| 
30661
 | 
     1  | 
(* Author: Amine Chaieb, University of Cambridge *)
  | 
| 
29838
 | 
     2  | 
  | 
| 
30661
 | 
     3  | 
header {* Definitions of Lower Bounds and Greatest Lower Bounds, analogous to Lubs *}
 | 
| 
29838
 | 
     4  | 
  | 
| 
 | 
     5  | 
theory Glbs
  | 
| 
 | 
     6  | 
imports Lubs
  | 
| 
 | 
     7  | 
begin
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
definition
  | 
| 
 | 
    10  | 
  greatestP      :: "['a =>bool,'a::ord] => bool" where
  | 
| 
 | 
    11  | 
  "greatestP P x = (P x & Collect P *<=  x)"
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
definition
  | 
| 
 | 
    14  | 
  isLb        :: "['a set, 'a set, 'a::ord] => bool" where
  | 
| 
 | 
    15  | 
  "isLb R S x = (x <=* S & x: R)"
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
definition
  | 
| 
 | 
    18  | 
  isGlb       :: "['a set, 'a set, 'a::ord] => bool" where
  | 
| 
 | 
    19  | 
  "isGlb R S x = greatestP (isLb R S) x"
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
definition
  | 
| 
 | 
    22  | 
  lbs         :: "['a set, 'a::ord set] => 'a set" where
  | 
| 
 | 
    23  | 
  "lbs R S = Collect (isLb R S)"
  | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
subsection{*Rules about the Operators @{term greatestP}, @{term isLb}
 | 
| 
 | 
    26  | 
    and @{term isGlb}*}
 | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
lemma leastPD1: "greatestP P x ==> P x"
  | 
| 
 | 
    29  | 
by (simp add: greatestP_def)
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
lemma greatestPD2: "greatestP P x ==> Collect P *<= x"
  | 
| 
 | 
    32  | 
by (simp add: greatestP_def)
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
lemma greatestPD3: "[| greatestP P x; y: Collect P |] ==> x >= y"
  | 
| 
 | 
    35  | 
by (blast dest!: greatestPD2 setleD)
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
lemma isGlbD1: "isGlb R S x ==> x <=* S"
  | 
| 
 | 
    38  | 
by (simp add: isGlb_def isLb_def greatestP_def)
  | 
| 
 | 
    39  | 
  | 
| 
 | 
    40  | 
lemma isGlbD1a: "isGlb R S x ==> x: R"
  | 
| 
 | 
    41  | 
by (simp add: isGlb_def isLb_def greatestP_def)
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
lemma isGlb_isLb: "isGlb R S x ==> isLb R S x"
  | 
| 
 | 
    44  | 
apply (simp add: isLb_def)
  | 
| 
 | 
    45  | 
apply (blast dest: isGlbD1 isGlbD1a)
  | 
| 
 | 
    46  | 
done
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemma isGlbD2: "[| isGlb R S x; y : S |] ==> y >= x"
  | 
| 
 | 
    49  | 
by (blast dest!: isGlbD1 setgeD)
  | 
| 
 | 
    50  | 
  | 
| 
 | 
    51  | 
lemma isGlbD3: "isGlb R S x ==> greatestP(isLb R S) x"
  | 
| 
 | 
    52  | 
by (simp add: isGlb_def)
  | 
| 
 | 
    53  | 
  | 
| 
 | 
    54  | 
lemma isGlbI1: "greatestP(isLb R S) x ==> isGlb R S x"
  | 
| 
 | 
    55  | 
by (simp add: isGlb_def)
  | 
| 
 | 
    56  | 
  | 
| 
 | 
    57  | 
lemma isGlbI2: "[| isLb R S x; Collect (isLb R S) *<= x |] ==> isGlb R S x"
  | 
| 
 | 
    58  | 
by (simp add: isGlb_def greatestP_def)
  | 
| 
 | 
    59  | 
  | 
| 
 | 
    60  | 
lemma isLbD: "[| isLb R S x; y : S |] ==> y >= x"
  | 
| 
 | 
    61  | 
by (simp add: isLb_def setge_def)
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
lemma isLbD2: "isLb R S x ==> x <=* S "
  | 
| 
 | 
    64  | 
by (simp add: isLb_def)
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
lemma isLbD2a: "isLb R S x ==> x: R"
  | 
| 
 | 
    67  | 
by (simp add: isLb_def)
  | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
lemma isLbI: "[| x <=* S ; x: R |] ==> isLb R S x"
  | 
| 
 | 
    70  | 
by (simp add: isLb_def)
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
lemma isGlb_le_isLb: "[| isGlb R S x; isLb R S y |] ==> x >= y"
  | 
| 
 | 
    73  | 
apply (simp add: isGlb_def)
  | 
| 
 | 
    74  | 
apply (blast intro!: greatestPD3)
  | 
| 
 | 
    75  | 
done
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
lemma isGlb_ubs: "isGlb R S x ==> lbs R S *<= x"
  | 
| 
 | 
    78  | 
apply (simp add: lbs_def isGlb_def)
  | 
| 
 | 
    79  | 
apply (erule greatestPD2)
  | 
| 
 | 
    80  | 
done
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
end
  |