note N=this | |
| 43920 | 2000 | show "EX N. ALL n>=N. ereal B >= f n" apply(rule_tac x=N in exI) using N by auto | 
| 41973 | 2001 | qed | 
| 2002 | qed | |
| 2003 | ||
| 2004 | ||
| 43920 | 2005 | lemma Lim_bounded_PInfty: assumes lim:"f ----> l" and "!!n. f n <= ereal B" shows "l ~= \<infinity>" | 
| 41973 | 2006 | proof(rule ccontr,unfold not_not) let ?B = "B + 1" assume as:"l=\<infinity>" | 
| 2007 | from lim[unfolded this Lim_PInfty,rule_format,of "?B"] | |
| 2008 | guess N .. note N=this[rule_format,OF le_refl] | |
| 43920 | 2009 | hence "ereal ?B <= ereal B" using assms(2)[of N] by(rule order_trans) | 
| 2010 | hence "ereal ?B < ereal ?B" apply (rule le_less_trans) by auto | |
| 41973 | 2011 | thus False by auto | 
| 2012 | qed | |
| 2013 | ||
| 2014 | ||
| 43920 | 2015 | lemma Lim_bounded_MInfty: assumes lim:"f ----> l" and "!!n. f n >= ereal B" shows "l ~= (-\<infinity>)" | 
| 41973 | 2016 | proof(rule ccontr,unfold not_not) let ?B = "B - 1" assume as:"l=(-\<infinity>)" | 
| 2017 | from lim[unfolded this Lim_MInfty,rule_format,of "?B"] | |
| 2018 | guess N .. note N=this[rule_format,OF le_refl] | |
| 43920 | 2019 | hence "ereal B <= ereal ?B" using assms(2)[of N] order_trans[of "ereal B" "f N" "ereal(B - 1)"] by blast | 
| 41973 | 2020 | thus False by auto | 
| 2021 | qed | |
| 2022 | ||
| 2023 | ||
| 2024 | lemma tendsto_explicit: | |
| 2025 | "f ----> f0 <-> (ALL S. open S --> f0 : S --> (EX N. ALL n>=N. f n : S))" | |
| 2026 | unfolding tendsto_def eventually_sequentially by auto | |
| 2027 | ||
| 2028 | ||
| 2029 | lemma tendsto_obtains_N: | |
| 2030 | assumes "f ----> f0" | |
| 2031 | assumes "open S" "f0 : S" | |
| 2032 | obtains N where "ALL n>=N. f n : S" | |
| 2033 | using tendsto_explicit[of f f0] assms by auto | |
| 2034 | ||
| 2035 | ||
| 2036 | lemma tail_same_limit: | |
| 2037 | fixes X Y N | |
| 2038 | assumes "X ----> L" "ALL n>=N. X n = Y n" | |
| 2039 | shows "Y ----> L" | |
| 2040 | proof- | |
| 2041 | { fix S assume "open S" and "L:S"
 | |
| 47082 | 2042 | then obtain N1 where "ALL n>=N1. X n : S" | 
| 41973 | 2043 | using assms unfolding tendsto_def eventually_sequentially by auto | 
| 2044 | hence "ALL n>=max N N1. Y n : S" using assms by auto | |
| 2045 | hence "EX N. ALL n>=N. Y n : S" apply(rule_tac x="max N N1" in exI) by auto | |
| 2046 | } | |
| 2047 | thus ?thesis using tendsto_explicit by auto | |
| 2048 | qed | |
| 2049 | ||
| 2050 | ||
| 2051 | lemma Lim_bounded_PInfty2: | |
| 43920 | 2052 | assumes lim:"f ----> l" and "ALL n>=N. f n <= ereal B" | 
| 41973 | 2053 | shows "l ~= \<infinity>" | 
| 2054 | proof- | |
| 43920 | 2055 | def g == "(%n. if n>=N then f n else ereal B)" | 
| 41973 | 2056 | hence "g ----> l" using tail_same_limit[of f l N g] lim by auto | 
| 43920 | 2057 | moreover have "!!n. g n <= ereal B" using g_def assms by auto | 
| 41973 | 2058 | ultimately show ?thesis using Lim_bounded_PInfty by auto | 
| 2059 | qed | |
| 2060 | ||
| 43920 | 2061 | lemma Lim_bounded_ereal: | 
| 2062 | assumes lim:"f ----> (l :: ereal)" | |
| 41973 | 2063 | and "ALL n>=M. f n <= C" | 
| 2064 | shows "l<=C" | |
| 2065 | proof- | |
| 2066 | { assume "l=(-\<infinity>)" hence ?thesis by auto }
 | |
| 2067 | moreover | |
| 2068 | { assume "~(l=(-\<infinity>))"
 | |
| 2069 |   { assume "C=\<infinity>" hence ?thesis by auto }
 | |
| 2070 | moreover | |
| 2071 |   { assume "C=(-\<infinity>)" hence "ALL n>=M. f n = (-\<infinity>)" using assms by auto
 | |
| 2072 | hence "l=(-\<infinity>)" using assms | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 2073 | tendsto_unique[OF trivial_limit_sequentially] tail_same_limit[of "\<lambda>n. -\<infinity>" "-\<infinity>" M f, OF tendsto_const] by auto | 
| 41973 | 2074 | hence ?thesis by auto } | 
| 2075 | moreover | |
| 43920 | 2076 |   { assume "EX B. C = ereal B"
 | 
| 47082 | 2077 | then obtain B where B_def: "C=ereal B" by auto | 
| 41973 | 2078 | hence "~(l=\<infinity>)" using Lim_bounded_PInfty2 assms by auto | 
| 47082 | 2079 | then obtain m where m_def: "ereal m=l" using `~(l=(-\<infinity>))` by (cases l) auto | 
| 2080 |     then obtain N where N_def: "ALL n>=N. f n : {ereal(m - 1) <..< ereal(m+1)}"
 | |
| 43920 | 2081 |        apply (subst tendsto_obtains_N[of f l "{ereal(m - 1) <..< ereal(m+1)}"]) using assms by auto
 | 
| 41973 | 2082 |     { fix n assume "n>=N"
 | 
| 43920 | 2083 | hence "EX r. ereal r = f n" using N_def by (cases "f n") auto | 
| 47082 | 2084 | } then obtain g where g_def: "ALL n>=N. ereal (g n) = f n" by metis | 
| 43920 | 2085 | hence "(%n. ereal (g n)) ----> l" using tail_same_limit[of f l N] assms by auto | 
| 41973 | 2086 | hence *: "(%n. g n) ----> m" using m_def by auto | 
| 2087 |     { fix n assume "n>=max N M"
 | |
| 43920 | 2088 | hence "ereal (g n) <= ereal B" using assms g_def B_def by auto | 
| 41973 | 2089 | hence "g n <= B" by auto | 
| 2090 | } hence "EX N. ALL n>=N. g n <= B" by blast | |
| 2091 | hence "m<=B" using * LIMSEQ_le_const2[of g m B] by auto | |
| 2092 | hence ?thesis using m_def B_def by auto | |
| 2093 | } ultimately have ?thesis by (cases C) auto | |
| 2094 | } ultimately show ?thesis by blast | |
| 2095 | qed | |
| 2096 | ||
| 43920 | 2097 | lemma real_of_ereal_mult[simp]: | 
| 2098 | fixes a b :: ereal shows "real (a * b) = real a * real b" | |
| 2099 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41973 | 2100 | |
| 43920 | 2101 | lemma real_of_ereal_eq_0: | 
| 43923 | 2102 | fixes x :: ereal shows "real x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0" | 
| 41973 | 2103 | by (cases x) auto | 
| 2104 | ||
| 43920 | 2105 | lemma tendsto_ereal_realD: | 
| 2106 | fixes f :: "'a \<Rightarrow> ereal" | |
| 2107 | assumes "x \<noteq> 0" and tendsto: "((\<lambda>x. ereal (real (f x))) ---> x) net" | |
| 41973 | 2108 | shows "(f ---> x) net" | 
| 2109 | proof (intro topological_tendstoI) | |
| 2110 | fix S assume S: "open S" "x \<in> S" | |
| 2111 |   with `x \<noteq> 0` have "open (S - {0})" "x \<in> S - {0}" by auto
 | |
| 2112 | from tendsto[THEN topological_tendstoD, OF this] | |
| 2113 | show "eventually (\<lambda>x. f x \<in> S) net" | |
| 44142 | 2114 | by (rule eventually_rev_mp) (auto simp: ereal_real) | 
| 41973 | 2115 | qed | 
| 2116 | ||
| 43920 | 2117 | lemma tendsto_ereal_realI: | 
| 2118 | fixes f :: "'a \<Rightarrow> ereal" | |
| 41976 | 2119 | assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and tendsto: "(f ---> x) net" | 
| 43920 | 2120 | shows "((\<lambda>x. ereal (real (f x))) ---> x) net" | 
| 41973 | 2121 | proof (intro topological_tendstoI) | 
| 2122 | fix S assume "open S" "x \<in> S" | |
| 2123 |   with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}" by auto
 | |
| 2124 | from tendsto[THEN topological_tendstoD, OF this] | |
| 43920 | 2125 | show "eventually (\<lambda>x. ereal (real (f x)) \<in> S) net" | 
| 2126 | by (elim eventually_elim1) (auto simp: ereal_real) | |
| 41973 | 2127 | qed | 
| 2128 | ||
| 43920 | 2129 | lemma ereal_mult_cancel_left: | 
| 2130 | fixes a b c :: ereal shows "a * b = a * c \<longleftrightarrow> | |
| 41976 | 2131 | ((\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c)" | 
| 43920 | 2132 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 2133 | (simp_all add: zero_less_mult_iff) | 
| 2134 | ||
| 43920 | 2135 | lemma ereal_inj_affinity: | 
| 43923 | 2136 | fixes m t :: ereal | 
| 41976 | 2137 | assumes "\<bar>m\<bar> \<noteq> \<infinity>" "m \<noteq> 0" "\<bar>t\<bar> \<noteq> \<infinity>" | 
| 41973 | 2138 | shows "inj_on (\<lambda>x. m * x + t) A" | 
| 2139 | using assms | |
| 43920 | 2140 | by (cases rule: ereal2_cases[of m t]) | 
| 2141 | (auto intro!: inj_onI simp: ereal_add_cancel_right ereal_mult_cancel_left) | |
| 41973 | 2142 | |
| 43920 | 2143 | lemma ereal_PInfty_eq_plus[simp]: | 
| 43923 | 2144 | fixes a b :: ereal | 
| 41973 | 2145 | shows "\<infinity> = a + b \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" | 
| 43920 | 2146 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2147 | |
| 43920 | 2148 | lemma ereal_MInfty_eq_plus[simp]: | 
| 43923 | 2149 | fixes a b :: ereal | 
| 41973 | 2150 | shows "-\<infinity> = a + b \<longleftrightarrow> (a = -\<infinity> \<and> b \<noteq> \<infinity>) \<or> (b = -\<infinity> \<and> a \<noteq> \<infinity>)" | 
| 43920 | 2151 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2152 | |
| 43920 | 2153 | lemma ereal_less_divide_pos: | 
| 43923 | 2154 | fixes x y :: ereal | 
| 2155 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y < z / x \<longleftrightarrow> x * y < z" | |
| 43920 | 2156 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 2157 | |
| 43920 | 2158 | lemma ereal_divide_less_pos: | 
| 43923 | 2159 | fixes x y z :: ereal | 
| 2160 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y / x < z \<longleftrightarrow> y < x * z" | |
| 43920 | 2161 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 2162 | |
| 43920 | 2163 | lemma ereal_divide_eq: | 
| 43923 | 2164 | fixes a b c :: ereal | 
| 2165 | shows "b \<noteq> 0 \<Longrightarrow> \<bar>b\<bar> \<noteq> \<infinity> \<Longrightarrow> a / b = c \<longleftrightarrow> a = b * c" | |
| 43920 | 2166 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 2167 | (simp_all add: field_simps) | 
| 2168 | ||
| 43923 | 2169 | lemma ereal_inverse_not_MInfty[simp]: "inverse (a::ereal) \<noteq> -\<infinity>" | 
| 41973 | 2170 | by (cases a) auto | 
| 2171 | ||
| 43920 | 2172 | lemma ereal_mult_m1[simp]: "x * ereal (-1) = -x" | 
| 41973 | 2173 | by (cases x) auto | 
| 2174 | ||
| 43920 | 2175 | lemma ereal_LimI_finite: | 
| 43923 | 2176 | fixes x :: ereal | 
| 41976 | 2177 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | 
| 41973 | 2178 | assumes "!!r. 0 < r ==> EX N. ALL n>=N. u n < x + r & x < u n + r" | 
| 2179 | shows "u ----> x" | |
| 2180 | proof (rule topological_tendstoI, unfold eventually_sequentially) | |
| 43920 | 2181 | obtain rx where rx_def: "x=ereal rx" using assms by (cases x) auto | 
| 41973 | 2182 | fix S assume "open S" "x : S" | 
| 43920 | 2183 | then have "open (ereal -` S)" unfolding open_ereal_def by auto | 
| 2184 | with `x \<in> S` obtain r where "0 < r" and dist: "!!y. dist y rx < r ==> ereal y \<in> S" | |
| 41975 | 2185 | unfolding open_real_def rx_def by auto | 
| 41973 | 2186 | then obtain n where | 
| 43920 | 2187 | upper: "!!N. n <= N ==> u N < x + ereal r" and | 
| 2188 | lower: "!!N. n <= N ==> x < u N + ereal r" using assms(2)[of "ereal r"] by auto | |
| 41973 | 2189 | show "EX N. ALL n>=N. u n : S" | 
| 2190 | proof (safe intro!: exI[of _ n]) | |
| 2191 | fix N assume "n <= N" | |
| 2192 | from upper[OF this] lower[OF this] assms `0 < r` | |
| 2193 |     have "u N ~: {\<infinity>,(-\<infinity>)}" by auto
 | |
| 47082 | 2194 | then obtain ra where ra_def: "(u N) = ereal ra" by (cases "u N") auto | 
| 41973 | 2195 | hence "rx < ra + r" and "ra < rx + r" | 
| 2196 | using rx_def assms `0 < r` lower[OF `n <= N`] upper[OF `n <= N`] by auto | |
| 41975 | 2197 | hence "dist (real (u N)) rx < r" | 
| 41973 | 2198 | using rx_def ra_def | 
| 2199 | by (auto simp: dist_real_def abs_diff_less_iff field_simps) | |
| 41976 | 2200 |     from dist[OF this] show "u N : S" using `u N  ~: {\<infinity>, -\<infinity>}`
 | 
| 43920 | 2201 | by (auto simp: ereal_real split: split_if_asm) | 
| 41973 | 2202 | qed | 
| 2203 | qed | |
| 2204 | ||
| 43920 | 2205 | lemma ereal_LimI_finite_iff: | 
| 43923 | 2206 | fixes x :: ereal | 
| 41976 | 2207 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | 
| 41973 | 2208 | shows "u ----> x <-> (ALL r. 0 < r --> (EX N. ALL n>=N. u n < x + r & x < u n + r))" | 
| 2209 | (is "?lhs <-> ?rhs") | |
| 41976 | 2210 | proof | 
| 2211 | assume lim: "u ----> x" | |
| 43920 | 2212 |   { fix r assume "(r::ereal)>0"
 | 
| 47082 | 2213 |     then obtain N where N_def: "ALL n>=N. u n : {x - r <..< x + r}"
 | 
| 41973 | 2214 |        apply (subst tendsto_obtains_N[of u x "{x - r <..< x + r}"])
 | 
| 43920 | 2215 | using lim ereal_between[of x r] assms `r>0` by auto | 
| 41973 | 2216 | hence "EX N. ALL n>=N. u n < x + r & x < u n + r" | 
| 43920 | 2217 | using ereal_minus_less[of r x] by (cases r) auto | 
| 41976 | 2218 | } then show "?rhs" by auto | 
| 2219 | next | |
| 2220 | assume ?rhs then show "u ----> x" | |
| 43920 | 2221 | using ereal_LimI_finite[of x] assms by auto | 
| 41973 | 2222 | qed | 
| 2223 | ||
| 2224 | ||
| 2225 | subsubsection {* @{text Liminf} and @{text Limsup} *}
 | |
| 2226 | ||
| 2227 | definition | |
| 2228 | "Liminf net f = (GREATEST l. \<forall>y<l. eventually (\<lambda>x. y < f x) net)" | |
| 2229 | ||
| 2230 | definition | |
| 2231 | "Limsup net f = (LEAST l. \<forall>y>l. eventually (\<lambda>x. f x < y) net)" | |
| 2232 | ||
| 2233 | lemma Liminf_Sup: | |
| 43941 | 2234 | fixes f :: "'a => 'b::complete_linorder" | 
| 41973 | 2235 |   shows "Liminf net f = Sup {l. \<forall>y<l. eventually (\<lambda>x. y < f x) net}"
 | 
| 2236 | by (auto intro!: Greatest_equality complete_lattice_class.Sup_upper simp: less_Sup_iff Liminf_def) | |
| 2237 | ||
| 2238 | lemma Limsup_Inf: | |
| 43941 | 2239 | fixes f :: "'a => 'b::complete_linorder" | 
| 41973 | 2240 |   shows "Limsup net f = Inf {l. \<forall>y>l. eventually (\<lambda>x. f x < y) net}"
 | 
| 2241 | by (auto intro!: Least_equality complete_lattice_class.Inf_lower simp: Inf_less_iff Limsup_def) | |
| 2242 | ||
| 43920 | 2243 | lemma ereal_SupI: | 
| 2244 | fixes x :: ereal | |
| 41973 | 2245 | assumes "\<And>y. y \<in> A \<Longrightarrow> y \<le> x" | 
| 2246 | assumes "\<And>y. (\<And>z. z \<in> A \<Longrightarrow> z \<le> y) \<Longrightarrow> x \<le> y" | |
| 2247 | shows "Sup A = x" | |
| 43920 | 2248 | unfolding Sup_ereal_def | 
| 41973 | 2249 | using assms by (auto intro!: Least_equality) | 
| 2250 | ||
| 43920 | 2251 | lemma ereal_InfI: | 
| 2252 | fixes x :: ereal | |
| 41973 | 2253 | assumes "\<And>i. i \<in> A \<Longrightarrow> x \<le> i" | 
| 2254 | assumes "\<And>y. (\<And>i. i \<in> A \<Longrightarrow> y \<le> i) \<Longrightarrow> y \<le> x" | |
| 2255 | shows "Inf A = x" | |
| 43920 | 2256 | unfolding Inf_ereal_def | 
| 41973 | 2257 | using assms by (auto intro!: Greatest_equality) | 
| 2258 | ||
| 2259 | lemma Limsup_const: | |
| 43941 | 2260 | fixes c :: "'a::complete_linorder" | 
| 41973 | 2261 | assumes ntriv: "\<not> trivial_limit net" | 
| 2262 | shows "Limsup net (\<lambda>x. c) = c" | |
| 2263 | unfolding Limsup_Inf | |
| 2264 | proof (safe intro!: antisym complete_lattice_class.Inf_greatest complete_lattice_class.Inf_lower) | |
| 2265 | fix x assume *: "\<forall>y>x. eventually (\<lambda>_. c < y) net" | |
| 2266 | show "c \<le> x" | |
| 2267 | proof (rule ccontr) | |
| 2268 | assume "\<not> c \<le> x" then have "x < c" by auto | |
| 2269 | then show False using ntriv * by (auto simp: trivial_limit_def) | |
| 2270 | qed | |
| 2271 | qed auto | |
| 2272 | ||
| 2273 | lemma Liminf_const: | |
| 43941 | 2274 | fixes c :: "'a::complete_linorder" | 
| 41973 | 2275 | assumes ntriv: "\<not> trivial_limit net" | 
| 2276 | shows "Liminf net (\<lambda>x. c) = c" | |
| 2277 | unfolding Liminf_Sup | |
| 2278 | proof (safe intro!: antisym complete_lattice_class.Sup_least complete_lattice_class.Sup_upper) | |
| 2279 | fix x assume *: "\<forall>y<x. eventually (\<lambda>_. y < c) net" | |
| 2280 | show "x \<le> c" | |
| 2281 | proof (rule ccontr) | |
| 2282 | assume "\<not> x \<le> c" then have "c < x" by auto | |
| 2283 | then show False using ntriv * by (auto simp: trivial_limit_def) | |
| 2284 | qed | |
| 2285 | qed auto | |
| 2286 | ||
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44142diff
changeset | 2287 | definition (in order) mono_set: | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44142diff
changeset | 2288 | "mono_set S \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> x \<in> S \<longrightarrow> y \<in> S)" | 
| 41973 | 2289 | |
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44142diff
changeset | 2290 | lemma (in order) mono_greaterThan [intro, simp]: "mono_set {B<..}" unfolding mono_set by auto
 | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44142diff
changeset | 2291 | lemma (in order) mono_atLeast [intro, simp]: "mono_set {B..}" unfolding mono_set by auto
 | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44142diff
changeset | 2292 | lemma (in order) mono_UNIV [intro, simp]: "mono_set UNIV" unfolding mono_set by auto | 
| 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44142diff
changeset | 2293 | lemma (in order) mono_empty [intro, simp]: "mono_set {}" unfolding mono_set by auto
 | 
| 41973 | 2294 | |
| 43941 | 2295 | lemma (in complete_linorder) mono_set_iff: | 
| 2296 | fixes S :: "'a set" | |
| 41973 | 2297 | defines "a \<equiv> Inf S" | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44142diff
changeset | 2298 |   shows "mono_set S \<longleftrightarrow> (S = {a <..} \<or> S = {a..})" (is "_ = ?c")
 | 
| 41973 | 2299 | proof | 
| 44170 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 huffman parents: 
44142diff
changeset | 2300 | assume "mono_set S" | 
| 41973 | 2301 | then have mono: "\<And>x y. x \<le> y \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S" by (auto simp: mono_set) | 
| 2302 | show ?c | |
| 2303 | proof cases | |
| 2304 | assume "a \<in> S" | |
| 2305 | show ?c | |
| 2306 | using mono[OF _ `a \<in> S`] | |
| 43941 | 2307 | by (auto intro: Inf_lower simp: a_def) | 
| 41973 | 2308 | next | 
| 2309 | assume "a \<notin> S" | |
| 2310 |     have "S = {a <..}"
 | |
| 2311 | proof safe | |
| 2312 | fix x assume "x \<in> S" | |
| 43941 | 2313 | then have "a \<le> x" unfolding a_def by (rule Inf_lower) | 
| 41973 | 2314 | then show "a < x" using `x \<in> S` `a \<notin> S` by (cases "a = x") auto | 
| 2315 | next | |
| 2316 | fix x assume "a < x" | |
| 2317 | then obtain y where "y < x" "y \<in> S" unfolding a_def Inf_less_iff .. | |
| 2318 | with mono[of y x] show "x \<in> S" by auto | |
| 2319 | qed | |
| 2320 | then show ?c .. | |
| 2321 | qed | |
| 2322 | qed auto | |
| 2323 | ||
| 2324 | lemma lim_imp_Liminf: | |
| 43920 | 2325 | fixes f :: "'a \<Rightarrow> ereal" | 
| 41973 | 2326 | assumes ntriv: "\<not> trivial_limit net" | 
| 2327 | assumes lim: "(f ---> f0) net" | |
| 2328 | shows "Liminf net f = f0" | |
| 2329 | unfolding Liminf_Sup | |
| 43920 | 2330 | proof (safe intro!: ereal_SupI) | 
| 41973 | 2331 | fix y assume *: "\<forall>y'<y. eventually (\<lambda>x. y' < f x) net" | 
| 2332 | show "y \<le> f0" | |
| 43920 | 2333 | proof (rule ereal_le_ereal) | 
| 41973 | 2334 | fix B assume "B < y" | 
| 2335 |     { assume "f0 < B"
 | |
| 2336 | then have "eventually (\<lambda>x. f x < B \<and> B < f x) net" | |
| 2337 |          using topological_tendstoD[OF lim, of "{..<B}"] *[rule_format, OF `B < y`]
 | |
| 2338 | by (auto intro: eventually_conj) | |
| 2339 | also have "(\<lambda>x. f x < B \<and> B < f x) = (\<lambda>x. False)" by (auto simp: fun_eq_iff) | |
| 2340 | finally have False using ntriv[unfolded trivial_limit_def] by auto | |
| 2341 | } then show "B \<le> f0" by (metis linorder_le_less_linear) | |
| 2342 | qed | |
| 2343 | next | |
| 2344 |   fix y assume *: "\<forall>z. z \<in> {l. \<forall>y<l. eventually (\<lambda>x. y < f x) net} \<longrightarrow> z \<le> y"
 | |
| 2345 | show "f0 \<le> y" | |
| 2346 | proof (safe intro!: *[rule_format]) | |
| 2347 | fix y assume "y < f0" then show "eventually (\<lambda>x. y < f x) net" | |
| 2348 |       using lim[THEN topological_tendstoD, of "{y <..}"] by auto
 | |
| 2349 | qed | |
| 2350 | qed | |
| 2351 | ||
| 43920 | 2352 | lemma ereal_Liminf_le_Limsup: | 
| 2353 | fixes f :: "'a \<Rightarrow> ereal" | |
| 41973 | 2354 | assumes ntriv: "\<not> trivial_limit net" | 
| 2355 | shows "Liminf net f \<le> Limsup net f" | |
| 2356 | unfolding Limsup_Inf Liminf_Sup | |
| 2357 | proof (safe intro!: complete_lattice_class.Inf_greatest complete_lattice_class.Sup_least) | |
| 2358 | fix u v assume *: "\<forall>y<u. eventually (\<lambda>x. y < f x) net" "\<forall>y>v. eventually (\<lambda>x. f x < y) net" | |
| 2359 | show "u \<le> v" | |
| 2360 | proof (rule ccontr) | |
| 2361 | assume "\<not> u \<le> v" | |
| 2362 | then obtain t where "t < u" "v < t" | |
| 43920 | 2363 | using ereal_dense[of v u] by (auto simp: not_le) | 
| 41973 | 2364 | then have "eventually (\<lambda>x. t < f x \<and> f x < t) net" | 
| 2365 | using * by (auto intro: eventually_conj) | |
| 2366 | also have "(\<lambda>x. t < f x \<and> f x < t) = (\<lambda>x. False)" by (auto simp: fun_eq_iff) | |
| 2367 | finally show False using ntriv by (auto simp: trivial_limit_def) | |
| 2368 | qed | |
| 2369 | qed | |
| 2370 | ||
| 2371 | lemma Liminf_mono: | |
| 43920 | 2372 | fixes f g :: "'a => ereal" | 
| 41973 | 2373 | assumes ev: "eventually (\<lambda>x. f x \<le> g x) net" | 
| 2374 | shows "Liminf net f \<le> Liminf net g" | |
| 2375 | unfolding Liminf_Sup | |
| 2376 | proof (safe intro!: Sup_mono bexI) | |
| 2377 | fix a y assume "\<forall>y<a. eventually (\<lambda>x. y < f x) net" and "y < a" | |
| 2378 | then have "eventually (\<lambda>x. y < f x) net" by auto | |
| 2379 | then show "eventually (\<lambda>x. y < g x) net" | |
| 2380 | by (rule eventually_rev_mp) (rule eventually_mono[OF _ ev], auto) | |
| 2381 | qed simp | |
| 2382 | ||
| 2383 | lemma Liminf_eq: | |
| 43920 | 2384 | fixes f g :: "'a \<Rightarrow> ereal" | 
| 41973 | 2385 | assumes "eventually (\<lambda>x. f x = g x) net" | 
| 2386 | shows "Liminf net f = Liminf net g" | |
| 2387 | by (intro antisym Liminf_mono eventually_mono[OF _ assms]) auto | |
| 2388 | ||
| 2389 | lemma Liminf_mono_all: | |
| 43920 | 2390 | fixes f g :: "'a \<Rightarrow> ereal" | 
| 41973 | 2391 | assumes "\<And>x. f x \<le> g x" | 
| 2392 | shows "Liminf net f \<le> Liminf net g" | |
| 2393 | using assms by (intro Liminf_mono always_eventually) auto | |
| 2394 | ||
| 2395 | lemma Limsup_mono: | |
| 43920 | 2396 | fixes f g :: "'a \<Rightarrow> ereal" | 
| 41973 | 2397 | assumes ev: "eventually (\<lambda>x. f x \<le> g x) net" | 
| 2398 | shows "Limsup net f \<le> Limsup net g" | |
| 2399 | unfolding Limsup_Inf | |
| 2400 | proof (safe intro!: Inf_mono bexI) | |
| 2401 | fix a y assume "\<forall>y>a. eventually (\<lambda>x. g x < y) net" and "a < y" | |
| 2402 | then have "eventually (\<lambda>x. g x < y) net" by auto | |
| 2403 | then show "eventually (\<lambda>x. f x < y) net" | |
| 2404 | by (rule eventually_rev_mp) (rule eventually_mono[OF _ ev], auto) | |
| 2405 | qed simp | |
| 2406 | ||
| 2407 | lemma Limsup_mono_all: | |
| 43920 | 2408 | fixes f g :: "'a \<Rightarrow> ereal" | 
| 41973 | 2409 | assumes "\<And>x. f x \<le> g x" | 
| 2410 | shows "Limsup net f \<le> Limsup net g" | |
| 2411 | using assms by (intro Limsup_mono always_eventually) auto | |
| 2412 | ||
| 2413 | lemma Limsup_eq: | |
| 43920 | 2414 | fixes f g :: "'a \<Rightarrow> ereal" | 
| 41973 | 2415 | assumes "eventually (\<lambda>x. f x = g x) net" | 
| 2416 | shows "Limsup net f = Limsup net g" | |
| 2417 | by (intro antisym Limsup_mono eventually_mono[OF _ assms]) auto | |
| 2418 | ||
| 2419 | abbreviation "liminf \<equiv> Liminf sequentially" | |
| 2420 | ||
| 2421 | abbreviation "limsup \<equiv> Limsup sequentially" | |
| 2422 | ||
| 2423 | lemma liminf_SUPR_INFI: | |
| 43920 | 2424 | fixes f :: "nat \<Rightarrow> ereal" | 
| 41973 | 2425 |   shows "liminf f = (SUP n. INF m:{n..}. f m)"
 | 
| 2426 | unfolding Liminf_Sup eventually_sequentially | |
| 2427 | proof (safe intro!: antisym complete_lattice_class.Sup_least) | |
| 2428 |   fix x assume *: "\<forall>y<x. \<exists>N. \<forall>n\<ge>N. y < f n" show "x \<le> (SUP n. INF m:{n..}. f m)"
 | |
| 43920 | 2429 | proof (rule ereal_le_ereal) | 
| 41973 | 2430 | fix y assume "y < x" | 
| 2431 | with * obtain N where "\<And>n. N \<le> n \<Longrightarrow> y < f n" by auto | |
| 2432 |     then have "y \<le> (INF m:{N..}. f m)" by (force simp: le_INF_iff)
 | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 2433 |     also have "\<dots> \<le> (SUP n. INF m:{n..}. f m)" by (intro SUP_upper) auto
 | 
| 41973 | 2434 |     finally show "y \<le> (SUP n. INF m:{n..}. f m)" .
 | 
| 2435 | qed | |
| 2436 | next | |
| 2437 |   show "(SUP n. INF m:{n..}. f m) \<le> Sup {l. \<forall>y<l. \<exists>N. \<forall>n\<ge>N. y < f n}"
 | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 2438 | proof (unfold SUP_def, safe intro!: Sup_mono bexI) | 
| 41973 | 2439 |     fix y n assume "y < INFI {n..} f"
 | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 2440 | from less_INF_D[OF this] show "\<exists>N. \<forall>n\<ge>N. y < f n" by (intro exI[of _ n]) auto | 
| 41973 | 2441 | qed (rule order_refl) | 
| 2442 | qed | |
| 2443 | ||
| 2444 | lemma tail_same_limsup: | |
| 43920 | 2445 | fixes X Y :: "nat => ereal" | 
| 41973 | 2446 | assumes "\<And>n. N \<le> n \<Longrightarrow> X n = Y n" | 
| 2447 | shows "limsup X = limsup Y" | |
| 2448 | using Limsup_eq[of X Y sequentially] eventually_sequentially assms by auto | |
| 2449 | ||
| 2450 | lemma tail_same_liminf: | |
| 43920 | 2451 | fixes X Y :: "nat => ereal" | 
| 41973 | 2452 | assumes "\<And>n. N \<le> n \<Longrightarrow> X n = Y n" | 
| 2453 | shows "liminf X = liminf Y" | |
| 2454 | using Liminf_eq[of X Y sequentially] eventually_sequentially assms by auto | |
| 2455 | ||
| 2456 | lemma liminf_mono: | |
| 43920 | 2457 | fixes X Y :: "nat \<Rightarrow> ereal" | 
| 41973 | 2458 | assumes "\<And>n. N \<le> n \<Longrightarrow> X n <= Y n" | 
| 2459 | shows "liminf X \<le> liminf Y" | |
| 2460 | using Liminf_mono[of X Y sequentially] eventually_sequentially assms by auto | |
| 2461 | ||
| 2462 | lemma limsup_mono: | |
| 43920 | 2463 | fixes X Y :: "nat => ereal" | 
| 41973 | 2464 | assumes "\<And>n. N \<le> n \<Longrightarrow> X n <= Y n" | 
| 2465 | shows "limsup X \<le> limsup Y" | |
| 2466 | using Limsup_mono[of X Y sequentially] eventually_sequentially assms by auto | |
| 2467 | ||
| 41978 | 2468 | lemma | 
| 43920 | 2469 | fixes X :: "nat \<Rightarrow> ereal" | 
| 2470 | shows ereal_incseq_uminus[simp]: "incseq (\<lambda>i. - X i) = decseq X" | |
| 2471 | and ereal_decseq_uminus[simp]: "decseq (\<lambda>i. - X i) = incseq X" | |
| 41978 | 2472 | unfolding incseq_def decseq_def by auto | 
| 2473 | ||
| 41973 | 2474 | lemma liminf_bounded: | 
| 43920 | 2475 | fixes X Y :: "nat \<Rightarrow> ereal" | 
| 41973 | 2476 | assumes "\<And>n. N \<le> n \<Longrightarrow> C \<le> X n" | 
| 2477 | shows "C \<le> liminf X" | |
| 2478 | using liminf_mono[of N "\<lambda>n. C" X] assms Liminf_const[of sequentially C] by simp | |
| 2479 | ||
| 2480 | lemma limsup_bounded: | |
| 43920 | 2481 | fixes X Y :: "nat => ereal" | 
| 41973 | 2482 | assumes "\<And>n. N \<le> n \<Longrightarrow> X n <= C" | 
| 2483 | shows "limsup X \<le> C" | |
| 2484 | using limsup_mono[of N X "\<lambda>n. C"] assms Limsup_const[of sequentially C] by simp | |
| 2485 | ||
| 2486 | lemma liminf_bounded_iff: | |
| 43920 | 2487 | fixes x :: "nat \<Rightarrow> ereal" | 
| 41973 | 2488 | shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)" (is "?lhs <-> ?rhs") | 
| 2489 | proof safe | |
| 2490 | fix B assume "B < C" "C \<le> liminf x" | |
| 2491 | then have "B < liminf x" by auto | |
| 2492 |   then obtain N where "B < (INF m:{N..}. x m)"
 | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 2493 | unfolding liminf_SUPR_INFI SUP_def less_Sup_iff by auto | 
| 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 2494 | from less_INF_D[OF this] show "\<exists>N. \<forall>n\<ge>N. B < x n" by auto | 
| 41973 | 2495 | next | 
| 2496 | assume *: "\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n" | |
| 2497 |   { fix B assume "B<C"
 | |
| 2498 | then obtain N where "\<forall>n\<ge>N. B < x n" using `?rhs` by auto | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 2499 |     hence "B \<le> (INF m:{N..}. x m)" by (intro INF_greatest) auto
 | 
| 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 2500 | also have "... \<le> liminf x" unfolding liminf_SUPR_INFI by (intro SUP_upper) simp | 
| 41973 | 2501 | finally have "B \<le> liminf x" . | 
| 2502 | } then show "?lhs" by (metis * leD liminf_bounded linorder_le_less_linear) | |
| 2503 | qed | |
| 2504 | ||
| 2505 | lemma liminf_subseq_mono: | |
| 43920 | 2506 | fixes X :: "nat \<Rightarrow> ereal" | 
| 41973 | 2507 | assumes "subseq r" | 
| 2508 | shows "liminf X \<le> liminf (X \<circ> r) " | |
| 2509 | proof- | |
| 2510 |   have "\<And>n. (INF m:{n..}. X m) \<le> (INF m:{n..}. (X \<circ> r) m)"
 | |
| 2511 | proof (safe intro!: INF_mono) | |
| 2512 |     fix n m :: nat assume "n \<le> m" then show "\<exists>ma\<in>{n..}. X ma \<le> (X \<circ> r) m"
 | |
| 2513 | using seq_suble[OF `subseq r`, of m] by (intro bexI[of _ "r m"]) auto | |
| 2514 | qed | |
| 2515 | then show ?thesis by (auto intro!: SUP_mono simp: liminf_SUPR_INFI comp_def) | |
| 2516 | qed | |
| 2517 | ||
| 43920 | 2518 | lemma ereal_real': assumes "\<bar>x\<bar> \<noteq> \<infinity>" shows "ereal (real x) = x" | 
| 41976 | 2519 | using assms by auto | 
| 41973 | 2520 | |
| 43920 | 2521 | lemma ereal_le_ereal_bounded: | 
| 2522 | fixes x y z :: ereal | |
| 41978 | 2523 | assumes "z \<le> y" | 
| 2524 | assumes *: "\<And>B. z < B \<Longrightarrow> B < x \<Longrightarrow> B \<le> y" | |
| 2525 | shows "x \<le> y" | |
| 43920 | 2526 | proof (rule ereal_le_ereal) | 
| 41978 | 2527 | fix B assume "B < x" | 
| 2528 | show "B \<le> y" | |
| 2529 | proof cases | |
| 2530 | assume "z < B" from *[OF this `B < x`] show "B \<le> y" . | |
| 41976 | 2531 | next | 
| 41978 | 2532 | assume "\<not> z < B" with `z \<le> y` show "B \<le> y" by auto | 
| 41976 | 2533 | qed | 
| 41973 | 2534 | qed | 
| 2535 | ||
| 43920 | 2536 | lemma fixes x y :: ereal | 
| 41978 | 2537 |   shows Sup_atMost[simp]: "Sup {.. y} = y"
 | 
| 2538 |     and Sup_lessThan[simp]: "Sup {..< y} = y"
 | |
| 2539 |     and Sup_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Sup { x .. y} = y"
 | |
| 2540 |     and Sup_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Sup { x <.. y} = y"
 | |
| 2541 |     and Sup_atLeastLessThan[simp]: "x < y \<Longrightarrow> Sup { x ..< y} = y"
 | |
| 43920 | 2542 | by (auto simp: Sup_ereal_def intro!: Least_equality | 
| 2543 | intro: ereal_le_ereal ereal_le_ereal_bounded[of x]) | |
| 41978 | 2544 | |
| 2545 | lemma Sup_greaterThanlessThan[simp]: | |
| 43920 | 2546 |   fixes x y :: ereal assumes "x < y" shows "Sup { x <..< y} = y"
 | 
| 2547 | unfolding Sup_ereal_def | |
| 2548 | proof (intro Least_equality ereal_le_ereal_bounded[of _ _ y]) | |
| 41978 | 2549 |   fix z assume z: "\<forall>u\<in>{x<..<y}. u \<le> z"
 | 
| 43920 | 2550 | from ereal_dense[OF `x < y`] guess w .. note w = this | 
| 41978 | 2551 | with z[THEN bspec, of w] show "x \<le> z" by auto | 
| 2552 | qed auto | |
| 2553 | ||
| 43920 | 2554 | lemma real_ereal_id: "real o ereal = id" | 
| 41973 | 2555 | proof- | 
| 47082 | 2556 |   { fix x have "(real o ereal) x = id x" by auto }
 | 
| 2557 | then show ?thesis using ext by blast | |
| 41973 | 2558 | qed | 
| 2559 | ||
| 43923 | 2560 | lemma open_image_ereal: "open(UNIV-{ \<infinity> , (-\<infinity> :: ereal)})"
 | 
| 43920 | 2561 | by (metis range_ereal open_ereal open_UNIV) | 
| 41973 | 2562 | |
| 43920 | 2563 | lemma ereal_le_distrib: | 
| 2564 | fixes a b c :: ereal shows "c * (a + b) \<le> c * a + c * b" | |
| 2565 | by (cases rule: ereal3_cases[of a b c]) | |
| 41973 | 2566 | (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff) | 
| 2567 | ||
| 43920 | 2568 | lemma ereal_pos_distrib: | 
| 2569 | fixes a b c :: ereal assumes "0 \<le> c" "c \<noteq> \<infinity>" shows "c * (a + b) = c * a + c * b" | |
| 2570 | using assms by (cases rule: ereal3_cases[of a b c]) | |
| 41973 | 2571 | (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff) | 
| 2572 | ||
| 43920 | 2573 | lemma ereal_pos_le_distrib: | 
| 2574 | fixes a b c :: ereal | |
| 41973 | 2575 | assumes "c>=0" | 
| 2576 | shows "c * (a + b) <= c * a + c * b" | |
| 43920 | 2577 | using assms by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 2578 | (auto simp add: field_simps) | 
| 2579 | ||
| 43920 | 2580 | lemma ereal_max_mono: | 
| 2581 | "[| (a::ereal) <= b; c <= d |] ==> max a c <= max b d" | |
| 2582 | by (metis sup_ereal_def sup_mono) | |
| 41973 | 2583 | |
| 2584 | ||
| 43920 | 2585 | lemma ereal_max_least: | 
| 2586 | "[| (a::ereal) <= x; c <= x |] ==> max a c <= x" | |
| 2587 | by (metis sup_ereal_def sup_least) | |
| 41973 | 2588 | |
| 43933 | 2589 | subsubsection {* Tests for code generator *}
 | 
| 2590 | ||
| 2591 | (* A small list of simple arithmetic expressions *) | |
| 2592 | ||
| 2593 | value [code] "- \<infinity> :: ereal" | |
| 2594 | value [code] "\<bar>-\<infinity>\<bar> :: ereal" | |
| 2595 | value [code] "4 + 5 / 4 - ereal 2 :: ereal" | |
| 2596 | value [code] "ereal 3 < \<infinity>" | |
| 2597 | value [code] "real (\<infinity>::ereal) = 0" | |
| 2598 | ||
| 41973 | 2599 | end |