| author | wenzelm | 
| Sun, 11 Dec 2022 18:57:41 +0100 | |
| changeset 76624 | 247a51c3abec | 
| parent 75663 | f2e402a19530 | 
| child 78248 | 740b23f1138a | 
| permissions | -rw-r--r-- | 
| 68189 | 1 | (* Title: HOL/Library/FuncSet.thy | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 2 | Author: Florian Kammueller and Lawrence C Paulson, Lukas Bulwahn | 
| 13586 | 3 | *) | 
| 4 | ||
| 58881 | 5 | section \<open>Pi and Function Sets\<close> | 
| 13586 | 6 | |
| 15131 | 7 | theory FuncSet | 
| 67006 | 8 | imports Main | 
| 64910 | 9 | abbrevs PiE = "Pi\<^sub>E" | 
| 67013 
335a7dce7cb3
more uniform header syntax, in contrast to the former etc/abbrevs file-format (see 73939a9b70a3);
 wenzelm parents: 
67006diff
changeset | 10 | and PIE = "\<Pi>\<^sub>E" | 
| 15131 | 11 | begin | 
| 13586 | 12 | |
| 58783 | 13 | definition Pi :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 14 |   where "Pi A B = {f. \<forall>x. x \<in> A \<longrightarrow> f x \<in> B x}"
 | |
| 13586 | 15 | |
| 58783 | 16 | definition extensional :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 17 |   where "extensional A = {f. \<forall>x. x \<notin> A \<longrightarrow> f x = undefined}"
 | |
| 13586 | 18 | |
| 58783 | 19 | definition "restrict" :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
 | 
| 20 | where "restrict f A = (\<lambda>x. if x \<in> A then f x else undefined)" | |
| 13586 | 21 | |
| 61384 | 22 | abbreviation funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  (infixr "\<rightarrow>" 60)
 | 
| 23 | where "A \<rightarrow> B \<equiv> Pi A (\<lambda>_. B)" | |
| 19536 | 24 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 25 | syntax | 
| 58783 | 26 |   "_Pi" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
| 27 |   "_lam" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | |
| 13586 | 28 | translations | 
| 58783 | 29 | "\<Pi> x\<in>A. B" \<rightleftharpoons> "CONST Pi A (\<lambda>x. B)" | 
| 30 | "\<lambda>x\<in>A. f" \<rightleftharpoons> "CONST restrict (\<lambda>x. f) A" | |
| 13586 | 31 | |
| 58783 | 32 | definition "compose" :: "'a set \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'c)"
 | 
| 33 | where "compose A g f = (\<lambda>x\<in>A. g (f x))" | |
| 13586 | 34 | |
| 35 | ||
| 69593 | 36 | subsection \<open>Basic Properties of \<^term>\<open>Pi\<close>\<close> | 
| 13586 | 37 | |
| 58783 | 38 | lemma Pi_I[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B" | 
| 14706 | 39 | by (simp add: Pi_def) | 
| 13586 | 40 | |
| 58783 | 41 | lemma Pi_I'[simp]: "(\<And>x. x \<in> A \<longrightarrow> f x \<in> B x) \<Longrightarrow> f \<in> Pi A B" | 
| 42 | by (simp add:Pi_def) | |
| 31731 | 43 | |
| 58783 | 44 | lemma funcsetI: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> f \<in> A \<rightarrow> B" | 
| 14706 | 45 | by (simp add: Pi_def) | 
| 13586 | 46 | |
| 58783 | 47 | lemma Pi_mem: "f \<in> Pi A B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B x" | 
| 14706 | 48 | by (simp add: Pi_def) | 
| 13586 | 49 | |
| 47761 | 50 | lemma Pi_iff: "f \<in> Pi I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i)" | 
| 51 | unfolding Pi_def by auto | |
| 52 | ||
| 58783 | 53 | lemma PiE [elim]: "f \<in> Pi A B \<Longrightarrow> (f x \<in> B x \<Longrightarrow> Q) \<Longrightarrow> (x \<notin> A \<Longrightarrow> Q) \<Longrightarrow> Q" | 
| 54 | by (auto simp: Pi_def) | |
| 31754 | 55 | |
| 58783 | 56 | lemma Pi_cong: "(\<And>w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi A B \<longleftrightarrow> g \<in> Pi A B" | 
| 38656 | 57 | by (auto simp: Pi_def) | 
| 58 | ||
| 31769 | 59 | lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A" | 
| 44382 | 60 | by auto | 
| 31769 | 61 | |
| 58783 | 62 | lemma funcset_mem: "f \<in> A \<rightarrow> B \<Longrightarrow> x \<in> A \<Longrightarrow> f x \<in> B" | 
| 14706 | 63 | by (simp add: Pi_def) | 
| 13586 | 64 | |
| 58783 | 65 | lemma funcset_image: "f \<in> A \<rightarrow> B \<Longrightarrow> f ` A \<subseteq> B" | 
| 50104 | 66 | by auto | 
| 67 | ||
| 68 | lemma image_subset_iff_funcset: "F ` A \<subseteq> B \<longleftrightarrow> F \<in> A \<rightarrow> B" | |
| 69 | by auto | |
| 14762 | 70 | |
| 71258 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 71 | lemma funcset_to_empty_iff: "A \<rightarrow> {} = (if A={} then UNIV else {})"
 | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 72 | by auto | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 73 | |
| 58783 | 74 | lemma Pi_eq_empty[simp]: "(\<Pi> x \<in> A. B x) = {} \<longleftrightarrow> (\<exists>x\<in>A. B x = {})"
 | 
| 71258 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 75 | proof - | 
| 73348 
65c45cba3f54
reverted simprule status on a new lemma
 paulson <lp15@cam.ac.uk> parents: 
73346diff
changeset | 76 |   have "\<exists>x\<in>A. B x = {}" if "\<And>f. \<exists>y. y \<in> A \<and> f y \<notin> B y"
 | 
| 71258 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 77 | using that [of "\<lambda>u. SOME y. y \<in> B u"] some_in_eq by blast | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 78 | then show ?thesis | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 79 | by force | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 80 | qed | 
| 13586 | 81 | |
| 13593 | 82 | lemma Pi_empty [simp]: "Pi {} B = UNIV"
 | 
| 58783 | 83 | by (simp add: Pi_def) | 
| 13593 | 84 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 85 | lemma Pi_Int: "Pi I E \<inter> Pi I F = (\<Pi> i\<in>I. E i \<inter> F i)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 86 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 87 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 88 | lemma Pi_UN: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 89 | fixes A :: "nat \<Rightarrow> 'i \<Rightarrow> 'a set" | 
| 58783 | 90 | assumes "finite I" | 
| 91 | and mono: "\<And>i n m. i \<in> I \<Longrightarrow> n \<le> m \<Longrightarrow> A n i \<subseteq> A m i" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 92 | shows "(\<Union>n. Pi I (A n)) = (\<Pi> i\<in>I. \<Union>n. A n i)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 93 | proof (intro set_eqI iffI) | 
| 58783 | 94 | fix f | 
| 95 | assume "f \<in> (\<Pi> i\<in>I. \<Union>n. A n i)" | |
| 96 | then have "\<forall>i\<in>I. \<exists>n. f i \<in> A n i" | |
| 97 | by auto | |
| 63060 | 98 | from bchoice[OF this] obtain n where n: "f i \<in> A (n i) i" if "i \<in> I" for i | 
| 58783 | 99 | by auto | 
| 63060 | 100 | obtain k where k: "n i \<le> k" if "i \<in> I" for i | 
| 58783 | 101 | using \<open>finite I\<close> finite_nat_set_iff_bounded_le[of "n`I"] by auto | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 102 | have "f \<in> Pi I (A k)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 103 | proof (intro Pi_I) | 
| 58783 | 104 | fix i | 
| 105 | assume "i \<in> I" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 106 | from mono[OF this, of "n i" k] k[OF this] n[OF this] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 107 | show "f i \<in> A k i" by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 108 | qed | 
| 58783 | 109 | then show "f \<in> (\<Union>n. Pi I (A n))" | 
| 110 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 111 | qed auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 112 | |
| 58783 | 113 | lemma Pi_UNIV [simp]: "A \<rightarrow> UNIV = UNIV" | 
| 114 | by (simp add: Pi_def) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 115 | |
| 58783 | 116 | text \<open>Covariance of Pi-sets in their second argument\<close> | 
| 117 | lemma Pi_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> Pi A B \<subseteq> Pi A C" | |
| 118 | by auto | |
| 13586 | 119 | |
| 58783 | 120 | text \<open>Contravariance of Pi-sets in their first argument\<close> | 
| 121 | lemma Pi_anti_mono: "A' \<subseteq> A \<Longrightarrow> Pi A B \<subseteq> Pi A' B" | |
| 122 | by auto | |
| 13586 | 123 | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 124 | lemma prod_final: | 
| 58783 | 125 | assumes 1: "fst \<circ> f \<in> Pi A B" | 
| 126 | and 2: "snd \<circ> f \<in> Pi A C" | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 127 | shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)" | 
| 58783 | 128 | proof (rule Pi_I) | 
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 129 | fix z | 
| 58783 | 130 | assume z: "z \<in> A" | 
| 131 | have "f z = (fst (f z), snd (f z))" | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 132 | by simp | 
| 58783 | 133 | also have "\<dots> \<in> B z \<times> C z" | 
| 134 | by (metis SigmaI PiE o_apply 1 2 z) | |
| 33271 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 135 | finally show "f z \<in> B z \<times> C z" . | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 136 | qed | 
| 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 paulson parents: 
33057diff
changeset | 137 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 138 | lemma Pi_split_domain[simp]: "x \<in> Pi (I \<union> J) X \<longleftrightarrow> x \<in> Pi I X \<and> x \<in> Pi J X" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 139 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 140 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 141 | lemma Pi_split_insert_domain[simp]: "x \<in> Pi (insert i I) X \<longleftrightarrow> x \<in> Pi I X \<and> x i \<in> X i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 142 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 143 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 144 | lemma Pi_cancel_fupd_range[simp]: "i \<notin> I \<Longrightarrow> x \<in> Pi I (B(i := b)) \<longleftrightarrow> x \<in> Pi I B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 145 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 146 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 147 | lemma Pi_cancel_fupd[simp]: "i \<notin> I \<Longrightarrow> x(i := a) \<in> Pi I B \<longleftrightarrow> x \<in> Pi I B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 148 | by (auto simp: Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 149 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 150 | lemma Pi_fupd_iff: "i \<in> I \<Longrightarrow> f \<in> Pi I (B(i := A)) \<longleftrightarrow> f \<in> Pi (I - {i}) B \<and> f i \<in> A"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 151 | apply auto | 
| 71258 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 152 | apply (metis PiE fun_upd_apply) | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 153 | by force | 
| 13586 | 154 | |
| 58783 | 155 | |
| 69593 | 156 | subsection \<open>Composition With a Restricted Domain: \<^term>\<open>compose\<close>\<close> | 
| 13586 | 157 | |
| 58783 | 158 | lemma funcset_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> g \<in> B \<rightarrow> C \<Longrightarrow> compose A g f \<in> A \<rightarrow> C" | 
| 159 | by (simp add: Pi_def compose_def restrict_def) | |
| 13586 | 160 | |
| 161 | lemma compose_assoc: | |
| 58783 | 162 | assumes "f \<in> A \<rightarrow> B" | 
| 163 | shows "compose A h (compose A g f) = compose A (compose B h g) f" | |
| 164 | using assms by (simp add: fun_eq_iff Pi_def compose_def restrict_def) | |
| 13586 | 165 | |
| 58783 | 166 | lemma compose_eq: "x \<in> A \<Longrightarrow> compose A g f x = g (f x)" | 
| 167 | by (simp add: compose_def restrict_def) | |
| 13586 | 168 | |
| 58783 | 169 | lemma surj_compose: "f ` A = B \<Longrightarrow> g ` B = C \<Longrightarrow> compose A g f ` A = C" | 
| 14706 | 170 | by (auto simp add: image_def compose_eq) | 
| 13586 | 171 | |
| 172 | ||
| 69593 | 173 | subsection \<open>Bounded Abstraction: \<^term>\<open>restrict\<close>\<close> | 
| 13586 | 174 | |
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59425diff
changeset | 175 | lemma restrict_cong: "I = J \<Longrightarrow> (\<And>i. i \<in> J =simp=> f i = g i) \<Longrightarrow> restrict f I = restrict g J" | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59425diff
changeset | 176 | by (auto simp: restrict_def fun_eq_iff simp_implies_def) | 
| 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
59425diff
changeset | 177 | |
| 54417 | 178 | lemma restrictI[intro!]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<lambda>x\<in>A. f x) \<in> Pi A B" | 
| 14706 | 179 | by (simp add: Pi_def restrict_def) | 
| 13586 | 180 | |
| 54417 | 181 | lemma restrict_apply[simp]: "(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)" | 
| 14706 | 182 | by (simp add: restrict_def) | 
| 13586 | 183 | |
| 54417 | 184 | lemma restrict_apply': "x \<in> A \<Longrightarrow> (\<lambda>y\<in>A. f y) x = f x" | 
| 185 | by simp | |
| 186 | ||
| 58783 | 187 | lemma restrict_ext: "(\<And>x. x \<in> A \<Longrightarrow> f x = g x) \<Longrightarrow> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 188 | by (simp add: fun_eq_iff Pi_def restrict_def) | 
| 13586 | 189 | |
| 58606 | 190 | lemma restrict_UNIV: "restrict f UNIV = f" | 
| 191 | by (simp add: restrict_def) | |
| 192 | ||
| 75078 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
73932diff
changeset | 193 | lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A \<longleftrightarrow> inj_on f A" | 
| 14706 | 194 | by (simp add: inj_on_def restrict_def) | 
| 13586 | 195 | |
| 75078 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
73932diff
changeset | 196 | lemma inj_on_restrict_iff: "A \<subseteq> B \<Longrightarrow> inj_on (restrict f B) A \<longleftrightarrow> inj_on f A" | 
| 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
73932diff
changeset | 197 | by (metis inj_on_cong restrict_def subset_iff) | 
| 
ec86cb2418e1
an assortment of new or stronger lemmas
 paulson <lp15@cam.ac.uk> parents: 
73932diff
changeset | 198 | |
| 58783 | 199 | lemma Id_compose: "f \<in> A \<rightarrow> B \<Longrightarrow> f \<in> extensional A \<Longrightarrow> compose A (\<lambda>y\<in>B. y) f = f" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 200 | by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) | 
| 13586 | 201 | |
| 58783 | 202 | lemma compose_Id: "g \<in> A \<rightarrow> B \<Longrightarrow> g \<in> extensional A \<Longrightarrow> compose A g (\<lambda>x\<in>A. x) = g" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 203 | by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def) | 
| 13586 | 204 | |
| 14853 | 205 | lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" | 
| 19736 | 206 | by (auto simp add: restrict_def) | 
| 13586 | 207 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 208 | lemma restrict_restrict[simp]: "restrict (restrict f A) B = restrict f (A \<inter> B)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 209 | unfolding restrict_def by (simp add: fun_eq_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 210 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 211 | lemma restrict_fupd[simp]: "i \<notin> I \<Longrightarrow> restrict (f (i := x)) I = restrict f I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 212 | by (auto simp: restrict_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 213 | |
| 58783 | 214 | lemma restrict_upd[simp]: "i \<notin> I \<Longrightarrow> (restrict f I)(i := y) = restrict (f(i := y)) (insert i I)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 215 | by (auto simp: fun_eq_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 216 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 217 | lemma restrict_Pi_cancel: "restrict x I \<in> Pi I A \<longleftrightarrow> x \<in> Pi I A" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 218 | by (auto simp: restrict_def Pi_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 219 | |
| 70063 | 220 | lemma sum_restrict' [simp]: "sum' (\<lambda>i\<in>I. g i) I = sum' (\<lambda>i. g i) I" | 
| 221 | by (simp add: sum.G_def conj_commute cong: conj_cong) | |
| 222 | ||
| 223 | lemma prod_restrict' [simp]: "prod' (\<lambda>i\<in>I. g i) I = prod' (\<lambda>i. g i) I" | |
| 224 | by (simp add: prod.G_def conj_commute cong: conj_cong) | |
| 225 | ||
| 14745 | 226 | |
| 58783 | 227 | subsection \<open>Bijections Between Sets\<close> | 
| 14762 | 228 | |
| 69593 | 229 | text \<open>The definition of \<^const>\<open>bij_betw\<close> is in \<open>Fun.thy\<close>, but most of | 
| 230 | the theorems belong here, or need at least \<^term>\<open>Hilbert_Choice\<close>.\<close> | |
| 14762 | 231 | |
| 39595 | 232 | lemma bij_betwI: | 
| 58783 | 233 | assumes "f \<in> A \<rightarrow> B" | 
| 234 | and "g \<in> B \<rightarrow> A" | |
| 235 | and g_f: "\<And>x. x\<in>A \<Longrightarrow> g (f x) = x" | |
| 236 | and f_g: "\<And>y. y\<in>B \<Longrightarrow> f (g y) = y" | |
| 237 | shows "bij_betw f A B" | |
| 238 | unfolding bij_betw_def | |
| 39595 | 239 | proof | 
| 58783 | 240 | show "inj_on f A" | 
| 241 | by (metis g_f inj_on_def) | |
| 242 | have "f ` A \<subseteq> B" | |
| 243 | using \<open>f \<in> A \<rightarrow> B\<close> by auto | |
| 39595 | 244 | moreover | 
| 58783 | 245 | have "B \<subseteq> f ` A" | 
| 246 | by auto (metis Pi_mem \<open>g \<in> B \<rightarrow> A\<close> f_g image_iff) | |
| 247 | ultimately show "f ` A = B" | |
| 248 | by blast | |
| 39595 | 249 | qed | 
| 250 | ||
| 14762 | 251 | lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B" | 
| 58783 | 252 | by (auto simp add: bij_betw_def) | 
| 14762 | 253 | |
| 58783 | 254 | lemma inj_on_compose: "bij_betw f A B \<Longrightarrow> inj_on g B \<Longrightarrow> inj_on (compose A g f) A" | 
| 255 | by (auto simp add: bij_betw_def inj_on_def compose_eq) | |
| 14853 | 256 | |
| 58783 | 257 | lemma bij_betw_compose: "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (compose A g f) A C" | 
| 258 | apply (simp add: bij_betw_def compose_eq inj_on_compose) | |
| 259 | apply (auto simp add: compose_def image_def) | |
| 260 | done | |
| 14762 | 261 | |
| 58783 | 262 | lemma bij_betw_restrict_eq [simp]: "bij_betw (restrict f A) A B = bij_betw f A B" | 
| 263 | by (simp add: bij_betw_def) | |
| 14853 | 264 | |
| 265 | ||
| 58783 | 266 | subsection \<open>Extensionality\<close> | 
| 14853 | 267 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 268 | lemma extensional_empty[simp]: "extensional {} = {\<lambda>x. undefined}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 269 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 270 | |
| 58783 | 271 | lemma extensional_arb: "f \<in> extensional A \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = undefined" | 
| 272 | by (simp add: extensional_def) | |
| 14853 | 273 | |
| 274 | lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" | |
| 58783 | 275 | by (simp add: restrict_def extensional_def) | 
| 14853 | 276 | |
| 277 | lemma compose_extensional [simp]: "compose A f g \<in> extensional A" | |
| 58783 | 278 | by (simp add: compose_def) | 
| 14853 | 279 | |
| 280 | lemma extensionalityI: | |
| 58783 | 281 | assumes "f \<in> extensional A" | 
| 282 | and "g \<in> extensional A" | |
| 283 | and "\<And>x. x \<in> A \<Longrightarrow> f x = g x" | |
| 284 | shows "f = g" | |
| 285 | using assms by (force simp add: fun_eq_iff extensional_def) | |
| 14853 | 286 | |
| 39595 | 287 | lemma extensional_restrict: "f \<in> extensional A \<Longrightarrow> restrict f A = f" | 
| 58783 | 288 | by (rule extensionalityI[OF restrict_extensional]) auto | 
| 39595 | 289 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 290 | lemma extensional_subset: "f \<in> extensional A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f \<in> extensional B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 291 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 292 | |
| 58783 | 293 | lemma inv_into_funcset: "f ` A = B \<Longrightarrow> (\<lambda>x\<in>B. inv_into A f x) \<in> B \<rightarrow> A" | 
| 294 | by (unfold inv_into_def) (fast intro: someI2) | |
| 14853 | 295 | |
| 58783 | 296 | lemma compose_inv_into_id: "bij_betw f A B \<Longrightarrow> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)" | 
| 297 | apply (simp add: bij_betw_def compose_def) | |
| 298 | apply (rule restrict_ext, auto) | |
| 299 | done | |
| 14853 | 300 | |
| 58783 | 301 | lemma compose_id_inv_into: "f ` A = B \<Longrightarrow> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)" | 
| 302 | apply (simp add: compose_def) | |
| 303 | apply (rule restrict_ext) | |
| 304 | apply (simp add: f_inv_into_f) | |
| 305 | done | |
| 14853 | 306 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 307 | lemma extensional_insert[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 308 | assumes "a \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 309 | shows "a(i := b) \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 310 | using assms unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 311 | |
| 58783 | 312 | lemma extensional_Int[simp]: "extensional I \<inter> extensional I' = extensional (I \<inter> I')" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 313 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 314 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 315 | lemma extensional_UNIV[simp]: "extensional UNIV = UNIV" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 316 | by (auto simp: extensional_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 317 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 318 | lemma restrict_extensional_sub[intro]: "A \<subseteq> B \<Longrightarrow> restrict f A \<in> extensional B" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 319 | unfolding restrict_def extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 320 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 321 | lemma extensional_insert_undefined[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 322 | "a \<in> extensional (insert i I) \<Longrightarrow> a(i := undefined) \<in> extensional I" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 323 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 324 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 325 | lemma extensional_insert_cancel[intro, simp]: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 326 | "a \<in> extensional I \<Longrightarrow> a \<in> extensional (insert i I)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 327 | unfolding extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 328 | |
| 14762 | 329 | |
| 58783 | 330 | subsection \<open>Cardinality\<close> | 
| 14745 | 331 | |
| 58783 | 332 | lemma card_inj: "f \<in> A \<rightarrow> B \<Longrightarrow> inj_on f A \<Longrightarrow> finite B \<Longrightarrow> card A \<le> card B" | 
| 333 | by (rule card_inj_on_le) auto | |
| 14745 | 334 | |
| 335 | lemma card_bij: | |
| 58783 | 336 | assumes "f \<in> A \<rightarrow> B" "inj_on f A" | 
| 337 | and "g \<in> B \<rightarrow> A" "inj_on g B" | |
| 338 | and "finite A" "finite B" | |
| 339 | shows "card A = card B" | |
| 340 | using assms by (blast intro: card_inj order_antisym) | |
| 14745 | 341 | |
| 58783 | 342 | |
| 343 | subsection \<open>Extensional Function Spaces\<close> | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 344 | |
| 58783 | 345 | definition PiE :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b set) \<Rightarrow> ('a \<Rightarrow> 'b) set"
 | 
| 346 | where "PiE S T = Pi S T \<inter> extensional S" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 347 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 348 | abbreviation "Pi\<^sub>E A B \<equiv> PiE A B" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 349 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 350 | syntax | 
| 58783 | 351 |   "_PiE" :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set"  ("(3\<Pi>\<^sub>E _\<in>_./ _)" 10)
 | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 352 | translations | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61585diff
changeset | 353 | "\<Pi>\<^sub>E x\<in>A. B" \<rightleftharpoons> "CONST Pi\<^sub>E A (\<lambda>x. B)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 354 | |
| 61384 | 355 | abbreviation extensional_funcset :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<Rightarrow> 'b) set" (infixr "\<rightarrow>\<^sub>E" 60)
 | 
| 356 | where "A \<rightarrow>\<^sub>E B \<equiv> (\<Pi>\<^sub>E i\<in>A. B)" | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 357 | |
| 58783 | 358 | lemma extensional_funcset_def: "extensional_funcset S T = (S \<rightarrow> T) \<inter> extensional S" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 359 | by (simp add: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 360 | |
| 64910 | 361 | lemma PiE_empty_domain[simp]: "Pi\<^sub>E {} T = {\<lambda>x. undefined}"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 362 | unfolding PiE_def by simp | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 363 | |
| 64910 | 364 | lemma PiE_UNIV_domain: "Pi\<^sub>E UNIV T = Pi UNIV T" | 
| 54417 | 365 | unfolding PiE_def by simp | 
| 366 | ||
| 58783 | 367 | lemma PiE_empty_range[simp]: "i \<in> I \<Longrightarrow> F i = {} \<Longrightarrow> (\<Pi>\<^sub>E i\<in>I. F i) = {}"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 368 | unfolding PiE_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 369 | |
| 58783 | 370 | lemma PiE_eq_empty_iff: "Pi\<^sub>E I F = {} \<longleftrightarrow> (\<exists>i\<in>I. F i = {})"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 371 | proof | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 372 |   assume "Pi\<^sub>E I F = {}"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 373 |   show "\<exists>i\<in>I. F i = {}"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 374 | proof (rule ccontr) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 375 | assume "\<not> ?thesis" | 
| 58783 | 376 | then have "\<forall>i. \<exists>y. (i \<in> I \<longrightarrow> y \<in> F i) \<and> (i \<notin> I \<longrightarrow> y = undefined)" | 
| 377 | by auto | |
| 53381 | 378 | from choice[OF this] | 
| 379 | obtain f where " \<forall>x. (x \<in> I \<longrightarrow> f x \<in> F x) \<and> (x \<notin> I \<longrightarrow> f x = undefined)" .. | |
| 58783 | 380 | then have "f \<in> Pi\<^sub>E I F" | 
| 381 | by (auto simp: extensional_def PiE_def) | |
| 382 |     with \<open>Pi\<^sub>E I F = {}\<close> show False
 | |
| 383 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 384 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 385 | qed (auto simp: PiE_def) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 386 | |
| 64910 | 387 | lemma PiE_arb: "f \<in> Pi\<^sub>E S T \<Longrightarrow> x \<notin> S \<Longrightarrow> f x = undefined" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 388 | unfolding PiE_def by auto (auto dest!: extensional_arb) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 389 | |
| 64910 | 390 | lemma PiE_mem: "f \<in> Pi\<^sub>E S T \<Longrightarrow> x \<in> S \<Longrightarrow> f x \<in> T x" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 391 | unfolding PiE_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 392 | |
| 64910 | 393 | lemma PiE_fun_upd: "y \<in> T x \<Longrightarrow> f \<in> Pi\<^sub>E S T \<Longrightarrow> f(x := y) \<in> Pi\<^sub>E (insert x S) T" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 394 | unfolding PiE_def extensional_def by auto | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 395 | |
| 64910 | 396 | lemma fun_upd_in_PiE: "x \<notin> S \<Longrightarrow> f \<in> Pi\<^sub>E (insert x S) T \<Longrightarrow> f(x := undefined) \<in> Pi\<^sub>E S T" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 397 | unfolding PiE_def extensional_def by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 398 | |
| 64910 | 399 | lemma PiE_insert_eq: "Pi\<^sub>E (insert x S) T = (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 400 | proof - | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 401 |   {
 | 
| 64910 | 402 | fix f assume "f \<in> Pi\<^sub>E (insert x S) T" "x \<notin> S" | 
| 403 | then have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 404 | by (auto intro!: image_eqI[where x="(f x, f(x := undefined))"] intro: fun_upd_in_PiE PiE_mem) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 405 | } | 
| 59425 | 406 | moreover | 
| 407 |   {
 | |
| 64910 | 408 | fix f assume "f \<in> Pi\<^sub>E (insert x S) T" "x \<in> S" | 
| 409 | then have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)" | |
| 59425 | 410 | by (auto intro!: image_eqI[where x="(f x, f)"] intro: fun_upd_in_PiE PiE_mem simp: insert_absorb) | 
| 411 | } | |
| 412 | ultimately show ?thesis | |
| 63092 | 413 | by (auto intro: PiE_fun_upd) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 414 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 415 | |
| 58783 | 416 | lemma PiE_Int: "Pi\<^sub>E I A \<inter> Pi\<^sub>E I B = Pi\<^sub>E I (\<lambda>x. A x \<inter> B x)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 417 | by (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 418 | |
| 58783 | 419 | lemma PiE_cong: "(\<And>i. i\<in>I \<Longrightarrow> A i = B i) \<Longrightarrow> Pi\<^sub>E I A = Pi\<^sub>E I B" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 420 | unfolding PiE_def by (auto simp: Pi_cong) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 421 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 422 | lemma PiE_E [elim]: | 
| 64910 | 423 | assumes "f \<in> Pi\<^sub>E A B" | 
| 58783 | 424 | obtains "x \<in> A" and "f x \<in> B x" | 
| 425 | | "x \<notin> A" and "f x = undefined" | |
| 426 | using assms by (auto simp: Pi_def PiE_def extensional_def) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 427 | |
| 58783 | 428 | lemma PiE_I[intro!]: | 
| 64910 | 429 | "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> B x) \<Longrightarrow> (\<And>x. x \<notin> A \<Longrightarrow> f x = undefined) \<Longrightarrow> f \<in> Pi\<^sub>E A B" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 430 | by (simp add: PiE_def extensional_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 431 | |
| 64910 | 432 | lemma PiE_mono: "(\<And>x. x \<in> A \<Longrightarrow> B x \<subseteq> C x) \<Longrightarrow> Pi\<^sub>E A B \<subseteq> Pi\<^sub>E A C" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 433 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 434 | |
| 64910 | 435 | lemma PiE_iff: "f \<in> Pi\<^sub>E I X \<longleftrightarrow> (\<forall>i\<in>I. f i \<in> X i) \<and> f \<in> extensional I" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 436 | by (simp add: PiE_def Pi_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 437 | |
| 73348 
65c45cba3f54
reverted simprule status on a new lemma
 paulson <lp15@cam.ac.uk> parents: 
73346diff
changeset | 438 | lemma restrict_PiE_iff: "restrict f I \<in> Pi\<^sub>E I X \<longleftrightarrow> (\<forall>i \<in> I. f i \<in> X i)" | 
| 73346 | 439 | by (simp add: PiE_iff) | 
| 440 | ||
| 71258 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 441 | lemma ext_funcset_to_sing_iff [simp]: "A \<rightarrow>\<^sub>E {a} = {\<lambda>x\<in>A. a}"
 | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 442 | by (auto simp: PiE_def Pi_iff extensionalityI) | 
| 
d67924987c34
a few new and tidier proofs (mostly about finite sets)
 paulson <lp15@cam.ac.uk> parents: 
70063diff
changeset | 443 | |
| 64910 | 444 | lemma PiE_restrict[simp]: "f \<in> Pi\<^sub>E A B \<Longrightarrow> restrict f A = f" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 445 | by (simp add: extensional_restrict PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 446 | |
| 64910 | 447 | lemma restrict_PiE[simp]: "restrict f I \<in> Pi\<^sub>E I S \<longleftrightarrow> f \<in> Pi I S" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 448 | by (auto simp: PiE_iff) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 449 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 450 | lemma PiE_eq_subset: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 451 |   assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
 | 
| 58783 | 452 | and eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 453 | and "i \<in> I" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 454 | shows "F i \<subseteq> F' i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 455 | proof | 
| 58783 | 456 | fix x | 
| 457 | assume "x \<in> F i" | |
| 458 | with ne have "\<forall>j. \<exists>y. (j \<in> I \<longrightarrow> y \<in> F j \<and> (i = j \<longrightarrow> x = y)) \<and> (j \<notin> I \<longrightarrow> y = undefined)" | |
| 53381 | 459 | by auto | 
| 460 | from choice[OF this] obtain f | |
| 461 | where f: " \<forall>j. (j \<in> I \<longrightarrow> f j \<in> F j \<and> (i = j \<longrightarrow> x = f j)) \<and> (j \<notin> I \<longrightarrow> f j = undefined)" .. | |
| 58783 | 462 | then have "f \<in> Pi\<^sub>E I F" | 
| 463 | by (auto simp: extensional_def PiE_def) | |
| 464 | then have "f \<in> Pi\<^sub>E I F'" | |
| 465 | using assms by simp | |
| 466 | then show "x \<in> F' i" | |
| 467 | using f \<open>i \<in> I\<close> by (auto simp: PiE_def) | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 468 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 469 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 470 | lemma PiE_eq_iff_not_empty: | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 471 |   assumes ne: "\<And>i. i \<in> I \<Longrightarrow> F i \<noteq> {}" "\<And>i. i \<in> I \<Longrightarrow> F' i \<noteq> {}"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 472 | shows "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 473 | proof (intro iffI ballI) | 
| 58783 | 474 | fix i | 
| 475 | assume eq: "Pi\<^sub>E I F = Pi\<^sub>E I F'" | |
| 476 | assume i: "i \<in> I" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 477 | show "F i = F' i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 478 | using PiE_eq_subset[of I F F', OF ne eq i] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 479 | using PiE_eq_subset[of I F' F, OF ne(2,1) eq[symmetric] i] | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 480 | by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 481 | qed (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 482 | |
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 483 | lemma PiE_eq_iff: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 484 |   "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i) \<or> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
 | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 485 | proof (intro iffI disjCI) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 486 | assume eq[simp]: "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 487 |   assume "\<not> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 488 |   then have "(\<forall>i\<in>I. F i \<noteq> {}) \<and> (\<forall>i\<in>I. F' i \<noteq> {})"
 | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 489 | using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by auto | 
| 58783 | 490 | with PiE_eq_iff_not_empty[of I F F'] show "\<forall>i\<in>I. F i = F' i" | 
| 491 | by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 492 | next | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 493 |   assume "(\<forall>i\<in>I. F i = F' i) \<or> (\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {})"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 494 | then show "Pi\<^sub>E I F = Pi\<^sub>E I F'" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 495 | using PiE_eq_empty_iff[of I F] PiE_eq_empty_iff[of I F'] by (auto simp: PiE_def) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 496 | qed | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 497 | |
| 58783 | 498 | lemma extensional_funcset_fun_upd_restricts_rangeI: | 
| 499 |   "\<forall>y \<in> S. f x \<noteq> f y \<Longrightarrow> f \<in> (insert x S) \<rightarrow>\<^sub>E T \<Longrightarrow> f(x := undefined) \<in> S \<rightarrow>\<^sub>E (T - {f x})"
 | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 500 | unfolding extensional_funcset_def extensional_def | 
| 73346 | 501 | by (auto split: if_split_asm) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 502 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 503 | lemma extensional_funcset_fun_upd_extends_rangeI: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 504 |   assumes "a \<in> T" "f \<in> S \<rightarrow>\<^sub>E (T - {a})"
 | 
| 58783 | 505 | shows "f(x := a) \<in> insert x S \<rightarrow>\<^sub>E T" | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 506 | using assms unfolding extensional_funcset_def extensional_def by auto | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 507 | |
| 69000 | 508 | lemma subset_PiE: | 
| 509 |    "PiE I S \<subseteq> PiE I T \<longleftrightarrow> PiE I S = {} \<or> (\<forall>i \<in> I. S i \<subseteq> T i)" (is "?lhs \<longleftrightarrow> _ \<or> ?rhs")
 | |
| 510 | proof (cases "PiE I S = {}")
 | |
| 511 | case False | |
| 512 | moreover have "?lhs = ?rhs" | |
| 513 | proof | |
| 514 | assume L: ?lhs | |
| 515 |     have "\<And>i. i\<in>I \<Longrightarrow> S i \<noteq> {}"
 | |
| 516 | using False PiE_eq_empty_iff by blast | |
| 517 | with L show ?rhs | |
| 518 | by (simp add: PiE_Int PiE_eq_iff inf.absorb_iff2) | |
| 519 | qed auto | |
| 520 | ultimately show ?thesis | |
| 521 | by simp | |
| 522 | qed simp | |
| 523 | ||
| 524 | lemma PiE_eq: | |
| 525 |    "PiE I S = PiE I T \<longleftrightarrow> PiE I S = {} \<and> PiE I T = {} \<or> (\<forall>i \<in> I. S i = T i)"
 | |
| 526 | by (auto simp: PiE_eq_iff PiE_eq_empty_iff) | |
| 527 | ||
| 528 | lemma PiE_UNIV [simp]: "PiE UNIV (\<lambda>i. UNIV) = UNIV" | |
| 529 | by blast | |
| 530 | ||
| 531 | lemma image_projection_PiE: | |
| 532 |   "(\<lambda>f. f i) ` (PiE I S) = (if PiE I S = {} then {} else if i \<in> I then S i else {undefined})"
 | |
| 533 | proof - | |
| 534 | have "(\<lambda>f. f i) ` Pi\<^sub>E I S = S i" if "i \<in> I" "f \<in> PiE I S" for f | |
| 535 | using that apply auto | |
| 536 | by (rule_tac x="(\<lambda>k. if k=i then x else f k)" in image_eqI) auto | |
| 537 |   moreover have "(\<lambda>f. f i) ` Pi\<^sub>E I S = {undefined}" if "f \<in> PiE I S" "i \<notin> I" for f
 | |
| 538 | using that by (blast intro: PiE_arb [OF that, symmetric]) | |
| 539 | ultimately show ?thesis | |
| 540 | by auto | |
| 541 | qed | |
| 542 | ||
| 73348 
65c45cba3f54
reverted simprule status on a new lemma
 paulson <lp15@cam.ac.uk> parents: 
73346diff
changeset | 543 | lemma PiE_singleton: | 
| 69710 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 544 | assumes "f \<in> extensional A" | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 545 |   shows   "PiE A (\<lambda>x. {f x}) = {f}"
 | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 546 | proof - | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 547 |   {
 | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 548 |     fix g assume "g \<in> PiE A (\<lambda>x. {f x})"
 | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 549 | hence "g x = f x" for x | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 550 | using assms by (cases "x \<in> A") (auto simp: extensional_def) | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 551 | hence "g = f" by (simp add: fun_eq_iff) | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 552 | } | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 553 | thus ?thesis using assms by (auto simp: extensional_def) | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 554 | qed | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 555 | |
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 556 | lemma PiE_eq_singleton: "(\<Pi>\<^sub>E i\<in>I. S i) = {\<lambda>i\<in>I. f i} \<longleftrightarrow> (\<forall>i\<in>I. S i = {f i})"
 | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 557 | by (metis (mono_tags, lifting) PiE_eq PiE_singleton insert_not_empty restrict_apply' restrict_extensional) | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 558 | |
| 69939 
812ce526da33
new material on topology: products, etc. Some renamings, esp continuous_on_topo -> continuous_map
 paulson <lp15@cam.ac.uk> parents: 
69710diff
changeset | 559 | lemma PiE_over_singleton_iff: "(\<Pi>\<^sub>E x\<in>{a}. B x) = (\<Union>b \<in> B a. {\<lambda>x \<in> {a}. b})"
 | 
| 
812ce526da33
new material on topology: products, etc. Some renamings, esp continuous_on_topo -> continuous_map
 paulson <lp15@cam.ac.uk> parents: 
69710diff
changeset | 560 | apply (auto simp: PiE_iff split: if_split_asm) | 
| 
812ce526da33
new material on topology: products, etc. Some renamings, esp continuous_on_topo -> continuous_map
 paulson <lp15@cam.ac.uk> parents: 
69710diff
changeset | 561 | apply (metis (no_types, lifting) extensionalityI restrict_apply' restrict_extensional singletonD) | 
| 
812ce526da33
new material on topology: products, etc. Some renamings, esp continuous_on_topo -> continuous_map
 paulson <lp15@cam.ac.uk> parents: 
69710diff
changeset | 562 | done | 
| 
812ce526da33
new material on topology: products, etc. Some renamings, esp continuous_on_topo -> continuous_map
 paulson <lp15@cam.ac.uk> parents: 
69710diff
changeset | 563 | |
| 69710 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 564 | lemma all_PiE_elements: | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 565 |    "(\<forall>z \<in> PiE I S. \<forall>i \<in> I. P i (z i)) \<longleftrightarrow> PiE I S = {} \<or> (\<forall>i \<in> I. \<forall>x \<in> S i. P i x)" (is "?lhs = ?rhs")
 | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 566 | proof (cases "PiE I S = {}")
 | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 567 | case False | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 568 | then obtain f where f: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> S i" | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 569 | by fastforce | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 570 | show ?thesis | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 571 | proof | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 572 | assume L: ?lhs | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 573 | have "P i x" | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 574 | if "i \<in> I" "x \<in> S i" for i x | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 575 | proof - | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 576 | have "(\<lambda>j \<in> I. if j=i then x else f j) \<in> PiE I S" | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 577 | by (simp add: f that(2)) | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 578 | then have "P i ((\<lambda>j \<in> I. if j=i then x else f j) i)" | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 579 | using L that(1) by blast | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 580 | with that show ?thesis | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 581 | by simp | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 582 | qed | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 583 | then show ?rhs | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 584 | by (simp add: False) | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 585 | qed fastforce | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 586 | qed simp | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 587 | |
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 588 | lemma PiE_ext: "\<lbrakk>x \<in> PiE k s; y \<in> PiE k s; \<And>i. i \<in> k \<Longrightarrow> x i = y i\<rbrakk> \<Longrightarrow> x = y" | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 589 | by (metis ext PiE_E) | 
| 
61372780515b
some renamings and a bit of new material
 paulson <lp15@cam.ac.uk> parents: 
69593diff
changeset | 590 | |
| 58783 | 591 | |
| 592 | subsubsection \<open>Injective Extensional Function Spaces\<close> | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 593 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 594 | lemma extensional_funcset_fun_upd_inj_onI: | 
| 58783 | 595 |   assumes "f \<in> S \<rightarrow>\<^sub>E (T - {a})"
 | 
| 596 | and "inj_on f S" | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 597 | shows "inj_on (f(x := a)) S" | 
| 58783 | 598 | using assms | 
| 599 | unfolding extensional_funcset_def by (auto intro!: inj_on_fun_updI) | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 600 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 601 | lemma extensional_funcset_extend_domain_inj_on_eq: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 602 | assumes "x \<notin> S" | 
| 58783 | 603 |   shows "{f. f \<in> (insert x S) \<rightarrow>\<^sub>E T \<and> inj_on f (insert x S)} =
 | 
| 604 |     (\<lambda>(y, g). g(x:=y)) ` {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
 | |
| 605 | using assms | |
| 606 | apply (auto del: PiE_I PiE_E) | |
| 607 | apply (auto intro: extensional_funcset_fun_upd_inj_onI | |
| 608 | extensional_funcset_fun_upd_extends_rangeI del: PiE_I PiE_E) | |
| 609 | apply (auto simp add: image_iff inj_on_def) | |
| 610 | apply (rule_tac x="xa x" in exI) | |
| 611 | apply (auto intro: PiE_mem del: PiE_I PiE_E) | |
| 612 | apply (rule_tac x="xa(x := undefined)" in exI) | |
| 613 | apply (auto intro!: extensional_funcset_fun_upd_restricts_rangeI) | |
| 62390 | 614 | apply (auto dest!: PiE_mem split: if_split_asm) | 
| 58783 | 615 | done | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 616 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 617 | lemma extensional_funcset_extend_domain_inj_onI: | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 618 | assumes "x \<notin> S" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 619 |   shows "inj_on (\<lambda>(y, g). g(x := y)) {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
 | 
| 58783 | 620 | using assms | 
| 621 | apply (auto intro!: inj_onI) | |
| 622 | apply (metis fun_upd_same) | |
| 623 | apply (metis assms PiE_arb fun_upd_triv fun_upd_upd) | |
| 624 | done | |
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 625 | |
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 626 | |
| 69144 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 627 | subsubsection \<open>Misc properties of functions, composition and restriction from HOL Light\<close> | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 628 | |
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 629 | lemma function_factors_left_gen: | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 630 | "(\<forall>x y. P x \<and> P y \<and> g x = g y \<longrightarrow> f x = f y) \<longleftrightarrow> (\<exists>h. \<forall>x. P x \<longrightarrow> f x = h(g x))" | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 631 | (is "?lhs = ?rhs") | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 632 | proof | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 633 | assume L: ?lhs | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 634 | then show ?rhs | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 635 | apply (rule_tac x="f \<circ> inv_into (Collect P) g" in exI) | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 636 | unfolding o_def | 
| 73932 
fd21b4a93043
added opaque_combs and renamed hide_lams to opaque_lifting
 desharna parents: 
73348diff
changeset | 637 | by (metis (mono_tags, opaque_lifting) f_inv_into_f imageI inv_into_into mem_Collect_eq) | 
| 69144 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 638 | qed auto | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 639 | |
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 640 | lemma function_factors_left: | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 641 | "(\<forall>x y. (g x = g y) \<longrightarrow> (f x = f y)) \<longleftrightarrow> (\<exists>h. f = h \<circ> g)" | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 642 | using function_factors_left_gen [of "\<lambda>x. True" g f] unfolding o_def by blast | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 643 | |
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 644 | lemma function_factors_right_gen: | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 645 | "(\<forall>x. P x \<longrightarrow> (\<exists>y. g y = f x)) \<longleftrightarrow> (\<exists>h. \<forall>x. P x \<longrightarrow> f x = g(h x))" | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 646 | by metis | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 647 | |
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 648 | lemma function_factors_right: | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 649 | "(\<forall>x. \<exists>y. g y = f x) \<longleftrightarrow> (\<exists>h. f = g \<circ> h)" | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 650 | unfolding o_def by metis | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 651 | |
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 652 | lemma restrict_compose_right: | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 653 | "restrict (g \<circ> restrict f S) S = restrict (g \<circ> f) S" | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 654 | by auto | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 655 | |
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 656 | lemma restrict_compose_left: | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 657 | "f ` S \<subseteq> T \<Longrightarrow> restrict (restrict g T \<circ> f) S = restrict (g \<circ> f) S" | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 658 | by fastforce | 
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 659 | |
| 
f13b82281715
new theory Abstract_Topology with lots of stuff from HOL Light's metric.sml
 paulson <lp15@cam.ac.uk> parents: 
69000diff
changeset | 660 | |
| 58783 | 661 | subsubsection \<open>Cardinality\<close> | 
| 662 | ||
| 663 | lemma finite_PiE: "finite S \<Longrightarrow> (\<And>i. i \<in> S \<Longrightarrow> finite (T i)) \<Longrightarrow> finite (\<Pi>\<^sub>E i \<in> S. T i)" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 664 | by (induct S arbitrary: T rule: finite_induct) (simp_all add: PiE_insert_eq) | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 665 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
50123diff
changeset | 666 | lemma inj_combinator: "x \<notin> S \<Longrightarrow> inj_on (\<lambda>(y, g). g(x := y)) (T x \<times> Pi\<^sub>E S T)" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 667 | proof (safe intro!: inj_onI ext) | 
| 58783 | 668 | fix f y g z | 
| 669 | assume "x \<notin> S" | |
| 670 | assume fg: "f \<in> Pi\<^sub>E S T" "g \<in> Pi\<^sub>E S T" | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 671 | assume "f(x := y) = g(x := z)" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 672 | then have *: "\<And>i. (f(x := y)) i = (g(x := z)) i" | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 673 | unfolding fun_eq_iff by auto | 
| 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 674 | from this[of x] show "y = z" by simp | 
| 58783 | 675 | fix i from *[of i] \<open>x \<notin> S\<close> fg show "f i = g i" | 
| 62390 | 676 | by (auto split: if_split_asm simp: PiE_def extensional_def) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 677 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 678 | |
| 58783 | 679 | lemma card_PiE: "finite S \<Longrightarrow> card (\<Pi>\<^sub>E i \<in> S. T i) = (\<Prod> i\<in>S. card (T i))" | 
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 680 | proof (induct rule: finite_induct) | 
| 58783 | 681 | case empty | 
| 682 | then show ?case by auto | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 683 | next | 
| 58783 | 684 | case (insert x S) | 
| 685 | then show ?case | |
| 50123 
69b35a75caf3
merge extensional dependent function space from FuncSet with the one in Finite_Product_Measure
 hoelzl parents: 
50104diff
changeset | 686 | by (simp add: PiE_insert_eq inj_combinator card_image card_cartesian_product) | 
| 40631 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 687 | qed | 
| 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 bulwahn parents: 
39595diff
changeset | 688 | |
| 75663 | 689 | lemma card_funcsetE: "finite A \<Longrightarrow> card (A \<rightarrow>\<^sub>E B) = card B ^ card A" | 
| 690 | by (subst card_PiE, auto) | |
| 691 | ||
| 692 | lemma card_inj_on_subset_funcset: assumes finB: "finite B" | |
| 693 | and finC: "finite C" | |
| 694 | and AB: "A \<subseteq> B" | |
| 695 | shows "card {f \<in> B \<rightarrow>\<^sub>E C. inj_on f A} = 
 | |
| 696 |   card C^(card B - card A) * prod ((-) (card C)) {0 ..< card A}"
 | |
| 697 | proof - | |
| 698 | define D where "D = B - A" | |
| 699 |   from AB have B: "B = A \<union> D" and disj: "A \<inter> D = {}" unfolding D_def by auto
 | |
| 700 | have sub: "card B - card A = card D" unfolding D_def using finB AB | |
| 701 | by (metis card_Diff_subset finite_subset) | |
| 702 | have "finite A" "finite D" using finB unfolding B by auto | |
| 703 | thus ?thesis unfolding sub unfolding B using disj | |
| 704 | proof (induct A rule: finite_induct) | |
| 705 | case empty | |
| 706 | from card_funcsetE[OF this(1), of C] show ?case by auto | |
| 707 | next | |
| 708 | case (insert a A) | |
| 709 |     have "{f. f \<in> insert a A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f (insert a A)}
 | |
| 710 |       = {f(a := c) | f c. f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A \<and> c \<in> C - f ` A}" 
 | |
| 711 | (is "?l = ?r") | |
| 712 | proof | |
| 713 | show "?r \<subseteq> ?l" | |
| 714 | by (auto intro: inj_on_fun_updI split: if_splits) | |
| 715 |       {
 | |
| 716 | fix f | |
| 717 | assume f: "f \<in> ?l" | |
| 718 | let ?g = "f(a := undefined)" | |
| 719 | let ?h = "?g(a := f a)" | |
| 720 | have mem: "f a \<in> C - ?g ` A" using insert(1,2,4,5) f by auto | |
| 721 | from f have f: "f \<in> insert a A \<union> D \<rightarrow>\<^sub>E C" "inj_on f (insert a A)" by auto | |
| 722 |         hence "?g \<in> A \<union> D \<rightarrow>\<^sub>E C" "inj_on ?g A" using \<open>a \<notin> A\<close> \<open>insert a A \<inter> D = {}\<close>
 | |
| 723 | by (auto split: if_splits simp: inj_on_def) | |
| 724 | with mem have "?h \<in> ?r" by blast | |
| 725 | also have "?h = f" by auto | |
| 726 | finally have "f \<in> ?r" . | |
| 727 | } | |
| 728 | thus "?l \<subseteq> ?r" by auto | |
| 729 | qed | |
| 730 | also have "\<dots> = (\<lambda> (f, c). f (a := c)) ` | |
| 731 |          (Sigma {f . f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A} (\<lambda> f. C - f ` A))"
 | |
| 732 | by auto | |
| 733 |     also have "card (...) = card (Sigma {f . f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A} (\<lambda> f. C - f ` A))" 
 | |
| 734 | proof (rule card_image, intro inj_onI, clarsimp, goal_cases) | |
| 735 | case (1 f c g d) | |
| 736 | let ?f = "f(a := c, a := undefined)" | |
| 737 | let ?g = "g(a := d, a := undefined)" | |
| 738 | from 1 have id: "f(a := c) = g(a := d)" by auto | |
| 739 | from fun_upd_eqD[OF id] | |
| 740 | have cd: "c = d" by auto | |
| 741 | from id have "?f = ?g" by auto | |
| 742 | also have "?f = f" using `f \<in> A \<union> D \<rightarrow>\<^sub>E C` insert(1,2,4,5) | |
| 743 | by (intro ext, auto) | |
| 744 | also have "?g = g" using `g \<in> A \<union> D \<rightarrow>\<^sub>E C` insert(1,2,4,5) | |
| 745 | by (intro ext, auto) | |
| 746 | finally show "f = g \<and> c = d" using cd by auto | |
| 747 | qed | |
| 748 |     also have "\<dots> = (\<Sum>f\<in>{f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}. card (C - f ` A))" 
 | |
| 749 | by (rule card_SigmaI, rule finite_subset[of _ "A \<union> D \<rightarrow>\<^sub>E C"], | |
| 750 | insert \<open>finite C\<close> \<open>finite D\<close> \<open>finite A\<close>, auto intro!: finite_PiE) | |
| 751 |     also have "\<dots> = (\<Sum>f\<in>{f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}. card C - card A)"
 | |
| 752 | by (rule sum.cong[OF refl], subst card_Diff_subset, insert \<open>finite A\<close>, auto simp: card_image) | |
| 753 |     also have "\<dots> = (card C - card A) * card {f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}" 
 | |
| 754 | by simp | |
| 755 |     also have "\<dots> = card C ^ card D * ((card C - card A) * prod ((-) (card C)) {0..<card A})" 
 | |
| 756 | using insert by (auto simp: ac_simps) | |
| 757 |     also have "(card C - card A) * prod ((-) (card C)) {0..<card A} =
 | |
| 758 |       prod ((-) (card C)) {0..<Suc (card A)}" by simp
 | |
| 759 | also have "Suc (card A) = card (insert a A)" using insert by auto | |
| 760 | finally show ?case . | |
| 761 | qed | |
| 762 | qed | |
| 763 | ||
| 764 | ||
| 71838 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 765 | subsection \<open>The pigeonhole principle\<close> | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 766 | |
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 767 | text \<open> | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 768 | An alternative formulation of this is that for a function mapping a finite set \<open>A\<close> of | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 769 | cardinality \<open>m\<close> to a finite set \<open>B\<close> of cardinality \<open>n\<close>, there exists an element \<open>y \<in> B\<close> that | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 770 |   is hit at least $\lceil \frac{m}{n}\rceil$ times. However, since we do not have real numbers
 | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 771 | or rounding yet, we state it in the following equivalent form: | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 772 | \<close> | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 773 | lemma pigeonhole_card: | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 774 |   assumes "f \<in> A \<rightarrow> B" "finite A" "finite B" "B \<noteq> {}"
 | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 775 |   shows   "\<exists>y\<in>B. card (f -` {y} \<inter> A) * card B \<ge> card A"
 | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 776 | proof - | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 777 | from assms have "card B > 0" | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 778 | by auto | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 779 |   define M where "M = Max ((\<lambda>y. card (f -` {y} \<inter> A)) ` B)"
 | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 780 |   have "A = (\<Union>y\<in>B. f -` {y} \<inter> A)"
 | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 781 | using assms by auto | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 782 |   also have "card \<dots> = (\<Sum>i\<in>B. card (f -` {i} \<inter> A))"
 | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 783 | using assms by (subst card_UN_disjoint) auto | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 784 | also have "\<dots> \<le> (\<Sum>i\<in>B. M)" | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 785 | unfolding M_def using assms by (intro sum_mono Max.coboundedI) auto | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 786 | also have "\<dots> = card B * M" | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 787 | by simp | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 788 | finally have "M * card B \<ge> card A" | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 789 | by (simp add: mult_ac) | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 790 |   moreover have "M \<in> (\<lambda>y. card (f -` {y} \<inter> A)) ` B"
 | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 791 |     unfolding M_def using assms \<open>B \<noteq> {}\<close> by (intro Max_in) auto
 | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 792 | ultimately show ?thesis | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 793 | by blast | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 794 | qed | 
| 
5656ec95493c
generalised pigeonhole principle in HOL-Library.FuncSet
 Manuel Eberl <eberlm@in.tum.de> parents: 
71258diff
changeset | 795 | |
| 13586 | 796 | end |