| author | blanchet | 
| Tue, 20 Mar 2012 00:44:30 +0100 | |
| changeset 47038 | 2409b484e1cc | 
| parent 46565 | ad21900e0ee9 | 
| child 47450 | 2ada2be850cb | 
| permissions | -rw-r--r-- | 
| 35617 | 1 | (* Author: Florian Haftmann, TU Muenchen *) | 
| 2 | ||
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 3 | header {* Abstract type of Red-Black Trees *}
 | 
| 35617 | 4 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 5 | (*<*) | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 6 | theory RBT | 
| 43124 | 7 | imports Main RBT_Impl | 
| 35617 | 8 | begin | 
| 9 | ||
| 10 | subsection {* Type definition *}
 | |
| 11 | ||
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 12 | typedef (open) ('a, 'b) rbt = "{t :: ('a\<Colon>linorder, 'b) RBT_Impl.rbt. is_rbt t}"
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 13 | morphisms impl_of RBT | 
| 45694 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
43124diff
changeset | 14 | proof | 
| 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
43124diff
changeset | 15 |   show "RBT_Impl.Empty \<in> {t. is_rbt t}" by simp
 | 
| 35617 | 16 | qed | 
| 17 | ||
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 18 | lemma rbt_eq_iff: | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 19 | "t1 = t2 \<longleftrightarrow> impl_of t1 = impl_of t2" | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 20 | by (simp add: impl_of_inject) | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 21 | |
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 22 | lemma rbt_eqI: | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 23 | "impl_of t1 = impl_of t2 \<Longrightarrow> t1 = t2" | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 24 | by (simp add: rbt_eq_iff) | 
| 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 25 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 26 | lemma is_rbt_impl_of [simp, intro]: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 27 | "is_rbt (impl_of t)" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 28 | using impl_of [of t] by simp | 
| 35617 | 29 | |
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 30 | lemma RBT_impl_of [simp, code abstype]: | 
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 31 | "RBT (impl_of t) = t" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 32 | by (simp add: impl_of_inverse) | 
| 35617 | 33 | |
| 34 | ||
| 35 | subsection {* Primitive operations *}
 | |
| 36 | ||
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 37 | definition lookup :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a \<rightharpoonup> 'b" where
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 38 | [code]: "lookup t = RBT_Impl.lookup (impl_of t)" | 
| 35617 | 39 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 40 | definition empty :: "('a\<Colon>linorder, 'b) rbt" where
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 41 | "empty = RBT RBT_Impl.Empty" | 
| 35617 | 42 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 43 | lemma impl_of_empty [code abstract]: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 44 | "impl_of empty = RBT_Impl.Empty" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 45 | by (simp add: empty_def RBT_inverse) | 
| 35617 | 46 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 47 | definition insert :: "'a\<Colon>linorder \<Rightarrow> 'b \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 48 | "insert k v t = RBT (RBT_Impl.insert k v (impl_of t))" | 
| 35617 | 49 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 50 | lemma impl_of_insert [code abstract]: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 51 | "impl_of (insert k v t) = RBT_Impl.insert k v (impl_of t)" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 52 | by (simp add: insert_def RBT_inverse) | 
| 35617 | 53 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 54 | definition delete :: "'a\<Colon>linorder \<Rightarrow> ('a, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 55 | "delete k t = RBT (RBT_Impl.delete k (impl_of t))" | 
| 35617 | 56 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 57 | lemma impl_of_delete [code abstract]: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 58 | "impl_of (delete k t) = RBT_Impl.delete k (impl_of t)" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 59 | by (simp add: delete_def RBT_inverse) | 
| 35617 | 60 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 61 | definition entries :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a \<times> 'b) list" where
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 62 | [code]: "entries t = RBT_Impl.entries (impl_of t)" | 
| 35617 | 63 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 64 | definition keys :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'a list" where
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 65 | [code]: "keys t = RBT_Impl.keys (impl_of t)" | 
| 36111 | 66 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 67 | definition bulkload :: "('a\<Colon>linorder \<times> 'b) list \<Rightarrow> ('a, 'b) rbt" where
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 68 | "bulkload xs = RBT (RBT_Impl.bulkload xs)" | 
| 35617 | 69 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 70 | lemma impl_of_bulkload [code abstract]: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 71 | "impl_of (bulkload xs) = RBT_Impl.bulkload xs" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 72 | by (simp add: bulkload_def RBT_inverse) | 
| 35617 | 73 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 74 | definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 75 | "map_entry k f t = RBT (RBT_Impl.map_entry k f (impl_of t))" | 
| 35617 | 76 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 77 | lemma impl_of_map_entry [code abstract]: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 78 | "impl_of (map_entry k f t) = RBT_Impl.map_entry k f (impl_of t)" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 79 | by (simp add: map_entry_def RBT_inverse) | 
| 35617 | 80 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 81 | definition map :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a\<Colon>linorder, 'b) rbt \<Rightarrow> ('a, 'b) rbt" where
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 82 | "map f t = RBT (RBT_Impl.map f (impl_of t))" | 
| 35617 | 83 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 84 | lemma impl_of_map [code abstract]: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 85 | "impl_of (map f t) = RBT_Impl.map f (impl_of t)" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 86 | by (simp add: map_def RBT_inverse) | 
| 35617 | 87 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 88 | definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'c \<Rightarrow> 'c) \<Rightarrow> ('a\<Colon>linorder, 'b) rbt \<Rightarrow> 'c \<Rightarrow> 'c" where
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 89 | [code]: "fold f t = RBT_Impl.fold f (impl_of t)" | 
| 35617 | 90 | |
| 91 | ||
| 92 | subsection {* Derived operations *}
 | |
| 93 | ||
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 94 | definition is_empty :: "('a\<Colon>linorder, 'b) rbt \<Rightarrow> bool" where
 | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 95 | [code]: "is_empty t = (case impl_of t of RBT_Impl.Empty \<Rightarrow> True | _ \<Rightarrow> False)" | 
| 35617 | 96 | |
| 97 | ||
| 98 | subsection {* Abstract lookup properties *}
 | |
| 99 | ||
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 100 | lemma lookup_RBT: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 101 | "is_rbt t \<Longrightarrow> lookup (RBT t) = RBT_Impl.lookup t" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 102 | by (simp add: lookup_def RBT_inverse) | 
| 35617 | 103 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 104 | lemma lookup_impl_of: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 105 | "RBT_Impl.lookup (impl_of t) = lookup t" | 
| 35617 | 106 | by (simp add: lookup_def) | 
| 107 | ||
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 108 | lemma entries_impl_of: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 109 | "RBT_Impl.entries (impl_of t) = entries t" | 
| 35617 | 110 | by (simp add: entries_def) | 
| 111 | ||
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 112 | lemma keys_impl_of: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 113 | "RBT_Impl.keys (impl_of t) = keys t" | 
| 36111 | 114 | by (simp add: keys_def) | 
| 115 | ||
| 35617 | 116 | lemma lookup_empty [simp]: | 
| 117 | "lookup empty = Map.empty" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 118 | by (simp add: empty_def lookup_RBT fun_eq_iff) | 
| 35617 | 119 | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 120 | lemma lookup_insert [simp]: | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 121 | "lookup (insert k v t) = (lookup t)(k \<mapsto> v)" | 
| 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 122 | by (simp add: insert_def lookup_RBT lookup_insert lookup_impl_of) | 
| 35617 | 123 | |
| 124 | lemma lookup_delete [simp]: | |
| 125 | "lookup (delete k t) = (lookup t)(k := None)" | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 126 | by (simp add: delete_def lookup_RBT RBT_Impl.lookup_delete lookup_impl_of restrict_complement_singleton_eq) | 
| 35617 | 127 | |
| 128 | lemma map_of_entries [simp]: | |
| 129 | "map_of (entries t) = lookup t" | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 130 | by (simp add: entries_def map_of_entries lookup_impl_of) | 
| 35617 | 131 | |
| 36111 | 132 | lemma entries_lookup: | 
| 133 | "entries t1 = entries t2 \<longleftrightarrow> lookup t1 = lookup t2" | |
| 134 | by (simp add: entries_def lookup_def entries_lookup) | |
| 135 | ||
| 35617 | 136 | lemma lookup_bulkload [simp]: | 
| 137 | "lookup (bulkload xs) = map_of xs" | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 138 | by (simp add: bulkload_def lookup_RBT RBT_Impl.lookup_bulkload) | 
| 35617 | 139 | |
| 140 | lemma lookup_map_entry [simp]: | |
| 141 | "lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))" | |
| 37027 | 142 | by (simp add: map_entry_def lookup_RBT RBT_Impl.lookup_map_entry lookup_impl_of) | 
| 35617 | 143 | |
| 144 | lemma lookup_map [simp]: | |
| 145 | "lookup (map f t) k = Option.map (f k) (lookup t k)" | |
| 40612 
7ae5b89d8913
proper qualification needed due to shadowing on theory merge
 haftmann parents: 
39380diff
changeset | 146 | by (simp add: map_def lookup_RBT RBT_Impl.lookup_map lookup_impl_of) | 
| 35617 | 147 | |
| 148 | lemma fold_fold: | |
| 46133 
d9fe85d3d2cd
incorporated canonical fold combinator on lists into body of List theory; refactored passages on List.fold(l/r)
 haftmann parents: 
45928diff
changeset | 149 | "fold f t = List.fold (prod_case f) (entries t)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 150 | by (simp add: fold_def fun_eq_iff RBT_Impl.fold_def entries_impl_of) | 
| 35617 | 151 | |
| 36111 | 152 | lemma is_empty_empty [simp]: | 
| 153 | "is_empty t \<longleftrightarrow> t = empty" | |
| 39380 
5a2662c1e44a
established emerging canonical names *_eqI and *_eq_iff
 haftmann parents: 
39302diff
changeset | 154 | by (simp add: rbt_eq_iff is_empty_def impl_of_empty split: rbt.split) | 
| 36111 | 155 | |
| 156 | lemma RBT_lookup_empty [simp]: (*FIXME*) | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 157 | "RBT_Impl.lookup t = Map.empty \<longleftrightarrow> t = RBT_Impl.Empty" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 158 | by (cases t) (auto simp add: fun_eq_iff) | 
| 36111 | 159 | |
| 160 | lemma lookup_empty_empty [simp]: | |
| 161 | "lookup t = Map.empty \<longleftrightarrow> t = empty" | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 162 | by (cases t) (simp add: empty_def lookup_def RBT_inject RBT_inverse) | 
| 36111 | 163 | |
| 164 | lemma sorted_keys [iff]: | |
| 165 | "sorted (keys t)" | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 166 | by (simp add: keys_def RBT_Impl.keys_def sorted_entries) | 
| 36111 | 167 | |
| 168 | lemma distinct_keys [iff]: | |
| 169 | "distinct (keys t)" | |
| 36147 
b43b22f63665
theory RBT with abstract type of red-black trees backed by implementation RBT_Impl
 haftmann parents: 
36111diff
changeset | 170 | by (simp add: keys_def RBT_Impl.keys_def distinct_entries) | 
| 36111 | 171 | |
| 45928 
874845660119
adding quickcheck generators in some HOL-Library theories
 bulwahn parents: 
45694diff
changeset | 172 | subsection {* Quickcheck generators *}
 | 
| 
874845660119
adding quickcheck generators in some HOL-Library theories
 bulwahn parents: 
45694diff
changeset | 173 | |
| 46565 | 174 | quickcheck_generator rbt predicate: is_rbt constructors: empty, insert | 
| 36111 | 175 | |
| 35617 | 176 | end |