| author | blanchet | 
| Wed, 21 Jul 2010 21:16:58 +0200 | |
| changeset 37928 | 24785fa2416c | 
| parent 32960 | 69916a850301 | 
| child 45602 | 2a858377c3d2 | 
| permissions | -rw-r--r-- | 
| 2469 | 1  | 
(* Title: ZF/upair.thy  | 
2  | 
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory  | 
|
3  | 
Copyright 1993 University of Cambridge  | 
|
| 13259 | 4  | 
|
5  | 
Observe the order of dependence:  | 
|
6  | 
Upair is defined in terms of Replace  | 
|
7  | 
Un is defined in terms of Upair and Union (similarly for Int)  | 
|
8  | 
cons is defined in terms of Upair and Un  | 
|
9  | 
    Ordered pairs and descriptions are defined using cons ("set notation")
 | 
|
| 2469 | 10  | 
*)  | 
11  | 
||
| 13357 | 12  | 
header{*Unordered Pairs*}
 | 
13  | 
||
| 16417 | 14  | 
theory upair imports ZF  | 
15  | 
uses "Tools/typechk.ML" begin  | 
|
| 6153 | 16  | 
|
| 9907 | 17  | 
setup TypeCheck.setup  | 
| 6153 | 18  | 
|
| 13780 | 19  | 
lemma atomize_ball [symmetric, rulify]:  | 
20  | 
"(!!x. x:A ==> P(x)) == Trueprop (ALL x:A. P(x))"  | 
|
21  | 
by (simp add: Ball_def atomize_all atomize_imp)  | 
|
| 13259 | 22  | 
|
23  | 
||
| 13357 | 24  | 
subsection{*Unordered Pairs: constant @{term Upair}*}
 | 
| 13259 | 25  | 
|
26  | 
lemma Upair_iff [simp]: "c : Upair(a,b) <-> (c=a | c=b)"  | 
|
27  | 
by (unfold Upair_def, blast)  | 
|
28  | 
||
29  | 
lemma UpairI1: "a : Upair(a,b)"  | 
|
30  | 
by simp  | 
|
31  | 
||
32  | 
lemma UpairI2: "b : Upair(a,b)"  | 
|
33  | 
by simp  | 
|
34  | 
||
| 13780 | 35  | 
lemma UpairE: "[| a : Upair(b,c); a=b ==> P; a=c ==> P |] ==> P"  | 
36  | 
by (simp, blast)  | 
|
| 13259 | 37  | 
|
| 13357 | 38  | 
subsection{*Rules for Binary Union, Defined via @{term Upair}*}
 | 
| 13259 | 39  | 
|
40  | 
lemma Un_iff [simp]: "c : A Un B <-> (c:A | c:B)"  | 
|
41  | 
apply (simp add: Un_def)  | 
|
42  | 
apply (blast intro: UpairI1 UpairI2 elim: UpairE)  | 
|
43  | 
done  | 
|
44  | 
||
45  | 
lemma UnI1: "c : A ==> c : A Un B"  | 
|
46  | 
by simp  | 
|
47  | 
||
48  | 
lemma UnI2: "c : B ==> c : A Un B"  | 
|
49  | 
by simp  | 
|
50  | 
||
| 13356 | 51  | 
declare UnI1 [elim?] UnI2 [elim?]  | 
52  | 
||
| 13259 | 53  | 
lemma UnE [elim!]: "[| c : A Un B; c:A ==> P; c:B ==> P |] ==> P"  | 
| 13780 | 54  | 
by (simp, blast)  | 
| 13259 | 55  | 
|
56  | 
(*Stronger version of the rule above*)  | 
|
57  | 
lemma UnE': "[| c : A Un B; c:A ==> P; [| c:B; c~:A |] ==> P |] ==> P"  | 
|
| 13780 | 58  | 
by (simp, blast)  | 
| 13259 | 59  | 
|
60  | 
(*Classical introduction rule: no commitment to A vs B*)  | 
|
61  | 
lemma UnCI [intro!]: "(c ~: B ==> c : A) ==> c : A Un B"  | 
|
| 13780 | 62  | 
by (simp, blast)  | 
| 13259 | 63  | 
|
| 13357 | 64  | 
subsection{*Rules for Binary Intersection, Defined via @{term Upair}*}
 | 
| 13259 | 65  | 
|
66  | 
lemma Int_iff [simp]: "c : A Int B <-> (c:A & c:B)"  | 
|
67  | 
apply (unfold Int_def)  | 
|
68  | 
apply (blast intro: UpairI1 UpairI2 elim: UpairE)  | 
|
69  | 
done  | 
|
70  | 
||
71  | 
lemma IntI [intro!]: "[| c : A; c : B |] ==> c : A Int B"  | 
|
72  | 
by simp  | 
|
73  | 
||
74  | 
lemma IntD1: "c : A Int B ==> c : A"  | 
|
75  | 
by simp  | 
|
76  | 
||
77  | 
lemma IntD2: "c : A Int B ==> c : B"  | 
|
78  | 
by simp  | 
|
79  | 
||
80  | 
lemma IntE [elim!]: "[| c : A Int B; [| c:A; c:B |] ==> P |] ==> P"  | 
|
81  | 
by simp  | 
|
82  | 
||
83  | 
||
| 13357 | 84  | 
subsection{*Rules for Set Difference, Defined via @{term Upair}*}
 | 
| 13259 | 85  | 
|
86  | 
lemma Diff_iff [simp]: "c : A-B <-> (c:A & c~:B)"  | 
|
87  | 
by (unfold Diff_def, blast)  | 
|
88  | 
||
89  | 
lemma DiffI [intro!]: "[| c : A; c ~: B |] ==> c : A - B"  | 
|
90  | 
by simp  | 
|
91  | 
||
92  | 
lemma DiffD1: "c : A - B ==> c : A"  | 
|
93  | 
by simp  | 
|
94  | 
||
95  | 
lemma DiffD2: "c : A - B ==> c ~: B"  | 
|
96  | 
by simp  | 
|
97  | 
||
98  | 
lemma DiffE [elim!]: "[| c : A - B; [| c:A; c~:B |] ==> P |] ==> P"  | 
|
99  | 
by simp  | 
|
100  | 
||
101  | 
||
| 13357 | 102  | 
subsection{*Rules for @{term cons}*}
 | 
| 13259 | 103  | 
|
104  | 
lemma cons_iff [simp]: "a : cons(b,A) <-> (a=b | a:A)"  | 
|
105  | 
apply (unfold cons_def)  | 
|
106  | 
apply (blast intro: UpairI1 UpairI2 elim: UpairE)  | 
|
107  | 
done  | 
|
108  | 
||
109  | 
(*risky as a typechecking rule, but solves otherwise unconstrained goals of  | 
|
110  | 
the form x : ?A*)  | 
|
111  | 
lemma consI1 [simp,TC]: "a : cons(a,B)"  | 
|
112  | 
by simp  | 
|
113  | 
||
114  | 
||
115  | 
lemma consI2: "a : B ==> a : cons(b,B)"  | 
|
116  | 
by simp  | 
|
117  | 
||
| 13780 | 118  | 
lemma consE [elim!]: "[| a : cons(b,A); a=b ==> P; a:A ==> P |] ==> P"  | 
119  | 
by (simp, blast)  | 
|
| 13259 | 120  | 
|
121  | 
(*Stronger version of the rule above*)  | 
|
122  | 
lemma consE':  | 
|
123  | 
"[| a : cons(b,A); a=b ==> P; [| a:A; a~=b |] ==> P |] ==> P"  | 
|
| 13780 | 124  | 
by (simp, blast)  | 
| 13259 | 125  | 
|
126  | 
(*Classical introduction rule*)  | 
|
127  | 
lemma consCI [intro!]: "(a~:B ==> a=b) ==> a: cons(b,B)"  | 
|
| 13780 | 128  | 
by (simp, blast)  | 
| 13259 | 129  | 
|
130  | 
lemma cons_not_0 [simp]: "cons(a,B) ~= 0"  | 
|
131  | 
by (blast elim: equalityE)  | 
|
132  | 
||
133  | 
lemmas cons_neq_0 = cons_not_0 [THEN notE, standard]  | 
|
134  | 
||
135  | 
declare cons_not_0 [THEN not_sym, simp]  | 
|
136  | 
||
137  | 
||
| 13357 | 138  | 
subsection{*Singletons*}
 | 
| 13259 | 139  | 
|
140  | 
lemma singleton_iff: "a : {b} <-> a=b"
 | 
|
141  | 
by simp  | 
|
142  | 
||
143  | 
lemma singletonI [intro!]: "a : {a}"
 | 
|
144  | 
by (rule consI1)  | 
|
145  | 
||
146  | 
lemmas singletonE = singleton_iff [THEN iffD1, elim_format, standard, elim!]  | 
|
147  | 
||
148  | 
||
| 14883 | 149  | 
subsection{*Descriptions*}
 | 
| 13259 | 150  | 
|
151  | 
lemma the_equality [intro]:  | 
|
152  | 
"[| P(a); !!x. P(x) ==> x=a |] ==> (THE x. P(x)) = a"  | 
|
153  | 
apply (unfold the_def)  | 
|
154  | 
apply (fast dest: subst)  | 
|
155  | 
done  | 
|
156  | 
||
157  | 
(* Only use this if you already know EX!x. P(x) *)  | 
|
158  | 
lemma the_equality2: "[| EX! x. P(x); P(a) |] ==> (THE x. P(x)) = a"  | 
|
159  | 
by blast  | 
|
160  | 
||
161  | 
lemma theI: "EX! x. P(x) ==> P(THE x. P(x))"  | 
|
162  | 
apply (erule ex1E)  | 
|
163  | 
apply (subst the_equality)  | 
|
164  | 
apply (blast+)  | 
|
165  | 
done  | 
|
166  | 
||
167  | 
(*the_cong is no longer necessary: if (ALL y.P(y)<->Q(y)) then  | 
|
168  | 
(THE x.P(x)) rewrites to (THE x. Q(x)) *)  | 
|
169  | 
||
170  | 
(*If it's "undefined", it's zero!*)  | 
|
171  | 
lemma the_0: "~ (EX! x. P(x)) ==> (THE x. P(x))=0"  | 
|
172  | 
apply (unfold the_def)  | 
|
173  | 
apply (blast elim!: ReplaceE)  | 
|
174  | 
done  | 
|
175  | 
||
176  | 
(*Easier to apply than theI: conclusion has only one occurrence of P*)  | 
|
177  | 
lemma theI2:  | 
|
178  | 
assumes p1: "~ Q(0) ==> EX! x. P(x)"  | 
|
179  | 
and p2: "!!x. P(x) ==> Q(x)"  | 
|
180  | 
shows "Q(THE x. P(x))"  | 
|
181  | 
apply (rule classical)  | 
|
182  | 
apply (rule p2)  | 
|
183  | 
apply (rule theI)  | 
|
184  | 
apply (rule classical)  | 
|
185  | 
apply (rule p1)  | 
|
186  | 
apply (erule the_0 [THEN subst], assumption)  | 
|
187  | 
done  | 
|
188  | 
||
| 13357 | 189  | 
lemma the_eq_trivial [simp]: "(THE x. x = a) = a"  | 
190  | 
by blast  | 
|
191  | 
||
| 13544 | 192  | 
lemma the_eq_trivial2 [simp]: "(THE x. a = x) = a"  | 
193  | 
by blast  | 
|
194  | 
||
| 13780 | 195  | 
|
| 13357 | 196  | 
subsection{*Conditional Terms: @{text "if-then-else"}*}
 | 
| 13259 | 197  | 
|
198  | 
lemma if_true [simp]: "(if True then a else b) = a"  | 
|
199  | 
by (unfold if_def, blast)  | 
|
200  | 
||
201  | 
lemma if_false [simp]: "(if False then a else b) = b"  | 
|
202  | 
by (unfold if_def, blast)  | 
|
203  | 
||
204  | 
(*Never use with case splitting, or if P is known to be true or false*)  | 
|
205  | 
lemma if_cong:  | 
|
206  | 
"[| P<->Q; Q ==> a=c; ~Q ==> b=d |]  | 
|
207  | 
==> (if P then a else b) = (if Q then c else d)"  | 
|
208  | 
by (simp add: if_def cong add: conj_cong)  | 
|
209  | 
||
210  | 
(*Prevents simplification of x and y: faster and allows the execution  | 
|
211  | 
of functional programs. NOW THE DEFAULT.*)  | 
|
212  | 
lemma if_weak_cong: "P<->Q ==> (if P then x else y) = (if Q then x else y)"  | 
|
213  | 
by simp  | 
|
214  | 
||
215  | 
(*Not needed for rewriting, since P would rewrite to True anyway*)  | 
|
216  | 
lemma if_P: "P ==> (if P then a else b) = a"  | 
|
217  | 
by (unfold if_def, blast)  | 
|
218  | 
||
219  | 
(*Not needed for rewriting, since P would rewrite to False anyway*)  | 
|
220  | 
lemma if_not_P: "~P ==> (if P then a else b) = b"  | 
|
221  | 
by (unfold if_def, blast)  | 
|
222  | 
||
| 13780 | 223  | 
lemma split_if [split]:  | 
224  | 
"P(if Q then x else y) <-> ((Q --> P(x)) & (~Q --> P(y)))"  | 
|
| 14153 | 225  | 
by (case_tac Q, simp_all)  | 
| 13259 | 226  | 
|
227  | 
(** Rewrite rules for boolean case-splitting: faster than  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
24893 
diff
changeset
 | 
228  | 
addsplits[split_if]  | 
| 13259 | 229  | 
**)  | 
230  | 
||
231  | 
lemmas split_if_eq1 = split_if [of "%x. x = b", standard]  | 
|
232  | 
lemmas split_if_eq2 = split_if [of "%x. a = x", standard]  | 
|
233  | 
||
234  | 
lemmas split_if_mem1 = split_if [of "%x. x : b", standard]  | 
|
235  | 
lemmas split_if_mem2 = split_if [of "%x. a : x", standard]  | 
|
236  | 
||
237  | 
lemmas split_ifs = split_if_eq1 split_if_eq2 split_if_mem1 split_if_mem2  | 
|
238  | 
||
239  | 
(*Logically equivalent to split_if_mem2*)  | 
|
240  | 
lemma if_iff: "a: (if P then x else y) <-> P & a:x | ~P & a:y"  | 
|
| 13780 | 241  | 
by simp  | 
| 13259 | 242  | 
|
243  | 
lemma if_type [TC]:  | 
|
244  | 
"[| P ==> a: A; ~P ==> b: A |] ==> (if P then a else b): A"  | 
|
| 13780 | 245  | 
by simp  | 
246  | 
||
247  | 
(** Splitting IFs in the assumptions **)  | 
|
248  | 
||
249  | 
lemma split_if_asm: "P(if Q then x else y) <-> (~((Q & ~P(x)) | (~Q & ~P(y))))"  | 
|
250  | 
by simp  | 
|
251  | 
||
252  | 
lemmas if_splits = split_if split_if_asm  | 
|
| 13259 | 253  | 
|
254  | 
||
| 13357 | 255  | 
subsection{*Consequences of Foundation*}
 | 
| 13259 | 256  | 
|
257  | 
(*was called mem_anti_sym*)  | 
|
258  | 
lemma mem_asym: "[| a:b; ~P ==> b:a |] ==> P"  | 
|
259  | 
apply (rule classical)  | 
|
260  | 
apply (rule_tac A1 = "{a,b}" in foundation [THEN disjE])
 | 
|
261  | 
apply (blast elim!: equalityE)+  | 
|
262  | 
done  | 
|
263  | 
||
264  | 
(*was called mem_anti_refl*)  | 
|
265  | 
lemma mem_irrefl: "a:a ==> P"  | 
|
266  | 
by (blast intro: mem_asym)  | 
|
267  | 
||
268  | 
(*mem_irrefl should NOT be added to default databases:  | 
|
269  | 
it would be tried on most goals, making proofs slower!*)  | 
|
270  | 
||
271  | 
lemma mem_not_refl: "a ~: a"  | 
|
272  | 
apply (rule notI)  | 
|
273  | 
apply (erule mem_irrefl)  | 
|
274  | 
done  | 
|
275  | 
||
276  | 
(*Good for proving inequalities by rewriting*)  | 
|
277  | 
lemma mem_imp_not_eq: "a:A ==> a ~= A"  | 
|
278  | 
by (blast elim!: mem_irrefl)  | 
|
279  | 
||
| 13357 | 280  | 
lemma eq_imp_not_mem: "a=A ==> a ~: A"  | 
281  | 
by (blast intro: elim: mem_irrefl)  | 
|
282  | 
||
283  | 
subsection{*Rules for Successor*}
 | 
|
| 13259 | 284  | 
|
285  | 
lemma succ_iff: "i : succ(j) <-> i=j | i:j"  | 
|
286  | 
by (unfold succ_def, blast)  | 
|
287  | 
||
288  | 
lemma succI1 [simp]: "i : succ(i)"  | 
|
289  | 
by (simp add: succ_iff)  | 
|
290  | 
||
291  | 
lemma succI2: "i : j ==> i : succ(j)"  | 
|
292  | 
by (simp add: succ_iff)  | 
|
293  | 
||
294  | 
lemma succE [elim!]:  | 
|
295  | 
"[| i : succ(j); i=j ==> P; i:j ==> P |] ==> P"  | 
|
296  | 
apply (simp add: succ_iff, blast)  | 
|
297  | 
done  | 
|
298  | 
||
299  | 
(*Classical introduction rule*)  | 
|
300  | 
lemma succCI [intro!]: "(i~:j ==> i=j) ==> i: succ(j)"  | 
|
301  | 
by (simp add: succ_iff, blast)  | 
|
302  | 
||
303  | 
lemma succ_not_0 [simp]: "succ(n) ~= 0"  | 
|
304  | 
by (blast elim!: equalityE)  | 
|
305  | 
||
306  | 
lemmas succ_neq_0 = succ_not_0 [THEN notE, standard, elim!]  | 
|
307  | 
||
308  | 
declare succ_not_0 [THEN not_sym, simp]  | 
|
309  | 
declare sym [THEN succ_neq_0, elim!]  | 
|
310  | 
||
311  | 
(* succ(c) <= B ==> c : B *)  | 
|
312  | 
lemmas succ_subsetD = succI1 [THEN [2] subsetD]  | 
|
313  | 
||
314  | 
(* succ(b) ~= b *)  | 
|
315  | 
lemmas succ_neq_self = succI1 [THEN mem_imp_not_eq, THEN not_sym, standard]  | 
|
316  | 
||
317  | 
lemma succ_inject_iff [simp]: "succ(m) = succ(n) <-> m=n"  | 
|
318  | 
by (blast elim: mem_asym elim!: equalityE)  | 
|
319  | 
||
320  | 
lemmas succ_inject = succ_inject_iff [THEN iffD1, standard, dest!]  | 
|
321  | 
||
| 13780 | 322  | 
|
323  | 
subsection{*Miniscoping of the Bounded Universal Quantifier*}
 | 
|
324  | 
||
325  | 
lemma ball_simps1:  | 
|
326  | 
"(ALL x:A. P(x) & Q) <-> (ALL x:A. P(x)) & (A=0 | Q)"  | 
|
327  | 
"(ALL x:A. P(x) | Q) <-> ((ALL x:A. P(x)) | Q)"  | 
|
328  | 
"(ALL x:A. P(x) --> Q) <-> ((EX x:A. P(x)) --> Q)"  | 
|
329  | 
"(~(ALL x:A. P(x))) <-> (EX x:A. ~P(x))"  | 
|
330  | 
"(ALL x:0.P(x)) <-> True"  | 
|
331  | 
"(ALL x:succ(i).P(x)) <-> P(i) & (ALL x:i. P(x))"  | 
|
332  | 
"(ALL x:cons(a,B).P(x)) <-> P(a) & (ALL x:B. P(x))"  | 
|
333  | 
"(ALL x:RepFun(A,f). P(x)) <-> (ALL y:A. P(f(y)))"  | 
|
334  | 
"(ALL x:Union(A).P(x)) <-> (ALL y:A. ALL x:y. P(x))"  | 
|
335  | 
by blast+  | 
|
336  | 
||
337  | 
lemma ball_simps2:  | 
|
338  | 
"(ALL x:A. P & Q(x)) <-> (A=0 | P) & (ALL x:A. Q(x))"  | 
|
339  | 
"(ALL x:A. P | Q(x)) <-> (P | (ALL x:A. Q(x)))"  | 
|
340  | 
"(ALL x:A. P --> Q(x)) <-> (P --> (ALL x:A. Q(x)))"  | 
|
341  | 
by blast+  | 
|
342  | 
||
343  | 
lemma ball_simps3:  | 
|
344  | 
"(ALL x:Collect(A,Q).P(x)) <-> (ALL x:A. Q(x) --> P(x))"  | 
|
345  | 
by blast+  | 
|
346  | 
||
347  | 
lemmas ball_simps [simp] = ball_simps1 ball_simps2 ball_simps3  | 
|
348  | 
||
349  | 
lemma ball_conj_distrib:  | 
|
350  | 
"(ALL x:A. P(x) & Q(x)) <-> ((ALL x:A. P(x)) & (ALL x:A. Q(x)))"  | 
|
351  | 
by blast  | 
|
352  | 
||
353  | 
||
354  | 
subsection{*Miniscoping of the Bounded Existential Quantifier*}
 | 
|
355  | 
||
356  | 
lemma bex_simps1:  | 
|
357  | 
"(EX x:A. P(x) & Q) <-> ((EX x:A. P(x)) & Q)"  | 
|
358  | 
"(EX x:A. P(x) | Q) <-> (EX x:A. P(x)) | (A~=0 & Q)"  | 
|
359  | 
"(EX x:A. P(x) --> Q) <-> ((ALL x:A. P(x)) --> (A~=0 & Q))"  | 
|
360  | 
"(EX x:0.P(x)) <-> False"  | 
|
361  | 
"(EX x:succ(i).P(x)) <-> P(i) | (EX x:i. P(x))"  | 
|
362  | 
"(EX x:cons(a,B).P(x)) <-> P(a) | (EX x:B. P(x))"  | 
|
363  | 
"(EX x:RepFun(A,f). P(x)) <-> (EX y:A. P(f(y)))"  | 
|
364  | 
"(EX x:Union(A).P(x)) <-> (EX y:A. EX x:y. P(x))"  | 
|
365  | 
"(~(EX x:A. P(x))) <-> (ALL x:A. ~P(x))"  | 
|
366  | 
by blast+  | 
|
367  | 
||
368  | 
lemma bex_simps2:  | 
|
369  | 
"(EX x:A. P & Q(x)) <-> (P & (EX x:A. Q(x)))"  | 
|
370  | 
"(EX x:A. P | Q(x)) <-> (A~=0 & P) | (EX x:A. Q(x))"  | 
|
371  | 
"(EX x:A. P --> Q(x)) <-> ((A=0 | P) --> (EX x:A. Q(x)))"  | 
|
372  | 
by blast+  | 
|
373  | 
||
374  | 
lemma bex_simps3:  | 
|
375  | 
"(EX x:Collect(A,Q).P(x)) <-> (EX x:A. Q(x) & P(x))"  | 
|
376  | 
by blast  | 
|
377  | 
||
378  | 
lemmas bex_simps [simp] = bex_simps1 bex_simps2 bex_simps3  | 
|
379  | 
||
380  | 
lemma bex_disj_distrib:  | 
|
381  | 
"(EX x:A. P(x) | Q(x)) <-> ((EX x:A. P(x)) | (EX x:A. Q(x)))"  | 
|
382  | 
by blast  | 
|
383  | 
||
384  | 
||
385  | 
(** One-point rule for bounded quantifiers: see HOL/Set.ML **)  | 
|
386  | 
||
387  | 
lemma bex_triv_one_point1 [simp]: "(EX x:A. x=a) <-> (a:A)"  | 
|
388  | 
by blast  | 
|
389  | 
||
390  | 
lemma bex_triv_one_point2 [simp]: "(EX x:A. a=x) <-> (a:A)"  | 
|
391  | 
by blast  | 
|
392  | 
||
393  | 
lemma bex_one_point1 [simp]: "(EX x:A. x=a & P(x)) <-> (a:A & P(a))"  | 
|
394  | 
by blast  | 
|
395  | 
||
396  | 
lemma bex_one_point2 [simp]: "(EX x:A. a=x & P(x)) <-> (a:A & P(a))"  | 
|
397  | 
by blast  | 
|
398  | 
||
399  | 
lemma ball_one_point1 [simp]: "(ALL x:A. x=a --> P(x)) <-> (a:A --> P(a))"  | 
|
400  | 
by blast  | 
|
401  | 
||
402  | 
lemma ball_one_point2 [simp]: "(ALL x:A. a=x --> P(x)) <-> (a:A --> P(a))"  | 
|
403  | 
by blast  | 
|
404  | 
||
405  | 
||
406  | 
subsection{*Miniscoping of the Replacement Operator*}
 | 
|
407  | 
||
408  | 
text{*These cover both @{term Replace} and @{term Collect}*}
 | 
|
409  | 
lemma Rep_simps [simp]:  | 
|
410  | 
     "{x. y:0, R(x,y)} = 0"
 | 
|
411  | 
     "{x:0. P(x)} = 0"
 | 
|
412  | 
     "{x:A. Q} = (if Q then A else 0)"
 | 
|
413  | 
"RepFun(0,f) = 0"  | 
|
414  | 
"RepFun(succ(i),f) = cons(f(i), RepFun(i,f))"  | 
|
415  | 
"RepFun(cons(a,B),f) = cons(f(a), RepFun(B,f))"  | 
|
416  | 
by (simp_all, blast+)  | 
|
417  | 
||
418  | 
||
419  | 
subsection{*Miniscoping of Unions*}
 | 
|
420  | 
||
421  | 
lemma UN_simps1:  | 
|
422  | 
"(UN x:C. cons(a, B(x))) = (if C=0 then 0 else cons(a, UN x:C. B(x)))"  | 
|
423  | 
"(UN x:C. A(x) Un B') = (if C=0 then 0 else (UN x:C. A(x)) Un B')"  | 
|
424  | 
"(UN x:C. A' Un B(x)) = (if C=0 then 0 else A' Un (UN x:C. B(x)))"  | 
|
425  | 
"(UN x:C. A(x) Int B') = ((UN x:C. A(x)) Int B')"  | 
|
426  | 
"(UN x:C. A' Int B(x)) = (A' Int (UN x:C. B(x)))"  | 
|
427  | 
"(UN x:C. A(x) - B') = ((UN x:C. A(x)) - B')"  | 
|
428  | 
"(UN x:C. A' - B(x)) = (if C=0 then 0 else A' - (INT x:C. B(x)))"  | 
|
429  | 
apply (simp_all add: Inter_def)  | 
|
430  | 
apply (blast intro!: equalityI )+  | 
|
431  | 
done  | 
|
432  | 
||
433  | 
lemma UN_simps2:  | 
|
434  | 
"(UN x: Union(A). B(x)) = (UN y:A. UN x:y. B(x))"  | 
|
435  | 
"(UN z: (UN x:A. B(x)). C(z)) = (UN x:A. UN z: B(x). C(z))"  | 
|
436  | 
"(UN x: RepFun(A,f). B(x)) = (UN a:A. B(f(a)))"  | 
|
437  | 
by blast+  | 
|
438  | 
||
439  | 
lemmas UN_simps [simp] = UN_simps1 UN_simps2  | 
|
440  | 
||
441  | 
text{*Opposite of miniscoping: pull the operator out*}
 | 
|
442  | 
||
443  | 
lemma UN_extend_simps1:  | 
|
444  | 
"(UN x:C. A(x)) Un B = (if C=0 then B else (UN x:C. A(x) Un B))"  | 
|
445  | 
"((UN x:C. A(x)) Int B) = (UN x:C. A(x) Int B)"  | 
|
446  | 
"((UN x:C. A(x)) - B) = (UN x:C. A(x) - B)"  | 
|
447  | 
apply simp_all  | 
|
448  | 
apply blast+  | 
|
449  | 
done  | 
|
450  | 
||
451  | 
lemma UN_extend_simps2:  | 
|
452  | 
     "cons(a, UN x:C. B(x)) = (if C=0 then {a} else (UN x:C. cons(a, B(x))))"
 | 
|
453  | 
"A Un (UN x:C. B(x)) = (if C=0 then A else (UN x:C. A Un B(x)))"  | 
|
454  | 
"(A Int (UN x:C. B(x))) = (UN x:C. A Int B(x))"  | 
|
455  | 
"A - (INT x:C. B(x)) = (if C=0 then A else (UN x:C. A - B(x)))"  | 
|
456  | 
"(UN y:A. UN x:y. B(x)) = (UN x: Union(A). B(x))"  | 
|
457  | 
"(UN a:A. B(f(a))) = (UN x: RepFun(A,f). B(x))"  | 
|
458  | 
apply (simp_all add: Inter_def)  | 
|
459  | 
apply (blast intro!: equalityI)+  | 
|
460  | 
done  | 
|
461  | 
||
462  | 
lemma UN_UN_extend:  | 
|
463  | 
"(UN x:A. UN z: B(x). C(z)) = (UN z: (UN x:A. B(x)). C(z))"  | 
|
464  | 
by blast  | 
|
465  | 
||
466  | 
lemmas UN_extend_simps = UN_extend_simps1 UN_extend_simps2 UN_UN_extend  | 
|
467  | 
||
468  | 
||
469  | 
subsection{*Miniscoping of Intersections*}
 | 
|
470  | 
||
471  | 
lemma INT_simps1:  | 
|
472  | 
"(INT x:C. A(x) Int B) = (INT x:C. A(x)) Int B"  | 
|
473  | 
"(INT x:C. A(x) - B) = (INT x:C. A(x)) - B"  | 
|
474  | 
"(INT x:C. A(x) Un B) = (if C=0 then 0 else (INT x:C. A(x)) Un B)"  | 
|
475  | 
by (simp_all add: Inter_def, blast+)  | 
|
476  | 
||
477  | 
lemma INT_simps2:  | 
|
478  | 
"(INT x:C. A Int B(x)) = A Int (INT x:C. B(x))"  | 
|
479  | 
"(INT x:C. A - B(x)) = (if C=0 then 0 else A - (UN x:C. B(x)))"  | 
|
480  | 
"(INT x:C. cons(a, B(x))) = (if C=0 then 0 else cons(a, INT x:C. B(x)))"  | 
|
481  | 
"(INT x:C. A Un B(x)) = (if C=0 then 0 else A Un (INT x:C. B(x)))"  | 
|
482  | 
apply (simp_all add: Inter_def)  | 
|
483  | 
apply (blast intro!: equalityI)+  | 
|
484  | 
done  | 
|
485  | 
||
486  | 
lemmas INT_simps [simp] = INT_simps1 INT_simps2  | 
|
487  | 
||
488  | 
text{*Opposite of miniscoping: pull the operator out*}
 | 
|
489  | 
||
490  | 
||
491  | 
lemma INT_extend_simps1:  | 
|
492  | 
"(INT x:C. A(x)) Int B = (INT x:C. A(x) Int B)"  | 
|
493  | 
"(INT x:C. A(x)) - B = (INT x:C. A(x) - B)"  | 
|
494  | 
"(INT x:C. A(x)) Un B = (if C=0 then B else (INT x:C. A(x) Un B))"  | 
|
495  | 
apply (simp_all add: Inter_def, blast+)  | 
|
496  | 
done  | 
|
497  | 
||
498  | 
lemma INT_extend_simps2:  | 
|
499  | 
"A Int (INT x:C. B(x)) = (INT x:C. A Int B(x))"  | 
|
500  | 
"A - (UN x:C. B(x)) = (if C=0 then A else (INT x:C. A - B(x)))"  | 
|
501  | 
     "cons(a, INT x:C. B(x)) = (if C=0 then {a} else (INT x:C. cons(a, B(x))))"
 | 
|
502  | 
"A Un (INT x:C. B(x)) = (if C=0 then A else (INT x:C. A Un B(x)))"  | 
|
503  | 
apply (simp_all add: Inter_def)  | 
|
504  | 
apply (blast intro!: equalityI)+  | 
|
505  | 
done  | 
|
506  | 
||
507  | 
lemmas INT_extend_simps = INT_extend_simps1 INT_extend_simps2  | 
|
508  | 
||
509  | 
||
510  | 
subsection{*Other simprules*}
 | 
|
511  | 
||
512  | 
||
513  | 
(*** Miniscoping: pushing in big Unions, Intersections, quantifiers, etc. ***)  | 
|
514  | 
||
515  | 
lemma misc_simps [simp]:  | 
|
516  | 
"0 Un A = A"  | 
|
517  | 
"A Un 0 = A"  | 
|
518  | 
"0 Int A = 0"  | 
|
519  | 
"A Int 0 = 0"  | 
|
520  | 
"0 - A = 0"  | 
|
521  | 
"A - 0 = A"  | 
|
522  | 
"Union(0) = 0"  | 
|
523  | 
"Union(cons(b,A)) = b Un Union(A)"  | 
|
524  | 
     "Inter({b}) = b"
 | 
|
525  | 
by blast+  | 
|
526  | 
||
| 6153 | 527  | 
end  |