author | wenzelm |
Mon, 09 Dec 1996 16:41:04 +0100 | |
changeset 2348 | b51e104ecf40 |
parent 2275 | dbce3dce821a |
child 2355 | ee9bdbe2ac8a |
permissions | -rw-r--r-- |
2275 | 1 |
(* Title: HOLCF/One.ML |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
2 |
ID: $Id$ |
1461 | 3 |
Author: Franz Regensburger |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
4 |
Copyright 1993 Technische Universitaet Muenchen |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
5 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
6 |
Lemmas for one.thy |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
7 |
*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
8 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
9 |
open One; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
10 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
11 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
12 |
(* Exhaustion and Elimination for type one *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
13 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
14 |
|
892 | 15 |
qed_goalw "Exh_one" One.thy [one_def] "z=UU | z = one" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
16 |
(fn prems => |
1461 | 17 |
[ |
2275 | 18 |
(res_inst_tac [("p","rep_one`z")] upE1 1), |
1461 | 19 |
(rtac disjI1 1), |
20 |
(rtac ((abs_one_iso RS allI) RS ((rep_one_iso RS allI) RS iso_strict ) |
|
21 |
RS conjunct2 RS subst) 1), |
|
22 |
(rtac (abs_one_iso RS subst) 1), |
|
23 |
(etac cfun_arg_cong 1), |
|
24 |
(rtac disjI2 1), |
|
25 |
(rtac (abs_one_iso RS subst) 1), |
|
26 |
(rtac cfun_arg_cong 1), |
|
27 |
(rtac (unique_void2 RS subst) 1), |
|
28 |
(atac 1) |
|
29 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
30 |
|
892 | 31 |
qed_goal "oneE" One.thy |
1461 | 32 |
"[| p=UU ==> Q; p = one ==>Q|] ==>Q" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
33 |
(fn prems => |
1461 | 34 |
[ |
35 |
(rtac (Exh_one RS disjE) 1), |
|
36 |
(eresolve_tac prems 1), |
|
37 |
(eresolve_tac prems 1) |
|
38 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
39 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
40 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
41 |
(* distinctness for type one : stored in a list *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
42 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
43 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
44 |
val dist_less_one = [ |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
45 |
prove_goalw One.thy [one_def] "~one << UU" |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
46 |
(fn prems => |
1461 | 47 |
[ |
48 |
(rtac classical3 1), |
|
2275 | 49 |
(rtac less_up4b 1), |
1461 | 50 |
(rtac (rep_one_iso RS subst) 1), |
51 |
(rtac (rep_one_iso RS subst) 1), |
|
52 |
(rtac monofun_cfun_arg 1), |
|
53 |
(etac ((abs_one_iso RS allI) RS ((rep_one_iso RS allI) RS iso_strict ) |
|
54 |
RS conjunct2 RS ssubst) 1) |
|
55 |
]) |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
56 |
]; |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
57 |
|
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
58 |
val dist_eq_one = [prove_goal One.thy "one~=UU" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
59 |
(fn prems => |
1461 | 60 |
[ |
61 |
(rtac not_less2not_eq 1), |
|
62 |
(resolve_tac dist_less_one 1) |
|
63 |
])]; |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
64 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
65 |
val dist_eq_one = dist_eq_one @ (map (fn thm => (thm RS not_sym)) dist_eq_one); |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
66 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
67 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
68 |
(* one is flat *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
69 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
70 |
|
2275 | 71 |
qed_goalw "flat_one" One.thy [flat_def] "flat one" |
625 | 72 |
(fn prems => |
1461 | 73 |
[ |
74 |
(rtac allI 1), |
|
75 |
(rtac allI 1), |
|
76 |
(res_inst_tac [("p","x")] oneE 1), |
|
77 |
(Asm_simp_tac 1), |
|
78 |
(res_inst_tac [("p","y")] oneE 1), |
|
79 |
(asm_simp_tac (!simpset addsimps dist_less_one) 1), |
|
80 |
(Asm_simp_tac 1) |
|
81 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
82 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
83 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
84 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
85 |
(* properties of one_when *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
86 |
(* here I tried a generic prove procedure *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
87 |
(* ------------------------------------------------------------------------ *) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
88 |
|
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
89 |
fun prover s = prove_goalw One.thy [one_when_def,one_def] s |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
90 |
(fn prems => |
1461 | 91 |
[ |
92 |
(simp_tac (!simpset addsimps [(rep_one_iso ), |
|
93 |
(abs_one_iso RS allI) RS ((rep_one_iso RS allI) |
|
94 |
RS iso_strict) RS conjunct1] )1) |
|
95 |
]); |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
96 |
|
1168
74be52691d62
The curried version of HOLCF is now just called HOLCF. The old
regensbu
parents:
892
diff
changeset
|
97 |
val one_when = map prover ["one_when`x`UU = UU","one_when`x`one = x"]; |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
98 |