| author | wenzelm | 
| Mon, 02 Jun 2008 22:50:27 +0200 | |
| changeset 27041 | 22dcf2fc0aa2 | 
| parent 26985 | 51c5acd57b75 | 
| child 27045 | 4e7ecec1b685 | 
| permissions | -rw-r--r-- | 
| 26840 | 1  | 
(* $Id$ *)  | 
2  | 
||
3  | 
theory HOL_Specific  | 
|
| 26849 | 4  | 
imports Main  | 
| 26840 | 5  | 
begin  | 
6  | 
||
| 26852 | 7  | 
chapter {* Isabelle/HOL \label{ch:hol} *}
 | 
| 26849 | 8  | 
|
9  | 
section {* Primitive types \label{sec:hol-typedef} *}
 | 
|
10  | 
||
11  | 
text {*
 | 
|
12  | 
  \begin{matharray}{rcl}
 | 
|
13  | 
    @{command_def (HOL) "typedecl"} & : & \isartrans{theory}{theory} \\
 | 
|
14  | 
    @{command_def (HOL) "typedef"} & : & \isartrans{theory}{proof(prove)} \\
 | 
|
15  | 
  \end{matharray}
 | 
|
16  | 
||
17  | 
  \begin{rail}
 | 
|
18  | 
'typedecl' typespec infix?  | 
|
19  | 
;  | 
|
20  | 
'typedef' altname? abstype '=' repset  | 
|
21  | 
;  | 
|
22  | 
||
23  | 
    altname: '(' (name | 'open' | 'open' name) ')'
 | 
|
24  | 
;  | 
|
25  | 
abstype: typespec infix?  | 
|
26  | 
;  | 
|
27  | 
    repset: term ('morphisms' name name)?
 | 
|
28  | 
;  | 
|
29  | 
  \end{rail}
 | 
|
30  | 
||
31  | 
  \begin{descr}
 | 
|
32  | 
||
33  | 
  \item [@{command (HOL) "typedecl"}~@{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>n)
 | 
|
34  | 
  t"}] is similar to the original @{command "typedecl"} of
 | 
|
35  | 
  Isabelle/Pure (see \secref{sec:types-pure}), but also declares type
 | 
|
36  | 
  arity @{text "t :: (type, \<dots>, type) type"}, making @{text t} an
 | 
|
37  | 
actual HOL type constructor. %FIXME check, update  | 
|
38  | 
||
39  | 
  \item [@{command (HOL) "typedef"}~@{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>n)
 | 
|
40  | 
  t = A"}] sets up a goal stating non-emptiness of the set @{text A}.
 | 
|
41  | 
After finishing the proof, the theory will be augmented by a  | 
|
42  | 
Gordon/HOL-style type definition, which establishes a bijection  | 
|
43  | 
  between the representing set @{text A} and the new type @{text t}.
 | 
|
44  | 
||
45  | 
  Technically, @{command (HOL) "typedef"} defines both a type @{text
 | 
|
46  | 
t} and a set (term constant) of the same name (an alternative base  | 
|
47  | 
name may be given in parentheses). The injection from type to set  | 
|
48  | 
  is called @{text Rep_t}, its inverse @{text Abs_t} (this may be
 | 
|
49  | 
  changed via an explicit @{keyword (HOL) "morphisms"} declaration).
 | 
|
50  | 
||
51  | 
  Theorems @{text Rep_t}, @{text Rep_t_inverse}, and @{text
 | 
|
52  | 
Abs_t_inverse} provide the most basic characterization as a  | 
|
53  | 
corresponding injection/surjection pair (in both directions). Rules  | 
|
54  | 
  @{text Rep_t_inject} and @{text Abs_t_inject} provide a slightly
 | 
|
55  | 
more convenient view on the injectivity part, suitable for automated  | 
|
| 26894 | 56  | 
  proof tools (e.g.\ in @{attribute simp} or @{attribute iff}
 | 
57  | 
  declarations).  Rules @{text Rep_t_cases}/@{text Rep_t_induct}, and
 | 
|
58  | 
  @{text Abs_t_cases}/@{text Abs_t_induct} provide alternative views
 | 
|
59  | 
on surjectivity; these are already declared as set or type rules for  | 
|
| 26849 | 60  | 
  the generic @{method cases} and @{method induct} methods.
 | 
61  | 
||
62  | 
An alternative name may be specified in parentheses; the default is  | 
|
63  | 
  to use @{text t} as indicated before.  The ``@{text "(open)"}''
 | 
|
64  | 
declaration suppresses a separate constant definition for the  | 
|
65  | 
representing set.  | 
|
66  | 
||
67  | 
  \end{descr}
 | 
|
68  | 
||
69  | 
Note that raw type declarations are rarely used in practice; the  | 
|
70  | 
main application is with experimental (or even axiomatic!) theory  | 
|
71  | 
fragments. Instead of primitive HOL type definitions, user-level  | 
|
72  | 
  theories usually refer to higher-level packages such as @{command
 | 
|
73  | 
  (HOL) "record"} (see \secref{sec:hol-record}) or @{command (HOL)
 | 
|
74  | 
  "datatype"} (see \secref{sec:hol-datatype}).
 | 
|
75  | 
*}  | 
|
76  | 
||
77  | 
||
78  | 
section {* Adhoc tuples *}
 | 
|
79  | 
||
80  | 
text {*
 | 
|
81  | 
  \begin{matharray}{rcl}
 | 
|
82  | 
    @{attribute (HOL) split_format}@{text "\<^sup>*"} & : & \isaratt \\
 | 
|
83  | 
  \end{matharray}
 | 
|
84  | 
||
85  | 
  \begin{rail}
 | 
|
86  | 
    'split\_format' (((name *) + 'and') | ('(' 'complete' ')'))
 | 
|
87  | 
;  | 
|
88  | 
  \end{rail}
 | 
|
89  | 
||
90  | 
  \begin{descr}
 | 
|
91  | 
||
| 26894 | 92  | 
  \item [@{attribute (HOL) split_format}~@{text "p\<^sub>1 \<dots> p\<^sub>m
 | 
| 26849 | 93  | 
\<AND> \<dots> \<AND> q\<^sub>1 \<dots> q\<^sub>n"}] puts expressions of  | 
94  | 
low-level tuple types into canonical form as specified by the  | 
|
95  | 
  arguments given; the @{text i}-th collection of arguments refers to
 | 
|
96  | 
  occurrences in premise @{text i} of the rule.  The ``@{text
 | 
|
97  | 
  "(complete)"}'' option causes \emph{all} arguments in function
 | 
|
98  | 
applications to be represented canonically according to their tuple  | 
|
99  | 
type structure.  | 
|
100  | 
||
101  | 
Note that these operations tend to invent funny names for new local  | 
|
102  | 
parameters to be introduced.  | 
|
103  | 
||
104  | 
  \end{descr}
 | 
|
105  | 
*}  | 
|
106  | 
||
107  | 
||
108  | 
section {* Records \label{sec:hol-record} *}
 | 
|
109  | 
||
110  | 
text {*
 | 
|
111  | 
In principle, records merely generalize the concept of tuples, where  | 
|
112  | 
components may be addressed by labels instead of just position. The  | 
|
113  | 
logical infrastructure of records in Isabelle/HOL is slightly more  | 
|
114  | 
advanced, though, supporting truly extensible record schemes. This  | 
|
115  | 
admits operations that are polymorphic with respect to record  | 
|
116  | 
extension, yielding ``object-oriented'' effects like (single)  | 
|
117  | 
  inheritance.  See also \cite{NaraschewskiW-TPHOLs98} for more
 | 
|
118  | 
details on object-oriented verification and record subtyping in HOL.  | 
|
119  | 
*}  | 
|
120  | 
||
121  | 
||
122  | 
subsection {* Basic concepts *}
 | 
|
123  | 
||
124  | 
text {*
 | 
|
125  | 
  Isabelle/HOL supports both \emph{fixed} and \emph{schematic} records
 | 
|
126  | 
at the level of terms and types. The notation is as follows:  | 
|
127  | 
||
128  | 
  \begin{center}
 | 
|
129  | 
  \begin{tabular}{l|l|l}
 | 
|
130  | 
& record terms & record types \\ \hline  | 
|
131  | 
    fixed & @{text "\<lparr>x = a, y = b\<rparr>"} & @{text "\<lparr>x :: A, y :: B\<rparr>"} \\
 | 
|
132  | 
    schematic & @{text "\<lparr>x = a, y = b, \<dots> = m\<rparr>"} &
 | 
|
133  | 
      @{text "\<lparr>x :: A, y :: B, \<dots> :: M\<rparr>"} \\
 | 
|
134  | 
  \end{tabular}
 | 
|
135  | 
  \end{center}
 | 
|
136  | 
||
137  | 
  \noindent The ASCII representation of @{text "\<lparr>x = a\<rparr>"} is @{text
 | 
|
138  | 
"(| x = a |)"}.  | 
|
139  | 
||
140  | 
  A fixed record @{text "\<lparr>x = a, y = b\<rparr>"} has field @{text x} of value
 | 
|
141  | 
  @{text a} and field @{text y} of value @{text b}.  The corresponding
 | 
|
142  | 
  type is @{text "\<lparr>x :: A, y :: B\<rparr>"}, assuming that @{text "a :: A"}
 | 
|
143  | 
  and @{text "b :: B"}.
 | 
|
144  | 
||
145  | 
  A record scheme like @{text "\<lparr>x = a, y = b, \<dots> = m\<rparr>"} contains fields
 | 
|
146  | 
  @{text x} and @{text y} as before, but also possibly further fields
 | 
|
147  | 
  as indicated by the ``@{text "\<dots>"}'' notation (which is actually part
 | 
|
148  | 
  of the syntax).  The improper field ``@{text "\<dots>"}'' of a record
 | 
|
149  | 
  scheme is called the \emph{more part}.  Logically it is just a free
 | 
|
150  | 
variable, which is occasionally referred to as ``row variable'' in  | 
|
151  | 
the literature. The more part of a record scheme may be  | 
|
152  | 
instantiated by zero or more further components. For example, the  | 
|
153  | 
  previous scheme may get instantiated to @{text "\<lparr>x = a, y = b, z =
 | 
|
| 26852 | 154  | 
  c, \<dots> = m'\<rparr>"}, where @{text m'} refers to a different more part.
 | 
| 26849 | 155  | 
Fixed records are special instances of record schemes, where  | 
156  | 
  ``@{text "\<dots>"}'' is properly terminated by the @{text "() :: unit"}
 | 
|
157  | 
  element.  In fact, @{text "\<lparr>x = a, y = b\<rparr>"} is just an abbreviation
 | 
|
158  | 
  for @{text "\<lparr>x = a, y = b, \<dots> = ()\<rparr>"}.
 | 
|
159  | 
||
160  | 
\medskip Two key observations make extensible records in a simply  | 
|
161  | 
typed language like HOL work out:  | 
|
162  | 
||
163  | 
  \begin{enumerate}
 | 
|
164  | 
||
165  | 
\item the more part is internalized, as a free term or type  | 
|
166  | 
variable,  | 
|
167  | 
||
| 26852 | 168  | 
\item field names are externalized, they cannot be accessed within  | 
169  | 
the logic as first-class values.  | 
|
| 26849 | 170  | 
|
171  | 
  \end{enumerate}
 | 
|
172  | 
||
173  | 
\medskip In Isabelle/HOL record types have to be defined explicitly,  | 
|
174  | 
fixing their field names and types, and their (optional) parent  | 
|
175  | 
record. Afterwards, records may be formed using above syntax, while  | 
|
176  | 
obeying the canonical order of fields as given by their declaration.  | 
|
177  | 
The record package provides several standard operations like  | 
|
178  | 
selectors and updates. The common setup for various generic proof  | 
|
179  | 
tools enable succinct reasoning patterns. See also the Isabelle/HOL  | 
|
180  | 
  tutorial \cite{isabelle-hol-book} for further instructions on using
 | 
|
181  | 
records in practice.  | 
|
182  | 
*}  | 
|
183  | 
||
184  | 
||
185  | 
subsection {* Record specifications *}
 | 
|
186  | 
||
187  | 
text {*
 | 
|
188  | 
  \begin{matharray}{rcl}
 | 
|
189  | 
    @{command_def (HOL) "record"} & : & \isartrans{theory}{theory} \\
 | 
|
190  | 
  \end{matharray}
 | 
|
191  | 
||
192  | 
  \begin{rail}
 | 
|
193  | 
'record' typespec '=' (type '+')? (constdecl +)  | 
|
194  | 
;  | 
|
195  | 
  \end{rail}
 | 
|
196  | 
||
197  | 
  \begin{descr}
 | 
|
198  | 
||
199  | 
  \item [@{command (HOL) "record"}~@{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>m) t
 | 
|
200  | 
= \<tau> + c\<^sub>1 :: \<sigma>\<^sub>1 \<dots> c\<^sub>n :: \<sigma>\<^sub>n"}] defines  | 
|
201  | 
  extensible record type @{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>m) t"},
 | 
|
202  | 
  derived from the optional parent record @{text "\<tau>"} by adding new
 | 
|
203  | 
  field components @{text "c\<^sub>i :: \<sigma>\<^sub>i"} etc.
 | 
|
204  | 
||
205  | 
  The type variables of @{text "\<tau>"} and @{text "\<sigma>\<^sub>i"} need to be
 | 
|
206  | 
  covered by the (distinct) parameters @{text "\<alpha>\<^sub>1, \<dots>,
 | 
|
207  | 
  \<alpha>\<^sub>m"}.  Type constructor @{text t} has to be new, while @{text
 | 
|
208  | 
\<tau>} needs to specify an instance of an existing record type. At  | 
|
209  | 
  least one new field @{text "c\<^sub>i"} has to be specified.
 | 
|
210  | 
Basically, field names need to belong to a unique record. This is  | 
|
211  | 
not a real restriction in practice, since fields are qualified by  | 
|
212  | 
the record name internally.  | 
|
213  | 
||
214  | 
  The parent record specification @{text \<tau>} is optional; if omitted
 | 
|
215  | 
  @{text t} becomes a root record.  The hierarchy of all records
 | 
|
216  | 
declared within a theory context forms a forest structure, i.e.\ a  | 
|
217  | 
set of trees starting with a root record each. There is no way to  | 
|
218  | 
merge multiple parent records!  | 
|
219  | 
||
220  | 
  For convenience, @{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>m) t"} is made a
 | 
|
221  | 
  type abbreviation for the fixed record type @{text "\<lparr>c\<^sub>1 ::
 | 
|
222  | 
  \<sigma>\<^sub>1, \<dots>, c\<^sub>n :: \<sigma>\<^sub>n\<rparr>"}, likewise is @{text
 | 
|
223  | 
"(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>m, \<zeta>) t_scheme"} made an abbreviation for  | 
|
224  | 
  @{text "\<lparr>c\<^sub>1 :: \<sigma>\<^sub>1, \<dots>, c\<^sub>n :: \<sigma>\<^sub>n, \<dots> ::
 | 
|
225  | 
\<zeta>\<rparr>"}.  | 
|
226  | 
||
227  | 
  \end{descr}
 | 
|
228  | 
*}  | 
|
229  | 
||
230  | 
||
231  | 
subsection {* Record operations *}
 | 
|
232  | 
||
233  | 
text {*
 | 
|
234  | 
Any record definition of the form presented above produces certain  | 
|
235  | 
standard operations. Selectors and updates are provided for any  | 
|
236  | 
  field, including the improper one ``@{text more}''.  There are also
 | 
|
237  | 
cumulative record constructor functions. To simplify the  | 
|
238  | 
  presentation below, we assume for now that @{text "(\<alpha>\<^sub>1, \<dots>,
 | 
|
239  | 
  \<alpha>\<^sub>m) t"} is a root record with fields @{text "c\<^sub>1 ::
 | 
|
240  | 
\<sigma>\<^sub>1, \<dots>, c\<^sub>n :: \<sigma>\<^sub>n"}.  | 
|
241  | 
||
242  | 
  \medskip \textbf{Selectors} and \textbf{updates} are available for
 | 
|
243  | 
  any field (including ``@{text more}''):
 | 
|
244  | 
||
245  | 
  \begin{matharray}{lll}
 | 
|
| 26852 | 246  | 
    @{text "c\<^sub>i"} & @{text "::"} & @{text "\<lparr>\<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr> \<Rightarrow> \<sigma>\<^sub>i"} \\
 | 
247  | 
    @{text "c\<^sub>i_update"} & @{text "::"} & @{text "\<sigma>\<^sub>i \<Rightarrow> \<lparr>\<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr> \<Rightarrow> \<lparr>\<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr>"} \\
 | 
|
| 26849 | 248  | 
  \end{matharray}
 | 
249  | 
||
250  | 
  There is special syntax for application of updates: @{text "r\<lparr>x :=
 | 
|
251  | 
  a\<rparr>"} abbreviates term @{text "x_update a r"}.  Further notation for
 | 
|
252  | 
  repeated updates is also available: @{text "r\<lparr>x := a\<rparr>\<lparr>y := b\<rparr>\<lparr>z :=
 | 
|
253  | 
  c\<rparr>"} may be written @{text "r\<lparr>x := a, y := b, z := c\<rparr>"}.  Note that
 | 
|
254  | 
because of postfix notation the order of fields shown here is  | 
|
255  | 
reverse than in the actual term. Since repeated updates are just  | 
|
256  | 
  function applications, fields may be freely permuted in @{text "\<lparr>x
 | 
|
257  | 
:= a, y := b, z := c\<rparr>"}, as far as logical equality is concerned.  | 
|
258  | 
Thus commutativity of independent updates can be proven within the  | 
|
259  | 
logic for any two fields, but not as a general theorem.  | 
|
260  | 
||
261  | 
  \medskip The \textbf{make} operation provides a cumulative record
 | 
|
262  | 
constructor function:  | 
|
263  | 
||
264  | 
  \begin{matharray}{lll}
 | 
|
| 26852 | 265  | 
    @{text "t.make"} & @{text "::"} & @{text "\<sigma>\<^sub>1 \<Rightarrow> \<dots> \<sigma>\<^sub>n \<Rightarrow> \<lparr>\<^vec>c :: \<^vec>\<sigma>\<rparr>"} \\
 | 
| 26849 | 266  | 
  \end{matharray}
 | 
267  | 
||
268  | 
\medskip We now reconsider the case of non-root records, which are  | 
|
269  | 
derived of some parent. In general, the latter may depend on  | 
|
270  | 
  another parent as well, resulting in a list of \emph{ancestor
 | 
|
271  | 
records}. Appending the lists of fields of all ancestors results in  | 
|
272  | 
a certain field prefix. The record package automatically takes care  | 
|
273  | 
of this by lifting operations over this context of ancestor fields.  | 
|
274  | 
  Assuming that @{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>m) t"} has ancestor
 | 
|
275  | 
  fields @{text "b\<^sub>1 :: \<rho>\<^sub>1, \<dots>, b\<^sub>k :: \<rho>\<^sub>k"},
 | 
|
276  | 
the above record operations will get the following types:  | 
|
277  | 
||
| 26852 | 278  | 
\medskip  | 
279  | 
  \begin{tabular}{lll}
 | 
|
280  | 
    @{text "c\<^sub>i"} & @{text "::"} & @{text "\<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr> \<Rightarrow> \<sigma>\<^sub>i"} \\
 | 
|
| 26849 | 281  | 
    @{text "c\<^sub>i_update"} & @{text "::"} & @{text "\<sigma>\<^sub>i \<Rightarrow> 
 | 
| 26852 | 282  | 
\<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr> \<Rightarrow>  | 
283  | 
\<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr>"} \\  | 
|
284  | 
    @{text "t.make"} & @{text "::"} & @{text "\<rho>\<^sub>1 \<Rightarrow> \<dots> \<rho>\<^sub>k \<Rightarrow> \<sigma>\<^sub>1 \<Rightarrow> \<dots> \<sigma>\<^sub>n \<Rightarrow>
 | 
|
285  | 
\<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>\<rparr>"} \\  | 
|
286  | 
  \end{tabular}
 | 
|
287  | 
\medskip  | 
|
| 26849 | 288  | 
|
| 26852 | 289  | 
\noindent Some further operations address the extension aspect of a  | 
| 26849 | 290  | 
  derived record scheme specifically: @{text "t.fields"} produces a
 | 
291  | 
record fragment consisting of exactly the new fields introduced here  | 
|
292  | 
  (the result may serve as a more part elsewhere); @{text "t.extend"}
 | 
|
293  | 
  takes a fixed record and adds a given more part; @{text
 | 
|
294  | 
"t.truncate"} restricts a record scheme to a fixed record.  | 
|
295  | 
||
| 26852 | 296  | 
\medskip  | 
297  | 
  \begin{tabular}{lll}
 | 
|
298  | 
    @{text "t.fields"} & @{text "::"} & @{text "\<sigma>\<^sub>1 \<Rightarrow> \<dots> \<sigma>\<^sub>n \<Rightarrow> \<lparr>\<^vec>c :: \<^vec>\<sigma>\<rparr>"} \\
 | 
|
299  | 
    @{text "t.extend"} & @{text "::"} & @{text "\<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>\<rparr> \<Rightarrow>
 | 
|
300  | 
\<zeta> \<Rightarrow> \<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr>"} \\  | 
|
301  | 
    @{text "t.truncate"} & @{text "::"} & @{text "\<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>, \<dots> :: \<zeta>\<rparr> \<Rightarrow> \<lparr>\<^vec>b :: \<^vec>\<rho>, \<^vec>c :: \<^vec>\<sigma>\<rparr>"} \\
 | 
|
302  | 
  \end{tabular}
 | 
|
303  | 
\medskip  | 
|
| 26849 | 304  | 
|
305  | 
  \noindent Note that @{text "t.make"} and @{text "t.fields"} coincide
 | 
|
306  | 
for root records.  | 
|
307  | 
*}  | 
|
308  | 
||
309  | 
||
310  | 
subsection {* Derived rules and proof tools *}
 | 
|
311  | 
||
312  | 
text {*
 | 
|
313  | 
The record package proves several results internally, declaring  | 
|
314  | 
these facts to appropriate proof tools. This enables users to  | 
|
315  | 
reason about record structures quite conveniently. Assume that  | 
|
316  | 
  @{text t} is a record type as specified above.
 | 
|
317  | 
||
318  | 
  \begin{enumerate}
 | 
|
319  | 
||
320  | 
\item Standard conversions for selectors or updates applied to  | 
|
321  | 
record constructor terms are made part of the default Simplifier  | 
|
322  | 
context; thus proofs by reduction of basic operations merely require  | 
|
323  | 
  the @{method simp} method without further arguments.  These rules
 | 
|
324  | 
  are available as @{text "t.simps"}, too.
 | 
|
325  | 
||
326  | 
\item Selectors applied to updated records are automatically reduced  | 
|
327  | 
by an internal simplification procedure, which is also part of the  | 
|
328  | 
standard Simplifier setup.  | 
|
329  | 
||
330  | 
  \item Inject equations of a form analogous to @{prop "(x, y) = (x',
 | 
|
331  | 
y') \<equiv> x = x' \<and> y = y'"} are declared to the Simplifier and Classical  | 
|
332  | 
  Reasoner as @{attribute iff} rules.  These rules are available as
 | 
|
333  | 
  @{text "t.iffs"}.
 | 
|
334  | 
||
335  | 
  \item The introduction rule for record equality analogous to @{text
 | 
|
336  | 
"x r = x r' \<Longrightarrow> y r = y r' \<dots> \<Longrightarrow> r = r'"} is declared to the Simplifier,  | 
|
337  | 
  and as the basic rule context as ``@{attribute intro}@{text "?"}''.
 | 
|
338  | 
  The rule is called @{text "t.equality"}.
 | 
|
339  | 
||
340  | 
\item Representations of arbitrary record expressions as canonical  | 
|
341  | 
  constructor terms are provided both in @{method cases} and @{method
 | 
|
342  | 
induct} format (cf.\ the generic proof methods of the same name,  | 
|
343  | 
  \secref{sec:cases-induct}).  Several variations are available, for
 | 
|
344  | 
fixed records, record schemes, more parts etc.  | 
|
345  | 
||
346  | 
The generic proof methods are sufficiently smart to pick the most  | 
|
347  | 
sensible rule according to the type of the indicated record  | 
|
348  | 
  expression: users just need to apply something like ``@{text "(cases
 | 
|
349  | 
r)"}'' to a certain proof problem.  | 
|
350  | 
||
351  | 
  \item The derived record operations @{text "t.make"}, @{text
 | 
|
352  | 
  "t.fields"}, @{text "t.extend"}, @{text "t.truncate"} are \emph{not}
 | 
|
353  | 
treated automatically, but usually need to be expanded by hand,  | 
|
354  | 
  using the collective fact @{text "t.defs"}.
 | 
|
355  | 
||
356  | 
  \end{enumerate}
 | 
|
357  | 
*}  | 
|
358  | 
||
359  | 
||
360  | 
section {* Datatypes \label{sec:hol-datatype} *}
 | 
|
361  | 
||
362  | 
text {*
 | 
|
363  | 
  \begin{matharray}{rcl}
 | 
|
364  | 
    @{command_def (HOL) "datatype"} & : & \isartrans{theory}{theory} \\
 | 
|
365  | 
    @{command_def (HOL) "rep_datatype"} & : & \isartrans{theory}{theory} \\
 | 
|
366  | 
  \end{matharray}
 | 
|
367  | 
||
368  | 
  \begin{rail}
 | 
|
369  | 
'datatype' (dtspec + 'and')  | 
|
370  | 
;  | 
|
371  | 
'rep\_datatype' (name *) dtrules  | 
|
372  | 
;  | 
|
373  | 
||
374  | 
dtspec: parname? typespec infix? '=' (cons + '|')  | 
|
375  | 
;  | 
|
376  | 
cons: name (type *) mixfix?  | 
|
377  | 
;  | 
|
378  | 
dtrules: 'distinct' thmrefs 'inject' thmrefs 'induction' thmrefs  | 
|
379  | 
  \end{rail}
 | 
|
380  | 
||
381  | 
  \begin{descr}
 | 
|
382  | 
||
383  | 
  \item [@{command (HOL) "datatype"}] defines inductive datatypes in
 | 
|
384  | 
HOL.  | 
|
385  | 
||
386  | 
  \item [@{command (HOL) "rep_datatype"}] represents existing types as
 | 
|
387  | 
inductive ones, generating the standard infrastructure of derived  | 
|
388  | 
concepts (primitive recursion etc.).  | 
|
389  | 
||
390  | 
  \end{descr}
 | 
|
391  | 
||
392  | 
The induction and exhaustion theorems generated provide case names  | 
|
393  | 
according to the constructors involved, while parameters are named  | 
|
394  | 
  after the types (see also \secref{sec:cases-induct}).
 | 
|
395  | 
||
396  | 
  See \cite{isabelle-HOL} for more details on datatypes, but beware of
 | 
|
397  | 
the old-style theory syntax being used there! Apart from proper  | 
|
398  | 
proof methods for case-analysis and induction, there are also  | 
|
399  | 
  emulations of ML tactics @{method (HOL) case_tac} and @{method (HOL)
 | 
|
400  | 
  induct_tac} available, see \secref{sec:hol-induct-tac}; these admit
 | 
|
401  | 
to refer directly to the internal structure of subgoals (including  | 
|
402  | 
internally bound parameters).  | 
|
403  | 
*}  | 
|
404  | 
||
405  | 
||
406  | 
section {* Recursive functions \label{sec:recursion} *}
 | 
|
407  | 
||
408  | 
text {*
 | 
|
409  | 
  \begin{matharray}{rcl}
 | 
|
410  | 
    @{command_def (HOL) "primrec"} & : & \isarkeep{local{\dsh}theory} \\
 | 
|
411  | 
    @{command_def (HOL) "fun"} & : & \isarkeep{local{\dsh}theory} \\
 | 
|
412  | 
    @{command_def (HOL) "function"} & : & \isartrans{local{\dsh}theory}{proof(prove)} \\
 | 
|
413  | 
    @{command_def (HOL) "termination"} & : & \isartrans{local{\dsh}theory}{proof(prove)} \\
 | 
|
414  | 
  \end{matharray}
 | 
|
415  | 
||
416  | 
  \begin{rail}
 | 
|
417  | 
'primrec' target? fixes 'where' equations  | 
|
418  | 
;  | 
|
419  | 
equations: (thmdecl? prop + '|')  | 
|
420  | 
;  | 
|
| 
26985
 
51c5acd57b75
function: uniform treatment of target, not as config;
 
wenzelm 
parents: 
26894 
diff
changeset
 | 
421  | 
    ('fun' | 'function') target? functionopts? fixes 'where' clauses
 | 
| 26849 | 422  | 
;  | 
423  | 
    clauses: (thmdecl? prop ('(' 'otherwise' ')')? + '|')
 | 
|
424  | 
;  | 
|
| 
26985
 
51c5acd57b75
function: uniform treatment of target, not as config;
 
wenzelm 
parents: 
26894 
diff
changeset
 | 
425  | 
    functionopts: '(' (('sequential' | 'domintros' | 'tailrec' | 'default' term) + ',') ')'
 | 
| 26849 | 426  | 
;  | 
427  | 
'termination' ( term )?  | 
|
428  | 
  \end{rail}
 | 
|
429  | 
||
430  | 
  \begin{descr}
 | 
|
431  | 
||
432  | 
  \item [@{command (HOL) "primrec"}] defines primitive recursive
 | 
|
433  | 
  functions over datatypes, see also \cite{isabelle-HOL}.
 | 
|
434  | 
||
435  | 
  \item [@{command (HOL) "function"}] defines functions by general
 | 
|
436  | 
wellfounded recursion. A detailed description with examples can be  | 
|
437  | 
  found in \cite{isabelle-function}. The function is specified by a
 | 
|
438  | 
set of (possibly conditional) recursive equations with arbitrary  | 
|
439  | 
pattern matching. The command generates proof obligations for the  | 
|
440  | 
completeness and the compatibility of patterns.  | 
|
441  | 
||
442  | 
The defined function is considered partial, and the resulting  | 
|
443  | 
  simplification rules (named @{text "f.psimps"}) and induction rule
 | 
|
444  | 
  (named @{text "f.pinduct"}) are guarded by a generated domain
 | 
|
445  | 
  predicate @{text "f_dom"}. The @{command (HOL) "termination"}
 | 
|
446  | 
command can then be used to establish that the function is total.  | 
|
447  | 
||
448  | 
  \item [@{command (HOL) "fun"}] is a shorthand notation for
 | 
|
449  | 
  ``@{command (HOL) "function"}~@{text "(sequential)"}, followed by
 | 
|
450  | 
automated proof attempts regarding pattern matching and termination.  | 
|
451  | 
  See \cite{isabelle-function} for further details.
 | 
|
452  | 
||
453  | 
  \item [@{command (HOL) "termination"}~@{text f}] commences a
 | 
|
454  | 
  termination proof for the previously defined function @{text f}.  If
 | 
|
455  | 
this is omitted, the command refers to the most recent function  | 
|
456  | 
definition. After the proof is closed, the recursive equations and  | 
|
457  | 
the induction principle is established.  | 
|
458  | 
||
459  | 
  \end{descr}
 | 
|
460  | 
||
461  | 
%FIXME check  | 
|
462  | 
||
463  | 
  Recursive definitions introduced by both the @{command (HOL)
 | 
|
464  | 
  "primrec"} and the @{command (HOL) "function"} command accommodate
 | 
|
465  | 
  reasoning by induction (cf.\ \secref{sec:cases-induct}): rule @{text
 | 
|
466  | 
  "c.induct"} (where @{text c} is the name of the function definition)
 | 
|
467  | 
refers to a specific induction rule, with parameters named according  | 
|
468  | 
  to the user-specified equations.  Case names of @{command (HOL)
 | 
|
469  | 
"primrec"} are that of the datatypes involved, while those of  | 
|
470  | 
  @{command (HOL) "function"} are numbered (starting from 1).
 | 
|
471  | 
||
472  | 
The equations provided by these packages may be referred later as  | 
|
473  | 
  theorem list @{text "f.simps"}, where @{text f} is the (collective)
 | 
|
474  | 
name of the functions defined. Individual equations may be named  | 
|
475  | 
explicitly as well.  | 
|
476  | 
||
477  | 
  The @{command (HOL) "function"} command accepts the following
 | 
|
478  | 
options.  | 
|
479  | 
||
480  | 
  \begin{descr}
 | 
|
481  | 
||
482  | 
  \item [@{text sequential}] enables a preprocessor which
 | 
|
483  | 
disambiguates overlapping patterns by making them mutually disjoint.  | 
|
484  | 
Earlier equations take precedence over later ones. This allows to  | 
|
485  | 
give the specification in a format very similar to functional  | 
|
486  | 
programming. Note that the resulting simplification and induction  | 
|
487  | 
rules correspond to the transformed specification, not the one given  | 
|
488  | 
originally. This usually means that each equation given by the user  | 
|
489  | 
may result in several theroems. Also note that this automatic  | 
|
490  | 
transformation only works for ML-style datatype patterns.  | 
|
491  | 
||
492  | 
  \item [@{text domintros}] enables the automated generation of
 | 
|
493  | 
introduction rules for the domain predicate. While mostly not  | 
|
494  | 
needed, they can be helpful in some proofs about partial functions.  | 
|
495  | 
||
496  | 
  \item [@{text tailrec}] generates the unconstrained recursive
 | 
|
497  | 
equations even without a termination proof, provided that the  | 
|
498  | 
function is tail-recursive. This currently only works  | 
|
499  | 
||
500  | 
  \item [@{text "default d"}] allows to specify a default value for a
 | 
|
501  | 
  (partial) function, which will ensure that @{text "f x = d x"}
 | 
|
502  | 
  whenever @{text "x \<notin> f_dom"}.
 | 
|
503  | 
||
504  | 
  \end{descr}
 | 
|
505  | 
*}  | 
|
506  | 
||
507  | 
||
508  | 
subsection {* Proof methods related to recursive definitions *}
 | 
|
509  | 
||
510  | 
text {*
 | 
|
511  | 
  \begin{matharray}{rcl}
 | 
|
512  | 
    @{method_def (HOL) pat_completeness} & : & \isarmeth \\
 | 
|
513  | 
    @{method_def (HOL) relation} & : & \isarmeth \\
 | 
|
514  | 
    @{method_def (HOL) lexicographic_order} & : & \isarmeth \\
 | 
|
515  | 
  \end{matharray}
 | 
|
516  | 
||
517  | 
  \begin{rail}
 | 
|
518  | 
'relation' term  | 
|
519  | 
;  | 
|
520  | 
'lexicographic\_order' (clasimpmod *)  | 
|
521  | 
;  | 
|
522  | 
  \end{rail}
 | 
|
523  | 
||
524  | 
  \begin{descr}
 | 
|
525  | 
||
526  | 
  \item [@{method (HOL) pat_completeness}] is a specialized method to
 | 
|
527  | 
solve goals regarding the completeness of pattern matching, as  | 
|
528  | 
  required by the @{command (HOL) "function"} package (cf.\
 | 
|
529  | 
  \cite{isabelle-function}).
 | 
|
530  | 
||
531  | 
  \item [@{method (HOL) relation}~@{text R}] introduces a termination
 | 
|
532  | 
  proof using the relation @{text R}.  The resulting proof state will
 | 
|
533  | 
  contain goals expressing that @{text R} is wellfounded, and that the
 | 
|
534  | 
  arguments of recursive calls decrease with respect to @{text R}.
 | 
|
535  | 
Usually, this method is used as the initial proof step of manual  | 
|
536  | 
termination proofs.  | 
|
537  | 
||
538  | 
  \item [@{method (HOL) "lexicographic_order"}] attempts a fully
 | 
|
539  | 
automated termination proof by searching for a lexicographic  | 
|
540  | 
combination of size measures on the arguments of the function. The  | 
|
541  | 
  method accepts the same arguments as the @{method auto} method,
 | 
|
542  | 
which it uses internally to prove local descents. The same context  | 
|
543  | 
  modifiers as for @{method auto} are accepted, see
 | 
|
544  | 
  \secref{sec:clasimp}.
 | 
|
545  | 
||
546  | 
In case of failure, extensive information is printed, which can help  | 
|
547  | 
  to analyse the situation (cf.\ \cite{isabelle-function}).
 | 
|
548  | 
||
549  | 
  \end{descr}
 | 
|
550  | 
*}  | 
|
551  | 
||
552  | 
||
553  | 
subsection {* Old-style recursive function definitions (TFL) *}
 | 
|
554  | 
||
555  | 
text {*
 | 
|
556  | 
  The old TFL commands @{command (HOL) "recdef"} and @{command (HOL)
 | 
|
557  | 
  "recdef_tc"} for defining recursive are mostly obsolete; @{command
 | 
|
558  | 
  (HOL) "function"} or @{command (HOL) "fun"} should be used instead.
 | 
|
559  | 
||
560  | 
  \begin{matharray}{rcl}
 | 
|
561  | 
    @{command_def (HOL) "recdef"} & : & \isartrans{theory}{theory} \\
 | 
|
562  | 
    @{command_def (HOL) "recdef_tc"}@{text "\<^sup>*"} & : & \isartrans{theory}{proof(prove)} \\
 | 
|
563  | 
  \end{matharray}
 | 
|
564  | 
||
565  | 
  \begin{rail}
 | 
|
566  | 
    'recdef' ('(' 'permissive' ')')? \\ name term (prop +) hints?
 | 
|
567  | 
;  | 
|
568  | 
recdeftc thmdecl? tc  | 
|
569  | 
;  | 
|
570  | 
    hints: '(' 'hints' (recdefmod *) ')'
 | 
|
571  | 
;  | 
|
572  | 
    recdefmod: (('recdef\_simp' | 'recdef\_cong' | 'recdef\_wf') (() | 'add' | 'del') ':' thmrefs) | clasimpmod
 | 
|
573  | 
;  | 
|
574  | 
    tc: nameref ('(' nat ')')?
 | 
|
575  | 
;  | 
|
576  | 
  \end{rail}
 | 
|
577  | 
||
578  | 
  \begin{descr}
 | 
|
579  | 
||
580  | 
  \item [@{command (HOL) "recdef"}] defines general well-founded
 | 
|
581  | 
recursive functions (using the TFL package), see also  | 
|
582  | 
  \cite{isabelle-HOL}.  The ``@{text "(permissive)"}'' option tells
 | 
|
583  | 
TFL to recover from failed proof attempts, returning unfinished  | 
|
584  | 
  results.  The @{text recdef_simp}, @{text recdef_cong}, and @{text
 | 
|
585  | 
recdef_wf} hints refer to auxiliary rules to be used in the internal  | 
|
586  | 
  automated proof process of TFL.  Additional @{syntax clasimpmod}
 | 
|
587  | 
  declarations (cf.\ \secref{sec:clasimp}) may be given to tune the
 | 
|
588  | 
  context of the Simplifier (cf.\ \secref{sec:simplifier}) and
 | 
|
589  | 
  Classical reasoner (cf.\ \secref{sec:classical}).
 | 
|
590  | 
||
591  | 
  \item [@{command (HOL) "recdef_tc"}~@{text "c (i)"}] recommences the
 | 
|
592  | 
  proof for leftover termination condition number @{text i} (default
 | 
|
593  | 
  1) as generated by a @{command (HOL) "recdef"} definition of
 | 
|
594  | 
  constant @{text c}.
 | 
|
595  | 
||
596  | 
  Note that in most cases, @{command (HOL) "recdef"} is able to finish
 | 
|
597  | 
its internal proofs without manual intervention.  | 
|
598  | 
||
599  | 
  \end{descr}
 | 
|
600  | 
||
601  | 
  \medskip Hints for @{command (HOL) "recdef"} may be also declared
 | 
|
602  | 
globally, using the following attributes.  | 
|
603  | 
||
604  | 
  \begin{matharray}{rcl}
 | 
|
605  | 
    @{attribute_def (HOL) recdef_simp} & : & \isaratt \\
 | 
|
606  | 
    @{attribute_def (HOL) recdef_cong} & : & \isaratt \\
 | 
|
607  | 
    @{attribute_def (HOL) recdef_wf} & : & \isaratt \\
 | 
|
608  | 
  \end{matharray}
 | 
|
609  | 
||
610  | 
  \begin{rail}
 | 
|
611  | 
    ('recdef\_simp' | 'recdef\_cong' | 'recdef\_wf') (() | 'add' | 'del')
 | 
|
612  | 
;  | 
|
613  | 
  \end{rail}
 | 
|
614  | 
*}  | 
|
615  | 
||
616  | 
||
617  | 
section {* Definition by specification \label{sec:hol-specification} *}
 | 
|
618  | 
||
619  | 
text {*
 | 
|
620  | 
  \begin{matharray}{rcl}
 | 
|
621  | 
    @{command_def (HOL) "specification"} & : & \isartrans{theory}{proof(prove)} \\
 | 
|
622  | 
    @{command_def (HOL) "ax_specification"} & : & \isartrans{theory}{proof(prove)} \\
 | 
|
623  | 
  \end{matharray}
 | 
|
624  | 
||
625  | 
  \begin{rail}
 | 
|
626  | 
  ('specification' | 'ax\_specification') '(' (decl +) ')' \\ (thmdecl? prop +)
 | 
|
627  | 
;  | 
|
628  | 
  decl: ((name ':')? term '(' 'overloaded' ')'?)
 | 
|
629  | 
  \end{rail}
 | 
|
630  | 
||
631  | 
  \begin{descr}
 | 
|
632  | 
||
633  | 
  \item [@{command (HOL) "specification"}~@{text "decls \<phi>"}] sets up a
 | 
|
634  | 
goal stating the existence of terms with the properties specified to  | 
|
635  | 
  hold for the constants given in @{text decls}.  After finishing the
 | 
|
636  | 
proof, the theory will be augmented with definitions for the given  | 
|
637  | 
constants, as well as with theorems stating the properties for these  | 
|
638  | 
constants.  | 
|
639  | 
||
640  | 
  \item [@{command (HOL) "ax_specification"}~@{text "decls \<phi>"}] sets
 | 
|
641  | 
up a goal stating the existence of terms with the properties  | 
|
642  | 
  specified to hold for the constants given in @{text decls}.  After
 | 
|
643  | 
finishing the proof, the theory will be augmented with axioms  | 
|
644  | 
expressing the properties given in the first place.  | 
|
645  | 
||
646  | 
  \item [@{text decl}] declares a constant to be defined by the
 | 
|
647  | 
  specification given.  The definition for the constant @{text c} is
 | 
|
648  | 
  bound to the name @{text c_def} unless a theorem name is given in
 | 
|
649  | 
the declaration. Overloaded constants should be declared as such.  | 
|
650  | 
||
651  | 
  \end{descr}
 | 
|
652  | 
||
653  | 
  Whether to use @{command (HOL) "specification"} or @{command (HOL)
 | 
|
654  | 
  "ax_specification"} is to some extent a matter of style.  @{command
 | 
|
655  | 
(HOL) "specification"} introduces no new axioms, and so by  | 
|
656  | 
  construction cannot introduce inconsistencies, whereas @{command
 | 
|
657  | 
(HOL) "ax_specification"} does introduce axioms, but only after the  | 
|
658  | 
user has explicitly proven it to be safe. A practical issue must be  | 
|
659  | 
considered, though: After introducing two constants with the same  | 
|
660  | 
  properties using @{command (HOL) "specification"}, one can prove
 | 
|
661  | 
that the two constants are, in fact, equal. If this might be a  | 
|
662  | 
  problem, one should use @{command (HOL) "ax_specification"}.
 | 
|
663  | 
*}  | 
|
664  | 
||
665  | 
||
666  | 
section {* Inductive and coinductive definitions \label{sec:hol-inductive} *}
 | 
|
667  | 
||
668  | 
text {*
 | 
|
669  | 
  An \textbf{inductive definition} specifies the least predicate (or
 | 
|
670  | 
  set) @{text R} closed under given rules: applying a rule to elements
 | 
|
671  | 
  of @{text R} yields a result within @{text R}.  For example, a
 | 
|
672  | 
structural operational semantics is an inductive definition of an  | 
|
673  | 
evaluation relation.  | 
|
674  | 
||
675  | 
  Dually, a \textbf{coinductive definition} specifies the greatest
 | 
|
676  | 
  predicate~/ set @{text R} that is consistent with given rules: every
 | 
|
677  | 
  element of @{text R} can be seen as arising by applying a rule to
 | 
|
678  | 
  elements of @{text R}.  An important example is using bisimulation
 | 
|
679  | 
relations to formalise equivalence of processes and infinite data  | 
|
680  | 
structures.  | 
|
681  | 
||
682  | 
\medskip The HOL package is related to the ZF one, which is  | 
|
683  | 
  described in a separate paper,\footnote{It appeared in CADE
 | 
|
684  | 
  \cite{paulson-CADE}; a longer version is distributed with Isabelle.}
 | 
|
685  | 
which you should refer to in case of difficulties. The package is  | 
|
686  | 
simpler than that of ZF thanks to implicit type-checking in HOL.  | 
|
687  | 
The types of the (co)inductive predicates (or sets) determine the  | 
|
688  | 
domain of the fixedpoint definition, and the package does not have  | 
|
689  | 
to use inference rules for type-checking.  | 
|
690  | 
||
691  | 
  \begin{matharray}{rcl}
 | 
|
692  | 
    @{command_def (HOL) "inductive"} & : & \isarkeep{local{\dsh}theory} \\
 | 
|
693  | 
    @{command_def (HOL) "inductive_set"} & : & \isarkeep{local{\dsh}theory} \\
 | 
|
694  | 
    @{command_def (HOL) "coinductive"} & : & \isarkeep{local{\dsh}theory} \\
 | 
|
695  | 
    @{command_def (HOL) "coinductive_set"} & : & \isarkeep{local{\dsh}theory} \\
 | 
|
696  | 
    @{attribute_def (HOL) mono} & : & \isaratt \\
 | 
|
697  | 
  \end{matharray}
 | 
|
698  | 
||
699  | 
  \begin{rail}
 | 
|
700  | 
    ('inductive' | 'inductive\_set' | 'coinductive' | 'coinductive\_set') target? fixes ('for' fixes)? \\
 | 
|
701  | 
    ('where' clauses)? ('monos' thmrefs)?
 | 
|
702  | 
;  | 
|
703  | 
clauses: (thmdecl? prop + '|')  | 
|
704  | 
;  | 
|
705  | 
'mono' (() | 'add' | 'del')  | 
|
706  | 
;  | 
|
707  | 
  \end{rail}
 | 
|
708  | 
||
709  | 
  \begin{descr}
 | 
|
710  | 
||
711  | 
  \item [@{command (HOL) "inductive"} and @{command (HOL)
 | 
|
712  | 
"coinductive"}] define (co)inductive predicates from the  | 
|
713  | 
  introduction rules given in the @{keyword "where"} part.  The
 | 
|
714  | 
  optional @{keyword "for"} part contains a list of parameters of the
 | 
|
715  | 
(co)inductive predicates that remain fixed throughout the  | 
|
716  | 
  definition.  The optional @{keyword "monos"} section contains
 | 
|
717  | 
  \emph{monotonicity theorems}, which are required for each operator
 | 
|
718  | 
applied to a recursive set in the introduction rules. There  | 
|
719  | 
  \emph{must} be a theorem of the form @{text "A \<le> B \<Longrightarrow> M A \<le> M B"},
 | 
|
720  | 
  for each premise @{text "M R\<^sub>i t"} in an introduction rule!
 | 
|
721  | 
||
722  | 
  \item [@{command (HOL) "inductive_set"} and @{command (HOL)
 | 
|
723  | 
"coinductive_set"}] are wrappers for to the previous commands,  | 
|
724  | 
allowing the definition of (co)inductive sets.  | 
|
725  | 
||
726  | 
  \item [@{attribute (HOL) mono}] declares monotonicity rules.  These
 | 
|
727  | 
  rule are involved in the automated monotonicity proof of @{command
 | 
|
728  | 
(HOL) "inductive"}.  | 
|
729  | 
||
730  | 
  \end{descr}
 | 
|
731  | 
*}  | 
|
732  | 
||
733  | 
||
734  | 
subsection {* Derived rules *}
 | 
|
735  | 
||
736  | 
text {*
 | 
|
737  | 
  Each (co)inductive definition @{text R} adds definitions to the
 | 
|
738  | 
theory and also proves some theorems:  | 
|
739  | 
||
740  | 
  \begin{description}
 | 
|
741  | 
||
742  | 
  \item [@{text R.intros}] is the list of introduction rules as proven
 | 
|
743  | 
theorems, for the recursive predicates (or sets). The rules are  | 
|
744  | 
also available individually, using the names given them in the  | 
|
745  | 
theory file;  | 
|
746  | 
||
747  | 
  \item [@{text R.cases}] is the case analysis (or elimination) rule;
 | 
|
748  | 
||
749  | 
  \item [@{text R.induct} or @{text R.coinduct}] is the (co)induction
 | 
|
750  | 
rule.  | 
|
751  | 
||
752  | 
  \end{description}
 | 
|
753  | 
||
754  | 
  When several predicates @{text "R\<^sub>1, \<dots>, R\<^sub>n"} are
 | 
|
755  | 
defined simultaneously, the list of introduction rules is called  | 
|
756  | 
  @{text "R\<^sub>1_\<dots>_R\<^sub>n.intros"}, the case analysis rules are
 | 
|
757  | 
  called @{text "R\<^sub>1.cases, \<dots>, R\<^sub>n.cases"}, and the list
 | 
|
758  | 
  of mutual induction rules is called @{text
 | 
|
759  | 
"R\<^sub>1_\<dots>_R\<^sub>n.inducts"}.  | 
|
760  | 
*}  | 
|
761  | 
||
762  | 
||
763  | 
subsection {* Monotonicity theorems *}
 | 
|
764  | 
||
765  | 
text {*
 | 
|
766  | 
Each theory contains a default set of theorems that are used in  | 
|
767  | 
monotonicity proofs. New rules can be added to this set via the  | 
|
768  | 
  @{attribute (HOL) mono} attribute.  The HOL theory @{text Inductive}
 | 
|
769  | 
shows how this is done. In general, the following monotonicity  | 
|
770  | 
theorems may be added:  | 
|
771  | 
||
772  | 
  \begin{itemize}
 | 
|
773  | 
||
774  | 
  \item Theorems of the form @{text "A \<le> B \<Longrightarrow> M A \<le> M B"}, for proving
 | 
|
775  | 
monotonicity of inductive definitions whose introduction rules have  | 
|
776  | 
  premises involving terms such as @{text "M R\<^sub>i t"}.
 | 
|
777  | 
||
778  | 
\item Monotonicity theorems for logical operators, which are of the  | 
|
779  | 
  general form @{text "(\<dots> \<longrightarrow> \<dots>) \<Longrightarrow> \<dots> (\<dots> \<longrightarrow> \<dots>) \<Longrightarrow> \<dots> \<longrightarrow> \<dots>"}.  For example, in
 | 
|
780  | 
  the case of the operator @{text "\<or>"}, the corresponding theorem is
 | 
|
781  | 
\[  | 
|
782  | 
  \infer{@{text "P\<^sub>1 \<or> P\<^sub>2 \<longrightarrow> Q\<^sub>1 \<or> Q\<^sub>2"}}{@{text "P\<^sub>1 \<longrightarrow> Q\<^sub>1"} & @{text "P\<^sub>2 \<longrightarrow> Q\<^sub>2"}}
 | 
|
783  | 
\]  | 
|
784  | 
||
785  | 
\item De Morgan style equations for reasoning about the ``polarity''  | 
|
786  | 
of expressions, e.g.  | 
|
787  | 
\[  | 
|
788  | 
  @{prop "\<not> \<not> P \<longleftrightarrow> P"} \qquad\qquad
 | 
|
789  | 
  @{prop "\<not> (P \<and> Q) \<longleftrightarrow> \<not> P \<or> \<not> Q"}
 | 
|
790  | 
\]  | 
|
791  | 
||
792  | 
\item Equations for reducing complex operators to more primitive  | 
|
793  | 
ones whose monotonicity can easily be proved, e.g.  | 
|
794  | 
\[  | 
|
795  | 
  @{prop "(P \<longrightarrow> Q) \<longleftrightarrow> \<not> P \<or> Q"} \qquad\qquad
 | 
|
796  | 
  @{prop "Ball A P \<equiv> \<forall>x. x \<in> A \<longrightarrow> P x"}
 | 
|
797  | 
\]  | 
|
798  | 
||
799  | 
  \end{itemize}
 | 
|
800  | 
||
801  | 
%FIXME: Example of an inductive definition  | 
|
802  | 
*}  | 
|
803  | 
||
804  | 
||
805  | 
section {* Arithmetic proof support *}
 | 
|
806  | 
||
807  | 
text {*
 | 
|
808  | 
  \begin{matharray}{rcl}
 | 
|
809  | 
    @{method_def (HOL) arith} & : & \isarmeth \\
 | 
|
| 26894 | 810  | 
    @{attribute_def (HOL) arith_split} & : & \isaratt \\
 | 
| 26849 | 811  | 
  \end{matharray}
 | 
812  | 
||
813  | 
  The @{method (HOL) arith} method decides linear arithmetic problems
 | 
|
814  | 
  (on types @{text nat}, @{text int}, @{text real}).  Any current
 | 
|
815  | 
facts are inserted into the goal before running the procedure.  | 
|
816  | 
||
| 26894 | 817  | 
  The @{attribute (HOL) arith_split} attribute declares case split
 | 
818  | 
rules to be expanded before the arithmetic procedure is invoked.  | 
|
| 26849 | 819  | 
|
820  | 
Note that a simpler (but faster) version of arithmetic reasoning is  | 
|
821  | 
already performed by the Simplifier.  | 
|
822  | 
*}  | 
|
823  | 
||
824  | 
||
825  | 
section {* Cases and induction: emulating tactic scripts \label{sec:hol-induct-tac} *}
 | 
|
826  | 
||
827  | 
text {*
 | 
|
828  | 
The following important tactical tools of Isabelle/HOL have been  | 
|
829  | 
ported to Isar. These should be never used in proper proof texts!  | 
|
830  | 
||
831  | 
  \begin{matharray}{rcl}
 | 
|
832  | 
    @{method_def (HOL) case_tac}@{text "\<^sup>*"} & : & \isarmeth \\
 | 
|
833  | 
    @{method_def (HOL) induct_tac}@{text "\<^sup>*"} & : & \isarmeth \\
 | 
|
834  | 
    @{method_def (HOL) ind_cases}@{text "\<^sup>*"} & : & \isarmeth \\
 | 
|
835  | 
    @{command_def (HOL) "inductive_cases"} & : & \isartrans{theory}{theory} \\
 | 
|
836  | 
  \end{matharray}
 | 
|
837  | 
||
838  | 
  \begin{rail}
 | 
|
839  | 
'case\_tac' goalspec? term rule?  | 
|
840  | 
;  | 
|
841  | 
'induct\_tac' goalspec? (insts * 'and') rule?  | 
|
842  | 
;  | 
|
843  | 
    'ind\_cases' (prop +) ('for' (name +)) ?
 | 
|
844  | 
;  | 
|
845  | 
'inductive\_cases' (thmdecl? (prop +) + 'and')  | 
|
846  | 
;  | 
|
847  | 
||
848  | 
    rule: ('rule' ':' thmref)
 | 
|
849  | 
;  | 
|
850  | 
  \end{rail}
 | 
|
851  | 
||
852  | 
  \begin{descr}
 | 
|
853  | 
||
854  | 
  \item [@{method (HOL) case_tac} and @{method (HOL) induct_tac}]
 | 
|
855  | 
admit to reason about inductive datatypes only (unless an  | 
|
856  | 
  alternative rule is given explicitly).  Furthermore, @{method (HOL)
 | 
|
857  | 
  case_tac} does a classical case split on booleans; @{method (HOL)
 | 
|
858  | 
induct_tac} allows only variables to be given as instantiation.  | 
|
859  | 
These tactic emulations feature both goal addressing and dynamic  | 
|
860  | 
  instantiation.  Note that named rule cases are \emph{not} provided
 | 
|
861  | 
  as would be by the proper @{method induct} and @{method cases} proof
 | 
|
862  | 
  methods (see \secref{sec:cases-induct}).
 | 
|
863  | 
||
864  | 
  \item [@{method (HOL) ind_cases} and @{command (HOL)
 | 
|
| 26860 | 865  | 
  "inductive_cases"}] provide an interface to the internal @{ML_text
 | 
866  | 
mk_cases} operation. Rules are simplified in an unrestricted  | 
|
867  | 
forward manner.  | 
|
| 26849 | 868  | 
|
869  | 
  While @{method (HOL) ind_cases} is a proof method to apply the
 | 
|
870  | 
  result immediately as elimination rules, @{command (HOL)
 | 
|
871  | 
"inductive_cases"} provides case split theorems at the theory level  | 
|
872  | 
  for later use.  The @{keyword "for"} argument of the @{method (HOL)
 | 
|
873  | 
ind_cases} method allows to specify a list of variables that should  | 
|
874  | 
be generalized before applying the resulting rule.  | 
|
875  | 
||
876  | 
  \end{descr}
 | 
|
877  | 
*}  | 
|
878  | 
||
879  | 
||
880  | 
section {* Executable code *}
 | 
|
881  | 
||
882  | 
text {*
 | 
|
883  | 
Isabelle/Pure provides two generic frameworks to support code  | 
|
884  | 
generation from executable specifications. Isabelle/HOL  | 
|
885  | 
instantiates these mechanisms in a way that is amenable to end-user  | 
|
886  | 
applications.  | 
|
887  | 
||
888  | 
One framework generates code from both functional and relational  | 
|
889  | 
  programs to SML.  See \cite{isabelle-HOL} for further information
 | 
|
890  | 
(this actually covers the new-style theory format as well).  | 
|
891  | 
||
892  | 
  \begin{matharray}{rcl}
 | 
|
893  | 
    @{command_def (HOL) "value"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
 | 
|
894  | 
    @{command_def (HOL) "code_module"} & : & \isartrans{theory}{theory} \\
 | 
|
895  | 
    @{command_def (HOL) "code_library"} & : & \isartrans{theory}{theory} \\
 | 
|
896  | 
    @{command_def (HOL) "consts_code"} & : & \isartrans{theory}{theory} \\
 | 
|
897  | 
    @{command_def (HOL) "types_code"} & : & \isartrans{theory}{theory} \\  
 | 
|
898  | 
    @{attribute_def (HOL) code} & : & \isaratt \\
 | 
|
899  | 
  \end{matharray}
 | 
|
900  | 
||
901  | 
  \begin{rail}
 | 
|
902  | 
'value' term  | 
|
903  | 
;  | 
|
904  | 
||
905  | 
( 'code\_module' | 'code\_library' ) modespec ? name ? \\  | 
|
906  | 
( 'file' name ) ? ( 'imports' ( name + ) ) ? \\  | 
|
907  | 
'contains' ( ( name '=' term ) + | term + )  | 
|
908  | 
;  | 
|
909  | 
||
910  | 
  modespec: '(' ( name * ) ')'
 | 
|
911  | 
;  | 
|
912  | 
||
913  | 
'consts\_code' (codespec +)  | 
|
914  | 
;  | 
|
915  | 
||
916  | 
codespec: const template attachment ?  | 
|
917  | 
;  | 
|
918  | 
||
919  | 
'types\_code' (tycodespec +)  | 
|
920  | 
;  | 
|
921  | 
||
922  | 
tycodespec: name template attachment ?  | 
|
923  | 
;  | 
|
924  | 
||
925  | 
const: term  | 
|
926  | 
;  | 
|
927  | 
||
928  | 
  template: '(' string ')'
 | 
|
929  | 
;  | 
|
930  | 
||
931  | 
attachment: 'attach' modespec ? verblbrace text verbrbrace  | 
|
932  | 
;  | 
|
933  | 
||
934  | 
'code' (name)?  | 
|
935  | 
;  | 
|
936  | 
  \end{rail}
 | 
|
937  | 
||
938  | 
  \begin{descr}
 | 
|
939  | 
||
940  | 
  \item [@{command (HOL) "value"}~@{text t}] evaluates and prints a
 | 
|
941  | 
term using the code generator.  | 
|
942  | 
||
943  | 
  \end{descr}
 | 
|
944  | 
||
945  | 
\medskip The other framework generates code from functional programs  | 
|
946  | 
  (including overloading using type classes) to SML \cite{SML}, OCaml
 | 
|
947  | 
  \cite{OCaml} and Haskell \cite{haskell-revised-report}.
 | 
|
948  | 
Conceptually, code generation is split up in three steps:  | 
|
949  | 
  \emph{selection} of code theorems, \emph{translation} into an
 | 
|
950  | 
  abstract executable view and \emph{serialization} to a specific
 | 
|
951  | 
  \emph{target language}.  See \cite{isabelle-codegen} for an
 | 
|
952  | 
introduction on how to use it.  | 
|
953  | 
||
954  | 
  \begin{matharray}{rcl}
 | 
|
955  | 
    @{command_def (HOL) "export_code"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
 | 
|
956  | 
    @{command_def (HOL) "code_thms"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
 | 
|
957  | 
    @{command_def (HOL) "code_deps"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
 | 
|
958  | 
    @{command_def (HOL) "code_datatype"} & : & \isartrans{theory}{theory} \\
 | 
|
959  | 
    @{command_def (HOL) "code_const"} & : & \isartrans{theory}{theory} \\
 | 
|
960  | 
    @{command_def (HOL) "code_type"} & : & \isartrans{theory}{theory} \\
 | 
|
961  | 
    @{command_def (HOL) "code_class"} & : & \isartrans{theory}{theory} \\
 | 
|
962  | 
    @{command_def (HOL) "code_instance"} & : & \isartrans{theory}{theory} \\
 | 
|
963  | 
    @{command_def (HOL) "code_monad"} & : & \isartrans{theory}{theory} \\
 | 
|
964  | 
    @{command_def (HOL) "code_reserved"} & : & \isartrans{theory}{theory} \\
 | 
|
965  | 
    @{command_def (HOL) "code_include"} & : & \isartrans{theory}{theory} \\
 | 
|
966  | 
    @{command_def (HOL) "code_modulename"} & : & \isartrans{theory}{theory} \\
 | 
|
967  | 
    @{command_def (HOL) "code_exception"} & : & \isartrans{theory}{theory} \\
 | 
|
968  | 
    @{command_def (HOL) "print_codesetup"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
 | 
|
969  | 
    @{attribute_def (HOL) code} & : & \isaratt \\
 | 
|
970  | 
  \end{matharray}
 | 
|
971  | 
||
972  | 
  \begin{rail}
 | 
|
973  | 
'export\_code' ( constexpr + ) ? \\  | 
|
974  | 
( ( 'in' target ( 'module\_name' string ) ? \\  | 
|
975  | 
        ( 'file' ( string | '-' ) ) ? ( '(' args ')' ) ?) + ) ?
 | 
|
976  | 
;  | 
|
977  | 
||
978  | 
'code\_thms' ( constexpr + ) ?  | 
|
979  | 
;  | 
|
980  | 
||
981  | 
'code\_deps' ( constexpr + ) ?  | 
|
982  | 
;  | 
|
983  | 
||
984  | 
const: term  | 
|
985  | 
;  | 
|
986  | 
||
987  | 
constexpr: ( const | 'name.*' | '*' )  | 
|
988  | 
;  | 
|
989  | 
||
990  | 
typeconstructor: nameref  | 
|
991  | 
;  | 
|
992  | 
||
993  | 
class: nameref  | 
|
994  | 
;  | 
|
995  | 
||
996  | 
target: 'OCaml' | 'SML' | 'Haskell'  | 
|
997  | 
;  | 
|
998  | 
||
999  | 
'code\_datatype' const +  | 
|
1000  | 
;  | 
|
1001  | 
||
1002  | 
'code\_const' (const + 'and') \\  | 
|
1003  | 
      ( ( '(' target ( syntax ? + 'and' ) ')' ) + )
 | 
|
1004  | 
;  | 
|
1005  | 
||
1006  | 
'code\_type' (typeconstructor + 'and') \\  | 
|
1007  | 
      ( ( '(' target ( syntax ? + 'and' ) ')' ) + )
 | 
|
1008  | 
;  | 
|
1009  | 
||
1010  | 
'code\_class' (class + 'and') \\  | 
|
1011  | 
      ( ( '(' target \\
 | 
|
1012  | 
        ( ( string ('where' \\
 | 
|
1013  | 
( const ( '==' | equiv ) string ) + ) ? ) ? + 'and' ) ')' ) + )  | 
|
1014  | 
;  | 
|
1015  | 
||
1016  | 
'code\_instance' (( typeconstructor '::' class ) + 'and') \\  | 
|
1017  | 
      ( ( '(' target ( '-' ? + 'and' ) ')' ) + )
 | 
|
1018  | 
;  | 
|
1019  | 
||
1020  | 
'code\_monad' const const target  | 
|
1021  | 
;  | 
|
1022  | 
||
1023  | 
'code\_reserved' target ( string + )  | 
|
1024  | 
;  | 
|
1025  | 
||
1026  | 
'code\_include' target ( string ( string | '-') )  | 
|
1027  | 
;  | 
|
1028  | 
||
1029  | 
'code\_modulename' target ( ( string string ) + )  | 
|
1030  | 
;  | 
|
1031  | 
||
1032  | 
'code\_exception' ( const + )  | 
|
1033  | 
;  | 
|
1034  | 
||
1035  | 
syntax: string | ( 'infix' | 'infixl' | 'infixr' ) nat string  | 
|
1036  | 
;  | 
|
1037  | 
||
1038  | 
    'code' ('func' | 'inline') ( 'del' )?
 | 
|
1039  | 
;  | 
|
1040  | 
  \end{rail}
 | 
|
1041  | 
||
1042  | 
  \begin{descr}
 | 
|
1043  | 
||
1044  | 
  \item [@{command (HOL) "export_code"}] is the canonical interface
 | 
|
1045  | 
for generating and serializing code: for a given list of constants,  | 
|
1046  | 
code is generated for the specified target languages. Abstract code  | 
|
1047  | 
is cached incrementally. If no constant is given, the currently  | 
|
1048  | 
cached code is serialized. If no serialization instruction is  | 
|
1049  | 
given, only abstract code is cached.  | 
|
1050  | 
||
1051  | 
Constants may be specified by giving them literally, referring to  | 
|
1052  | 
  all executable contants within a certain theory by giving @{text
 | 
|
1053  | 
  "name.*"}, or referring to \emph{all} executable constants currently
 | 
|
1054  | 
  available by giving @{text "*"}.
 | 
|
1055  | 
||
1056  | 
By default, for each involved theory one corresponding name space  | 
|
1057  | 
module is generated. Alternativly, a module name may be specified  | 
|
1058  | 
  after the @{keyword "module_name"} keyword; then \emph{all} code is
 | 
|
1059  | 
placed in this module.  | 
|
1060  | 
||
1061  | 
  For \emph{SML} and \emph{OCaml}, the file specification refers to a
 | 
|
1062  | 
  single file; for \emph{Haskell}, it refers to a whole directory,
 | 
|
1063  | 
where code is generated in multiple files reflecting the module  | 
|
1064  | 
  hierarchy.  The file specification ``@{text "-"}'' denotes standard
 | 
|
1065  | 
  output.  For \emph{SML}, omitting the file specification compiles
 | 
|
1066  | 
code internally in the context of the current ML session.  | 
|
1067  | 
||
1068  | 
Serializers take an optional list of arguments in parentheses. For  | 
|
1069  | 
  \emph{Haskell} a module name prefix may be given using the ``@{text
 | 
|
1070  | 
  "root:"}'' argument; ``@{text string_classes}'' adds a ``@{verbatim
 | 
|
1071  | 
"deriving (Read, Show)"}'' clause to each appropriate datatype  | 
|
1072  | 
declaration.  | 
|
1073  | 
||
1074  | 
  \item [@{command (HOL) "code_thms"}] prints a list of theorems
 | 
|
1075  | 
representing the corresponding program containing all given  | 
|
1076  | 
constants; if no constants are given, the currently cached code  | 
|
1077  | 
theorems are printed.  | 
|
1078  | 
||
1079  | 
  \item [@{command (HOL) "code_deps"}] visualizes dependencies of
 | 
|
1080  | 
theorems representing the corresponding program containing all given  | 
|
1081  | 
constants; if no constants are given, the currently cached code  | 
|
1082  | 
theorems are visualized.  | 
|
1083  | 
||
1084  | 
  \item [@{command (HOL) "code_datatype"}] specifies a constructor set
 | 
|
1085  | 
for a logical type.  | 
|
1086  | 
||
1087  | 
  \item [@{command (HOL) "code_const"}] associates a list of constants
 | 
|
1088  | 
with target-specific serializations; omitting a serialization  | 
|
1089  | 
deletes an existing serialization.  | 
|
1090  | 
||
1091  | 
  \item [@{command (HOL) "code_type"}] associates a list of type
 | 
|
1092  | 
constructors with target-specific serializations; omitting a  | 
|
1093  | 
serialization deletes an existing serialization.  | 
|
1094  | 
||
1095  | 
  \item [@{command (HOL) "code_class"}] associates a list of classes
 | 
|
1096  | 
with target-specific class names; in addition, constants associated  | 
|
1097  | 
with this class may be given target-specific names used for instance  | 
|
1098  | 
declarations; omitting a serialization deletes an existing  | 
|
1099  | 
  serialization.  This applies only to \emph{Haskell}.
 | 
|
1100  | 
||
1101  | 
  \item [@{command (HOL) "code_instance"}] declares a list of type
 | 
|
1102  | 
constructor / class instance relations as ``already present'' for a  | 
|
1103  | 
  given target.  Omitting a ``@{text "-"}'' deletes an existing
 | 
|
1104  | 
``already present'' declaration. This applies only to  | 
|
1105  | 
  \emph{Haskell}.
 | 
|
1106  | 
||
1107  | 
  \item [@{command (HOL) "code_monad"}] provides an auxiliary
 | 
|
1108  | 
mechanism to generate monadic code.  | 
|
1109  | 
||
1110  | 
  \item [@{command (HOL) "code_reserved"}] declares a list of names as
 | 
|
1111  | 
reserved for a given target, preventing it to be shadowed by any  | 
|
1112  | 
generated code.  | 
|
1113  | 
||
1114  | 
  \item [@{command (HOL) "code_include"}] adds arbitrary named content
 | 
|
1115  | 
  (``include'') to generated code.  A as last argument ``@{text "-"}''
 | 
|
1116  | 
will remove an already added ``include''.  | 
|
1117  | 
||
1118  | 
  \item [@{command (HOL) "code_modulename"}] declares aliasings from
 | 
|
1119  | 
one module name onto another.  | 
|
1120  | 
||
1121  | 
  \item [@{command (HOL) "code_exception"}] declares constants which
 | 
|
1122  | 
are not required to have a definition by a defining equations; these  | 
|
1123  | 
are mapped on exceptions instead.  | 
|
1124  | 
||
1125  | 
  \item [@{attribute (HOL) code}~@{text func}] explicitly selects (or
 | 
|
1126  | 
  with option ``@{text "del:"}'' deselects) a defining equation for
 | 
|
1127  | 
code generation. Usually packages introducing defining equations  | 
|
1128  | 
provide a resonable default setup for selection.  | 
|
1129  | 
||
1130  | 
  \item [@{attribute (HOL) code}@{text inline}] declares (or with
 | 
|
1131  | 
  option ``@{text "del:"}'' removes) inlining theorems which are
 | 
|
1132  | 
applied as rewrite rules to any defining equation during  | 
|
1133  | 
preprocessing.  | 
|
1134  | 
||
1135  | 
  \item [@{command (HOL) "print_codesetup"}] gives an overview on
 | 
|
1136  | 
selected defining equations, code generator datatypes and  | 
|
1137  | 
preprocessor setup.  | 
|
1138  | 
||
1139  | 
  \end{descr}
 | 
|
1140  | 
*}  | 
|
1141  | 
||
| 26840 | 1142  | 
end  |