104
|
1 |
ruleshell.ML lemmas.ML set.ML fun.ML subset.ML equalities.ML prod.ML sum.ML wf.ML mono.ML fixedpt.ML nat.ML list.ML
|
|
2 |
----------------------------------------------------------------
|
|
3 |
ruleshell.ML
|
|
4 |
|
|
5 |
\idx{refl} t = t::'a
|
|
6 |
\idx{subst} [| s = t; P(s) |] ==> P(t::'a)
|
|
7 |
\idx{abs},!!x::'a. f(x)::'b = g(x)) ==> (%x.f(x)) = (%x.g(x)))
|
|
8 |
\idx{disch} (P ==> Q) ==> P-->Q
|
|
9 |
\idx{mp} [| P-->Q; P |] ==> Q
|
|
10 |
|
|
11 |
\idx{True_def} True = ((%x.x)=(%x.x))
|
|
12 |
\idx{All_def} All = (%P. P = (%x.True))
|
|
13 |
\idx{Ex_def} Ex = (%P. P(Eps(P)))
|
|
14 |
\idx{False_def} False = (!P.P)
|
|
15 |
\idx{not_def} not = (%P. P-->False)
|
|
16 |
\idx{and_def} op & = (%P Q. !R. (P-->Q-->R) --> R)
|
|
17 |
\idx{or_def} op | = (%P Q. !R. (P-->R) --> (Q-->R) --> R)
|
|
18 |
\idx{Ex1_def} Ex1 == (%P. ? x. P(x) & (! y. P(y) --> y=x))
|
|
19 |
|
|
20 |
\idx{iff} (P-->Q) --> (Q-->P) --> (P=Q)
|
|
21 |
\idx{True_or_False} (P=True) | (P=False)
|
|
22 |
\idx{select} P(x::'a) --> P(Eps(P))
|
|
23 |
|
|
24 |
\idx{Inv_def} Inv = (%(f::'a=>'b) y. @x. f(x)=y)
|
|
25 |
\idx{o_def} op o = (%(f::'b=>'c) g (x::'a). f(g(x)))
|
|
26 |
\idx{Cond_def} Cond = (%P x y.@z::'a. (P=True --> z=x) & (P=False --> z=y))
|
|
27 |
|
|
28 |
----------------------------------------------------------------
|
|
29 |
lemmas.ML
|
|
30 |
|
|
31 |
\idx{sym} s=t ==> t=s
|
|
32 |
\idx{trans} [| r=s; s=t |] ==> r=t
|
|
33 |
\idx{box_equals}
|
|
34 |
[| a=b; a=c; b=d |] ==> c=d
|
|
35 |
\idx{ap_term} s=t ==> f(s)=f(t)
|
|
36 |
\idx{ap_thm} s::'a=>'b = t ==> s(x)=t(x)
|
|
37 |
\idx{cong}
|
|
38 |
[| f = g; x::'a = y |] ==> f(x) = g(y)
|
|
39 |
\idx{iffI}
|
|
40 |
[| P ==> Q; Q ==> P |] ==> P=Q
|
|
41 |
\idx{iffD1} [| P=Q; Q |] ==> P
|
|
42 |
\idx{iffE}
|
|
43 |
[| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R
|
|
44 |
\idx{eqTrueI} P ==> P=True
|
|
45 |
\idx{eqTrueE} P=True ==> P
|
|
46 |
\idx{allI} (!!x::'a. P(x)) ==> !x. P(x)
|
|
47 |
\idx{spec} !x::'a.P(x) ==> P(x)
|
|
48 |
\idx{allE} [| !x.P(x); P(x) ==> R |] ==> R
|
|
49 |
\idx{all_dupE}
|
|
50 |
[| ! x.P(x); [| P(x); ! x.P(x) |] ==> R
|
|
51 |
|] ==> R
|
|
52 |
\idx{FalseE} False ==> P
|
|
53 |
\idx{False_neq_True} False=True ==> P
|
|
54 |
\idx{notI} (P ==> False) ==> ~P
|
|
55 |
\idx{notE} [| ~P; P |] ==> R
|
|
56 |
\idx{impE} [| P-->Q; P; Q ==> R |] ==> R
|
|
57 |
\idx{rev_mp} [| P; P --> Q |] ==> Q
|
|
58 |
\idx{contrapos} [| ~Q; P==>Q |] ==> ~P
|
|
59 |
\idx{exI} P(x) ==> ? x::'a.P(x)
|
|
60 |
\idx{exE} [| ? x::'a.P(x); !!x. P(x) ==> Q |] ==> Q
|
|
61 |
|
|
62 |
\idx{conjI} [| P; Q |] ==> P&Q
|
|
63 |
\idx{conjunct1} [| P & Q |] ==> P
|
|
64 |
\idx{conjunct2} [| P & Q |] ==> Q
|
|
65 |
\idx{conjE} [| P&Q; [| P; Q |] ==> R |] ==> R
|
|
66 |
\idx{disjI1} P ==> P|Q
|
|
67 |
\idx{disjI2} Q ==> P|Q
|
|
68 |
\idx{disjE} [| P | Q; P ==> R; Q ==> R |] ==> R
|
|
69 |
\idx{ccontr} (~P ==> False) ==> P
|
|
70 |
\idx{classical} (~P ==> P) ==> P
|
|
71 |
\idx{notnotD} ~~P ==> P
|
|
72 |
\idx{ex1I}
|
|
73 |
[| P(a); !!x. P(x) ==> x=a |] ==> ?! x. P(x)
|
|
74 |
\idx{ex1E}
|
|
75 |
[| ?! x.P(x); !!x. [| P(x); ! y. P(y) --> y=x |] ==> R |] ==> R
|
|
76 |
\idx{select_equality}
|
|
77 |
[| P(a); !!x. P(x) ==> x=a |] ==> (@x.P(x)) = a
|
|
78 |
\idx{disjCI} (~Q ==> P) ==> P|Q
|
|
79 |
\idx{excluded_middle} ~P | P
|
|
80 |
\idx{impCE} [| P-->Q; ~P ==> R; Q ==> R |] ==> R
|
|
81 |
\idx{iffCE}
|
|
82 |
[| P=Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R
|
|
83 |
\idx{exCI} (! x. ~P(x) ==> P(a)) ==> ? x.P(x)
|
|
84 |
\idx{swap} ~P ==> (~Q ==> P) ==> Q
|
|
85 |
|
|
86 |
----------------------------------------------------------------
|
|
87 |
simpdata.ML
|
|
88 |
|
|
89 |
\idx{if_True} Cond(True,x,y) = x
|
|
90 |
\idx{if_False} Cond(False,x,y) = y
|
|
91 |
\idx{if_P} P ==> Cond(P,x,y) = x
|
|
92 |
\idx{if_not_P} ~P ==> Cond(P,x,y) = y
|
|
93 |
\idx{expand_if}
|
|
94 |
P(Cond(Q,x,y)) = ((Q --> P(x)) & (~Q --> P(y)))
|
|
95 |
|
|
96 |
----------------------------------------------------------------
|
|
97 |
\idx{set.ML}
|
|
98 |
|
|
99 |
\idx{CollectI} [| P(a) |] ==> a : \{x.P(x)\}
|
|
100 |
\idx{CollectD} [| a : \{x.P(x)\} |] ==> P(a)
|
|
101 |
\idx{set_ext} [| !!x. (x:A) = (x:B) |] ==> A = B
|
|
102 |
|
|
103 |
\idx{Ball_def} Ball(A,P) == ! x. x:A --> P(x)
|
|
104 |
\idx{Bex_def} Bex(A,P) == ? x. x:A & P(x)
|
|
105 |
\idx{subset_def} A <= B == ! x:A. x:B
|
|
106 |
\idx{Un_def} A Un B == \{x.x:A | x:B\}
|
|
107 |
\idx{Int_def} A Int B == \{x.x:A & x:B\}
|
|
108 |
\idx{Compl_def} Compl(A) == \{x. ~x:A\}
|
|
109 |
\idx{Inter_def} Inter(S) == \{x. ! A:S. x:A\}
|
|
110 |
\idx{Union_def} Union(S) == \{x. ? A:S. x:A\}
|
|
111 |
\idx{INTER_def} INTER(A,B) == \{y. ! x:A. y: B(x)\}
|
|
112 |
\idx{UNION_def} UNION(A,B) == \{y. ? x:A. y: B(x)\}
|
|
113 |
\idx{mono_def} mono(f) == (!A B. A <= B --> f(A) <= f(B))
|
|
114 |
\idx{image_def} f``A == \{y. ? x:A. y=f(x)\}
|
|
115 |
\idx{singleton_def} \{a\} == \{x.x=a\}
|
|
116 |
\idx{range_def} range(f) == \{y. ? x. y=f(x)\}
|
|
117 |
\idx{One_One_def} One_One(f) == ! x y. f(x)=f(y) --> x=y
|
|
118 |
\idx{One_One_on_def} One_One_on(f,A) == !x y. x:A --> y:A --> f(x)=f(y) --> x=y
|
|
119 |
\idx{Onto_def} Onto(f) == ! y. ? x. y=f(x)
|
|
120 |
|
|
121 |
|
|
122 |
\idx{Collect_cong} [| !!x. P(x)=Q(x) |] ==> \{x. P(x)\} = \{x. Q(x)\}
|
|
123 |
|
|
124 |
\idx{ballI} [| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)
|
|
125 |
\idx{bspec} [| ! x:A. P(x); x:A |] ==> P(x)
|
|
126 |
\idx{ballE} [| ! x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q
|
|
127 |
|
|
128 |
\idx{bexI} [| P(x); x:A |] ==> ? x:A. P(x)
|
|
129 |
\idx{bexCI} [| ! x:A. ~P(x) ==> P(a); a:A |] ==> ? x:A.P(x)
|
|
130 |
\idx{bexE} [| ? x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q
|
|
131 |
|
|
132 |
\idx{ball_cong}
|
|
133 |
[| A=A'; !!x. x:A' ==> P(x) = P'(x) |] ==>
|
|
134 |
(! x:A. P(x)) = (! x:A'. P'(x))
|
|
135 |
|
|
136 |
\idx{bex_cong}
|
|
137 |
[| A=A'; !!x. x:A' ==> P(x) = P'(x) |] ==>
|
|
138 |
(? x:A. P(x)) = (? x:A'. P'(x))
|
|
139 |
|
|
140 |
\idx{subsetI} (!!x.x:A ==> x:B) ==> A <= B
|
|
141 |
\idx{subsetD} [| A <= B; c:A |] ==> c:B
|
|
142 |
\idx{subsetCE} [| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P
|
|
143 |
|
|
144 |
\idx{subset_refl} A <= A
|
|
145 |
\idx{subset_antisym} [| A <= B; B <= A |] ==> A = B
|
|
146 |
\idx{subset_trans} [| A<=B; B<=C |] ==> A<=C
|
|
147 |
|
|
148 |
\idx{equalityD1} A = B ==> A<=B
|
|
149 |
\idx{equalityD2} A = B ==> B<=A
|
|
150 |
\idx{equalityE} [| A = B; [| A<=B; B<=A |] ==> P |] ==> P
|
|
151 |
|
|
152 |
\idx{singletonI} a : \{a\}
|
|
153 |
\idx{singletonD} b : \{a\} ==> b=a
|
|
154 |
|
|
155 |
\idx{imageI} [| x:A |] ==> f(x) : f``A
|
|
156 |
\idx{imageE} [| b : f``A; !!x.[| b=f(x); x:A |] ==> P |] ==> P
|
|
157 |
|
|
158 |
\idx{rangeI} f(x) : range(f)
|
|
159 |
\idx{rangeE} [| b : range(f); !!x.[| b=f(x) |] ==> P |] ==> P
|
|
160 |
|
|
161 |
\idx{UnionI} [| X:C; A:X |] ==> A : Union(C)
|
|
162 |
\idx{UnionE} [| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R
|
|
163 |
|
|
164 |
\idx{InterI} [| !!X. X:C ==> A:X |] ==> A : Inter(C)
|
|
165 |
\idx{InterD} [| A : Inter(C); X:C |] ==> A:X
|
|
166 |
\idx{InterE} [| A : Inter(C); A:X ==> R; ~ X:C ==> R |] ==> R
|
|
167 |
|
|
168 |
\idx{UN_I} [| a:A; b: B(a) |] ==> b: (UN x:A. B(x))
|
|
169 |
\idx{UN_E} [| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R
|
|
170 |
|
|
171 |
\idx{INT_I} (!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))
|
|
172 |
\idx{INT_D} [| b : (INT x:A. B(x)); a:A |] ==> b: B(a)
|
|
173 |
\idx{INT_E} [| b : (INT x:A. B(x)); b: B(a) ==> R; ~ a:A ==> R |] ==> R
|
|
174 |
|
|
175 |
\idx{UnI1} c:A ==> c : A Un B
|
|
176 |
\idx{UnI2} c:B ==> c : A Un B
|
|
177 |
\idx{UnCI} (~c:B ==> c:A) ==> c : A Un B
|
|
178 |
\idx{UnE} [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P
|
|
179 |
|
|
180 |
\idx{IntI} [| c:A; c:B |] ==> c : A Int B
|
|
181 |
\idx{IntD1} c : A Int B ==> c:A
|
|
182 |
\idx{IntD2} c : A Int B ==> c:B
|
|
183 |
\idx{IntE} [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P
|
|
184 |
|
|
185 |
\idx{ComplI} [| c:A ==> False |] ==> c : Compl(A)
|
|
186 |
\idx{ComplD} [| c : Compl(A) |] ==> ~c:A
|
|
187 |
|
|
188 |
\idx{monoI} [| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)
|
|
189 |
\idx{monoD} [| mono(f); A <= B |] ==> f(A) <= f(B)
|
|
190 |
|
|
191 |
|
|
192 |
----------------------------------------------------------------
|
|
193 |
\idx{fun.ML}
|
|
194 |
|
|
195 |
\idx{One_OneI} [| !! x y. f(x) = f(y) ==> x=y |] ==> One_One(f)
|
|
196 |
\idx{One_One_inverseI} (!!x. g(f(x)) = x) ==> One_One(f)
|
|
197 |
\idx{One_OneD} [| One_One(f); f(x) = f(y) |] ==> x=y
|
|
198 |
|
|
199 |
\idx{Inv_f_f} One_One(f) ==> Inv(f,f(x)) = x
|
|
200 |
\idx{f_Inv_f} y : range(f) ==> f(Inv(f,y)) = y
|
|
201 |
|
|
202 |
\idx{Inv_injective}
|
|
203 |
[| Inv(f,x)=Inv(f,y); x: range(f); y: range(f) |] ==> x=y
|
|
204 |
|
|
205 |
\idx{One_One_onI}
|
|
206 |
(!! x y. [| f(x) = f(y); x:A; y:A |] ==> x=y) ==> One_One_on(f,A)
|
|
207 |
|
|
208 |
\idx{One_One_on_inverseI}
|
|
209 |
(!!x. x:A ==> g(f(x)) = x) ==> One_One_on(f,A)
|
|
210 |
|
|
211 |
\idx{One_One_onD}
|
|
212 |
[| One_One_on(f,A); f(x)=f(y); x:A; y:A |] ==> x=y
|
|
213 |
|
|
214 |
\idx{One_One_on_contraD}
|
|
215 |
[| One_One_on(f,A); ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)
|
|
216 |
|
|
217 |
|
|
218 |
----------------------------------------------------------------
|
|
219 |
\idx{subset.ML}
|
|
220 |
|
|
221 |
\idx{Union_upper} B:A ==> B <= Union(A)
|
|
222 |
\idx{Union_least} [| !!X. X:A ==> X<=C |] ==> Union(A) <= C
|
|
223 |
|
|
224 |
\idx{Inter_lower} B:A ==> Inter(A) <= B
|
|
225 |
\idx{Inter_greatest} [| !!X. X:A ==> C<=X |] ==> C <= Inter(A)
|
|
226 |
|
|
227 |
\idx{Un_upper1} A <= A Un B
|
|
228 |
\idx{Un_upper2} B <= A Un B
|
|
229 |
\idx{Un_least} [| A<=C; B<=C |] ==> A Un B <= C
|
|
230 |
|
|
231 |
\idx{Int_lower1} A Int B <= A
|
|
232 |
\idx{Int_lower2} A Int B <= B
|
|
233 |
\idx{Int_greatest} [| C<=A; C<=B |] ==> C <= A Int B
|
|
234 |
|
|
235 |
|
|
236 |
----------------------------------------------------------------
|
|
237 |
\idx{equalities.ML}
|
|
238 |
|
|
239 |
\idx{Int_absorb} A Int A = A
|
|
240 |
\idx{Int_commute} A Int B = B Int A
|
|
241 |
\idx{Int_assoc} (A Int B) Int C = A Int (B Int C)
|
|
242 |
\idx{Int_Un_distrib} (A Un B) Int C = (A Int C) Un (B Int C)
|
|
243 |
|
|
244 |
\idx{Un_absorb} A Un A = A
|
|
245 |
\idx{Un_commute} A Un B = B Un A
|
|
246 |
\idx{Un_assoc} (A Un B) Un C = A Un (B Un C)
|
|
247 |
\idx{Un_Int_distrib} (A Int B) Un C = (A Un C) Int (B Un C)
|
|
248 |
|
|
249 |
\idx{Compl_disjoint} A Int Compl(A) = \{x.False\}
|
|
250 |
\idx{Compl_partition A Un Compl(A) = \{x.True\}
|
|
251 |
\idx{double_complement} Compl(Compl(A)) = A
|
|
252 |
|
|
253 |
|
|
254 |
\idx{Compl_Un} Compl(A Un B) = Compl(A) Int Compl(B)
|
|
255 |
\idx{Compl_Int} Compl(A Int B) = Compl(A) Un Compl(B)
|
|
256 |
|
|
257 |
\idx{Union_Un_distrib} Union(A Un B) = Union(A) Un Union(B)
|
|
258 |
\idx{Int_Union_image} A Int Union(B) = (UN C:B. A Int C)
|
|
259 |
\idx{Un_Union_image} (UN x:C. A(x) Un B(x)) = Union(A``C) Un Union(B``C)
|
|
260 |
|
|
261 |
\idx{Inter_Un_distrib} Inter(A Un B) = Inter(A) Int Inter(B)
|
|
262 |
\idx{Un_Inter_image} A Un Inter(B) = (INT C:B. A Un C)
|
|
263 |
\idx{Int_Inter_image} (INT x:C. A(x) Int B(x)) = Inter(A``C) Int Inter(B``C)
|
|
264 |
|
|
265 |
|
|
266 |
----------------------------------------------------------------
|
|
267 |
prod.ML
|
|
268 |
|
|
269 |
mixfix = [ Delimfix((1<_,/_>), ['a,'b] => ('a,'b)prod, Pair),
|
|
270 |
TInfixl(*, prod, 20) ],
|
|
271 |
thy = extend_theory Set.thy Prod
|
|
272 |
[([prod],([[term],[term]],term))],
|
|
273 |
([fst], 'a * 'b => 'a),
|
|
274 |
([snd], 'a * 'b => 'b),
|
|
275 |
([split], ['a * 'b, ['a,'b]=>'c] => 'c)],
|
|
276 |
\idx{fst_def} fst(p) == @a. ? b. p = <a,b>),
|
|
277 |
\idx{snd_def} snd(p) == @b. ? a. p = <a,b>),
|
|
278 |
\idx{split_def} split(p,c) == c(fst(p),snd(p)))
|
|
279 |
|
|
280 |
\idx{Pair_inject} [| <a, b> = <a',b'>; [| a=a'; b=b' |] ==> R |] ==> R
|
|
281 |
|
|
282 |
\idx{fst_conv} fst(<a,b>) = a
|
|
283 |
\idx{snd_conv} snd(<a,b>) = b
|
|
284 |
\idx{split_conv} split(<a,b>, c) = c(a,b)
|
|
285 |
|
|
286 |
\idx{surjective_pairing} p = <fst(p),snd(p)>
|
|
287 |
|
|
288 |
----------------------------------------------------------------
|
|
289 |
sum.ML
|
|
290 |
|
|
291 |
mixfix = [TInfixl(+, sum, 10)],
|
|
292 |
thy = extend_theory Prod.thy sum
|
|
293 |
[([sum], ([[term],[term]],term))],
|
|
294 |
[Inl], 'a => 'a+'b),
|
|
295 |
[Inr], 'b => 'a+'b),
|
|
296 |
[when], ['a+'b, 'a=>'c, 'b=>'c] =>'c)],
|
|
297 |
\idx{when_def} when == (%p f g. @z. (!x. p=Inl(x) --> z=f(x))
|
|
298 |
& (!y. p=Inr(y) --> z=g(y))))
|
|
299 |
|
|
300 |
\idx{Inl_not_Inr} ~ (Inl(a) = Inr(b))
|
|
301 |
|
|
302 |
\idx{One_One_Inl} One_One(Inl)
|
|
303 |
|
|
304 |
\idx{One_One_Inr} One_One(Inr)
|
|
305 |
|
|
306 |
\idx{when_Inl_conv} when(Inl(x), f, g) = f(x)
|
|
307 |
|
|
308 |
\idx{when_Inr_conv} when(Inr(x), f, g) = g(x)
|
|
309 |
|
|
310 |
\idx{sumE}
|
|
311 |
[| !!x::'a. P(Inl(x)); !!y::'b. P(Inr(y))
|
|
312 |
|] ==> P(s)
|
|
313 |
|
|
314 |
\idx{surjective_sum} when(s, %x::'a. f(Inl(x)), %y::'b. f(Inr(y))) = f(s)
|
|
315 |
|
|
316 |
|
|
317 |
????????????????????????????????????????????????????????????????
|
|
318 |
trancl?
|
|
319 |
|
|
320 |
----------------------------------------------------------------
|
|
321 |
nat.ML
|
|
322 |
|
|
323 |
Sext\{mixfix=[Delimfix(0, nat, 0),
|
|
324 |
Infixl(<,[nat,nat] => bool,50)],
|
|
325 |
thy = extend_theory Trancl.thy Nat
|
|
326 |
[nat], ([],term))
|
|
327 |
[nat_case], [nat, 'a, nat=>'a] =>'a),
|
|
328 |
[pred_nat],nat*nat) set),
|
|
329 |
[nat_rec], [nat, 'a, [nat, 'a]=>'a] => 'a)
|
|
330 |
|
|
331 |
\idx{nat_case_def} nat_case == (%n a f. @z. (n=0 --> z=a)
|
|
332 |
& (!x. n=Suc(x) --> z=f(x)))),
|
|
333 |
\idx{pred_nat_def} pred_nat == \{p. ? n. p = <n, Suc(n)>\} ),
|
|
334 |
\idx{less_def} m<n == <m,n>:trancl(pred_nat)),
|
|
335 |
\idx{nat_rec_def}
|
|
336 |
nat_rec(n,c,d) == wfrec(trancl(pred_nat),
|
|
337 |
%rec l. nat_case(l, c, %m. d(m,rec(m))),
|
|
338 |
n) )
|
|
339 |
|
|
340 |
\idx{nat_induct} [| P(0); !!k. [| P(k) |] ==> P(Suc(k)) |] ==> P(n)
|
|
341 |
|
|
342 |
|
|
343 |
\idx{Suc_not_Zero} ~ (Suc(m) = 0)
|
|
344 |
\idx{One_One_Suc} One_One(Suc)
|
|
345 |
\idx{n_not_Suc_n} ~(n=Suc(n))
|
|
346 |
|
|
347 |
\idx{nat_case_0_conv} nat_case(0, a, f) = a
|
|
348 |
|
|
349 |
\idx{nat_case_Suc_conv} nat_case(Suc(k), a, f) = f(k)
|
|
350 |
|
|
351 |
\idx{pred_natI} <n, Suc(n)> : pred_nat
|
|
352 |
\idx{pred_natE}
|
|
353 |
[| p : pred_nat; !!x n. [| p = <n, Suc(n)> |] ==> R
|
|
354 |
|] ==> R
|
|
355 |
|
|
356 |
\idx{wf_pred_nat} wf(pred_nat)
|
|
357 |
|
|
358 |
\idx{nat_rec_0_conv} nat_rec(0,c,h) = c
|
|
359 |
|
|
360 |
\idx{nat_rec_Suc_conv} nat_rec(Suc(n), c, h) = h(n, nat_rec(n,c,h))
|
|
361 |
|
|
362 |
|
|
363 |
(*** Basic properties of less than ***)
|
|
364 |
\idx{less_trans} [| i<j; j<k |] ==> i<k
|
|
365 |
\idx{lessI} n < Suc(n)
|
|
366 |
\idx{zero_less_Suc} 0 < Suc(n)
|
|
367 |
|
|
368 |
\idx{less_not_sym} n<m --> ~m<n
|
|
369 |
\idx{less_not_refl} ~ (n<n)
|
|
370 |
\idx{not_less0} ~ (n<0)
|
|
371 |
|
|
372 |
\idx{Suc_less_eq} (Suc(m) < Suc(n)) = (m<n)
|
|
373 |
\idx{less_induct} [| !!n. [| ! m. m<n --> P(m) |] ==> P(n) |] ==> P(n)
|
|
374 |
|
|
375 |
\idx{less_linear} m<n | m=n | n<m
|
|
376 |
|
|
377 |
|
|
378 |
----------------------------------------------------------------
|
|
379 |
list.ML
|
|
380 |
|
|
381 |
[([list], ([[term]],term))],
|
|
382 |
([Nil], 'a list),
|
|
383 |
([Cons], ['a, 'a list] => 'a list),
|
|
384 |
([list_rec], ['a list, 'b, ['a ,'a list, 'b]=>'b] => 'b),
|
|
385 |
([list_all], ('a => bool) => ('a list => bool)),
|
|
386 |
([map], ('a=>'b) => ('a list => 'b list))
|
|
387 |
|
|
388 |
\idx{map_def} map(f,xs) == list_rec(xs, Nil, %x l r. Cons(f(x), r)) )
|
|
389 |
|
|
390 |
\idx{list_induct}
|
|
391 |
[| P(Nil);
|
|
392 |
!!x xs. [| P(xs) |] ==> P(Cons(x,xs)) |] ==> P(l)
|
|
393 |
|
|
394 |
\idx{Cons_not_Nil} ~ Cons(x,xs) = Nil
|
|
395 |
\idx{Cons_Cons_eq} (Cons(x,xs)=Cons(y,ys)) = (x=y & xs=ys)
|
|
396 |
|
|
397 |
\idx{list_rec_Nil_conv} list_rec(Nil,c,h) = c
|
|
398 |
\idx{list_rec_Cons_conv} list_rec(Cons(a,l), c, h) =
|
|
399 |
h(a, l, list_rec(l,c,h))
|
|
400 |
|
|
401 |
\idx{map_Nil_conv} map(f,Nil) = Nil
|
|
402 |
\idx{map_Cons_conv} map(f, Cons(x,xs)) = Cons(f(x), map(f,xs))
|
|
403 |
|