src/HOL/BNF_Cardinal_Arithmetic.thy
author paulson <lp15@cam.ac.uk>
Tue, 30 May 2023 12:33:06 +0100
changeset 78127 24b70433c2e8
parent 76952 f552cf789a8d
child 80760 be8c0e039a5e
permissions -rw-r--r--
New HOL Light material on metric spaces and topological spaces
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
55056
b5c94200d081 renamed '_FP' files to 'BNF_' files
blanchet
parents: 55055
diff changeset
     1
(*  Title:      HOL/BNF_Cardinal_Arithmetic.thy
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
     2
    Author:     Dmitriy Traytel, TU Muenchen
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
     3
    Copyright   2012
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
     4
55059
ef2e0fb783c6 tuned comments
blanchet
parents: 55056
diff changeset
     5
Cardinal arithmetic as needed by bounded natural functors.
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
     6
*)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
     7
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
     8
section \<open>Cardinal Arithmetic as Needed by Bounded Natural Functors\<close>
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
     9
55056
b5c94200d081 renamed '_FP' files to 'BNF_' files
blanchet
parents: 55055
diff changeset
    10
theory BNF_Cardinal_Arithmetic
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    11
  imports BNF_Cardinal_Order_Relation
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    12
begin
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    13
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    14
lemma dir_image: "\<lbrakk>\<And>x y. (f x = f y) = (x = y); Card_order r\<rbrakk> \<Longrightarrow> r =o dir_image r f"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    15
  by (rule dir_image_ordIso) (auto simp add: inj_on_def card_order_on_def)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    16
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    17
lemma card_order_dir_image:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    18
  assumes bij: "bij f" and co: "card_order r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    19
  shows "card_order (dir_image r f)"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    20
proof -
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    21
  have "Field (dir_image r f) = UNIV"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    22
    using assms card_order_on_Card_order[of UNIV r] 
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    23
    unfolding bij_def dir_image_Field by auto
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    24
  moreover from bij have "\<And>x y. (f x = f y) = (x = y)" 
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    25
    unfolding bij_def inj_on_def by auto
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    26
  with co have "Card_order (dir_image r f)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    27
    using card_order_on_Card_order Card_order_ordIso2[OF _ dir_image] by blast
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    28
  ultimately show ?thesis by auto
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    29
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    30
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    31
lemma ordIso_refl: "Card_order r \<Longrightarrow> r =o r"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    32
  by (rule card_order_on_ordIso)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    33
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    34
lemma ordLeq_refl: "Card_order r \<Longrightarrow> r \<le>o r"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    35
  by (rule ordIso_imp_ordLeq, rule card_order_on_ordIso)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    36
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    37
lemma card_of_ordIso_subst: "A = B \<Longrightarrow> |A| =o |B|"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    38
  by (simp only: ordIso_refl card_of_Card_order)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    39
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    40
lemma Field_card_order: "card_order r \<Longrightarrow> Field r = UNIV"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    41
  using card_order_on_Card_order[of UNIV r] by simp
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    42
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    43
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    44
subsection \<open>Zero\<close>
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    45
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    46
definition czero where
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    47
  "czero = card_of {}"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    48
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    49
lemma czero_ordIso: "czero =o czero"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    50
  using card_of_empty_ordIso by (simp add: czero_def)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    51
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    52
lemma card_of_ordIso_czero_iff_empty:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    53
  "|A| =o (czero :: 'b rel) \<longleftrightarrow> A = ({} :: 'a set)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    54
  unfolding czero_def by (rule iffI[OF card_of_empty2]) (auto simp: card_of_refl card_of_empty_ordIso)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    55
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    56
(* A "not czero" Cardinal predicate *)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    57
abbreviation Cnotzero where
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    58
  "Cnotzero (r :: 'a rel) \<equiv> \<not>(r =o (czero :: 'a rel)) \<and> Card_order r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    59
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    60
(*helper*)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    61
lemma Cnotzero_imp_not_empty: "Cnotzero r \<Longrightarrow> Field r \<noteq> {}"
55811
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
    62
  unfolding Card_order_iff_ordIso_card_of czero_def by force
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    63
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    64
lemma czeroI:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    65
  "\<lbrakk>Card_order r; Field r = {}\<rbrakk> \<Longrightarrow> r =o czero"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    66
  using Cnotzero_imp_not_empty ordIso_transitive[OF _ czero_ordIso] by blast
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    67
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    68
lemma czeroE:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    69
  "r =o czero \<Longrightarrow> Field r = {}"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    70
  unfolding czero_def
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    71
  by (drule card_of_cong) (simp only: Field_card_of card_of_empty2)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    72
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    73
lemma Cnotzero_mono:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    74
  "\<lbrakk>Cnotzero r; Card_order q; r \<le>o q\<rbrakk> \<Longrightarrow> Cnotzero q"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    75
    by (force intro: czeroI dest: card_of_mono2 card_of_empty3 czeroE)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    76
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
    77
subsection \<open>(In)finite cardinals\<close>
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    78
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    79
definition cinfinite where
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    80
  "cinfinite r \<equiv> (\<not> finite (Field r))"
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    81
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    82
abbreviation Cinfinite where
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    83
  "Cinfinite r \<equiv> cinfinite r \<and> Card_order r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    84
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    85
definition cfinite where
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    86
  "cfinite r = finite (Field r)"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    87
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    88
abbreviation Cfinite where
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    89
  "Cfinite r \<equiv> cfinite r \<and> Card_order r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    90
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    91
lemma Cfinite_ordLess_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r <o s"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    92
  unfolding cfinite_def cinfinite_def
55811
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
    93
  by (blast intro: finite_ordLess_infinite card_order_on_well_order_on)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
    94
54581
1502a1f707d9 eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
traytel
parents: 54578
diff changeset
    95
lemmas natLeq_card_order = natLeq_Card_order[unfolded Field_natLeq]
1502a1f707d9 eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
traytel
parents: 54578
diff changeset
    96
1502a1f707d9 eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
traytel
parents: 54578
diff changeset
    97
lemma natLeq_cinfinite: "cinfinite natLeq"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
    98
  unfolding cinfinite_def Field_natLeq by (rule infinite_UNIV_nat)
54581
1502a1f707d9 eliminated dependence of Cardinals_FP on Set_Intervals, more precise imports
traytel
parents: 54578
diff changeset
    99
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   100
lemma natLeq_Cinfinite: "Cinfinite natLeq"
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   101
  using natLeq_cinfinite natLeq_Card_order by simp
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   102
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   103
lemma natLeq_ordLeq_cinfinite:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   104
  assumes inf: "Cinfinite r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   105
  shows "natLeq \<le>o r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   106
proof -
55811
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   107
  from inf have "natLeq \<le>o |Field r|" unfolding cinfinite_def
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   108
    using infinite_iff_natLeq_ordLeq by blast
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   109
  also from inf have "|Field r| =o r" by (simp add: card_of_unique ordIso_symmetric)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   110
  finally show ?thesis .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   111
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   112
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   113
lemma cinfinite_not_czero: "cinfinite r \<Longrightarrow> \<not> (r =o (czero :: 'a rel))"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   114
  unfolding cinfinite_def by (cases "Field r = {}") (auto dest: czeroE)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   115
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   116
lemma Cinfinite_Cnotzero: "Cinfinite r \<Longrightarrow> Cnotzero r"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   117
  using cinfinite_not_czero by auto
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   118
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   119
lemma Cinfinite_cong: "\<lbrakk>r1 =o r2; Cinfinite r1\<rbrakk> \<Longrightarrow> Cinfinite r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   120
  using Card_order_ordIso2[of r1 r2] unfolding cinfinite_def ordIso_iff_ordLeq
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   121
  by (auto dest: card_of_ordLeq_infinite[OF card_of_mono2])
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   122
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   123
lemma cinfinite_mono: "\<lbrakk>r1 \<le>o r2; cinfinite r1\<rbrakk> \<Longrightarrow> cinfinite r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   124
  unfolding cinfinite_def by (auto dest: card_of_ordLeq_infinite[OF card_of_mono2])
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   125
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   126
lemma regularCard_ordIso:
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   127
  assumes  "k =o k'" and "Cinfinite k" and "regularCard k"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   128
  shows "regularCard k'"
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   129
proof-
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   130
  have "stable k" using assms cinfinite_def regularCard_stable by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   131
  hence "stable k'" using assms stable_ordIso1 ordIso_symmetric by blast
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   132
  thus ?thesis using assms cinfinite_def stable_regularCard Cinfinite_cong by blast
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   133
qed
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   134
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   135
corollary card_of_UNION_ordLess_infinite_Field_regularCard:
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   136
  assumes "regularCard r" and "Cinfinite r" and "|I| <o r" and "\<forall>i \<in> I. |A i| <o r"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   137
  shows "|\<Union>i \<in> I. A i| <o r"
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   138
  using card_of_UNION_ordLess_infinite_Field regularCard_stable assms cinfinite_def by blast
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   139
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   140
subsection \<open>Binary sum\<close>
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   141
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   142
definition csum (infixr "+c" 65) 
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   143
    where "r1 +c r2 \<equiv> |Field r1 <+> Field r2|"
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   144
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   145
lemma Field_csum: "Field (r +c s) = Inl ` Field r \<union> Inr ` Field s"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   146
  unfolding csum_def Field_card_of by auto
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   147
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   148
lemma Card_order_csum: "Card_order (r1 +c r2)"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   149
  unfolding csum_def by (simp add: card_of_Card_order)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   150
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   151
lemma csum_Cnotzero1: "Cnotzero r1 \<Longrightarrow> Cnotzero (r1 +c r2)"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   152
  using Cnotzero_imp_not_empty 
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   153
  by (auto intro: card_of_Card_order simp: csum_def card_of_ordIso_czero_iff_empty)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   154
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   155
lemma card_order_csum:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   156
  assumes "card_order r1" "card_order r2"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   157
  shows "card_order (r1 +c r2)"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   158
proof -
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   159
  have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   160
  thus ?thesis unfolding csum_def by (auto simp: card_of_card_order_on)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   161
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   162
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   163
lemma cinfinite_csum:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   164
  "cinfinite r1 \<or> cinfinite r2 \<Longrightarrow> cinfinite (r1 +c r2)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   165
  unfolding cinfinite_def csum_def by (auto simp: Field_card_of)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   166
54480
57e781b711b5 no need for 3-way split with GFP for a handful of theorems
blanchet
parents: 54474
diff changeset
   167
lemma Cinfinite_csum:
57e781b711b5 no need for 3-way split with GFP for a handful of theorems
blanchet
parents: 54474
diff changeset
   168
  "Cinfinite r1 \<or> Cinfinite r2 \<Longrightarrow> Cinfinite (r1 +c r2)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   169
  using card_of_Card_order 
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   170
  by (auto simp: cinfinite_def csum_def Field_card_of)
54480
57e781b711b5 no need for 3-way split with GFP for a handful of theorems
blanchet
parents: 54474
diff changeset
   171
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   172
lemma Cinfinite_csum1: "Cinfinite r1 \<Longrightarrow> Cinfinite (r1 +c r2)"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   173
  by (blast intro!: Cinfinite_csum elim: )
54480
57e781b711b5 no need for 3-way split with GFP for a handful of theorems
blanchet
parents: 54474
diff changeset
   174
76952
f552cf789a8d Missing theorem restored
paulson <lp15@cam.ac.uk>
parents: 76951
diff changeset
   175
lemma Cinfinite_csum_weak:
f552cf789a8d Missing theorem restored
paulson <lp15@cam.ac.uk>
parents: 76951
diff changeset
   176
  "\<lbrakk>Cinfinite r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 +c r2)"
f552cf789a8d Missing theorem restored
paulson <lp15@cam.ac.uk>
parents: 76951
diff changeset
   177
by (erule Cinfinite_csum1)
f552cf789a8d Missing theorem restored
paulson <lp15@cam.ac.uk>
parents: 76951
diff changeset
   178
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   179
lemma csum_cong: "\<lbrakk>p1 =o r1; p2 =o r2\<rbrakk> \<Longrightarrow> p1 +c p2 =o r1 +c r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   180
  by (simp only: csum_def ordIso_Plus_cong)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   181
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   182
lemma csum_cong1: "p1 =o r1 \<Longrightarrow> p1 +c q =o r1 +c q"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   183
  by (simp only: csum_def ordIso_Plus_cong1)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   184
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   185
lemma csum_cong2: "p2 =o r2 \<Longrightarrow> q +c p2 =o q +c r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   186
  by (simp only: csum_def ordIso_Plus_cong2)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   187
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   188
lemma csum_mono: "\<lbrakk>p1 \<le>o r1; p2 \<le>o r2\<rbrakk> \<Longrightarrow> p1 +c p2 \<le>o r1 +c r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   189
  by (simp only: csum_def ordLeq_Plus_mono)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   190
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   191
lemma csum_mono1: "p1 \<le>o r1 \<Longrightarrow> p1 +c q \<le>o r1 +c q"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   192
  by (simp only: csum_def ordLeq_Plus_mono1)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   193
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   194
lemma csum_mono2: "p2 \<le>o r2 \<Longrightarrow> q +c p2 \<le>o q +c r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   195
  by (simp only: csum_def ordLeq_Plus_mono2)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   196
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   197
lemma ordLeq_csum1: "Card_order p1 \<Longrightarrow> p1 \<le>o p1 +c p2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   198
  by (simp only: csum_def Card_order_Plus1)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   199
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   200
lemma ordLeq_csum2: "Card_order p2 \<Longrightarrow> p2 \<le>o p1 +c p2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   201
  by (simp only: csum_def Card_order_Plus2)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   202
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   203
lemma csum_com: "p1 +c p2 =o p2 +c p1"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   204
  by (simp only: csum_def card_of_Plus_commute)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   205
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   206
lemma csum_assoc: "(p1 +c p2) +c p3 =o p1 +c p2 +c p3"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   207
  by (simp only: csum_def Field_card_of card_of_Plus_assoc)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   208
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   209
lemma Cfinite_csum: "\<lbrakk>Cfinite r; Cfinite s\<rbrakk> \<Longrightarrow> Cfinite (r +c s)"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   210
  unfolding cfinite_def csum_def Field_card_of using card_of_card_order_on by simp
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   211
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   212
lemma csum_csum: "(r1 +c r2) +c (r3 +c r4) =o (r1 +c r3) +c (r2 +c r4)"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   213
proof -
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   214
  have "(r1 +c r2) +c (r3 +c r4) =o r1 +c r2 +c (r3 +c r4)"
55811
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   215
    by (rule csum_assoc)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   216
  also have "r1 +c r2 +c (r3 +c r4) =o r1 +c (r2 +c r3) +c r4"
55811
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   217
    by (intro csum_assoc csum_cong2 ordIso_symmetric)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   218
  also have "r1 +c (r2 +c r3) +c r4 =o r1 +c (r3 +c r2) +c r4"
55811
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   219
    by (intro csum_com csum_cong1 csum_cong2)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   220
  also have "r1 +c (r3 +c r2) +c r4 =o r1 +c r3 +c r2 +c r4"
55811
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   221
    by (intro csum_assoc csum_cong2 ordIso_symmetric)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   222
  also have "r1 +c r3 +c r2 +c r4 =o (r1 +c r3) +c (r2 +c r4)"
55811
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   223
    by (intro csum_assoc ordIso_symmetric)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   224
  finally show ?thesis .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   225
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   226
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   227
lemma Plus_csum: "|A <+> B| =o |A| +c |B|"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   228
  by (simp only: csum_def Field_card_of card_of_refl)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   229
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   230
lemma Un_csum: "|A \<union> B| \<le>o |A| +c |B|"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   231
  using ordLeq_ordIso_trans[OF card_of_Un_Plus_ordLeq Plus_csum] by blast
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   232
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   233
subsection \<open>One\<close>
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   234
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   235
definition cone where
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   236
  "cone = card_of {()}"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   237
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   238
lemma Card_order_cone: "Card_order cone"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   239
  unfolding cone_def by (rule card_of_Card_order)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   240
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   241
lemma Cfinite_cone: "Cfinite cone"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   242
  unfolding cfinite_def by (simp add: Card_order_cone)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   243
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   244
lemma cone_not_czero: "\<not> (cone =o czero)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   245
  unfolding czero_def cone_def ordIso_iff_ordLeq 
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   246
  using card_of_empty3 empty_not_insert by blast
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   247
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   248
lemma cone_ordLeq_Cnotzero: "Cnotzero r \<Longrightarrow> cone \<le>o r"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   249
  unfolding cone_def by (rule Card_order_singl_ordLeq) (auto intro: czeroI)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   250
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   251
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   252
subsection \<open>Two\<close>
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   253
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   254
definition ctwo where
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   255
  "ctwo = |UNIV :: bool set|"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   256
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   257
lemma Card_order_ctwo: "Card_order ctwo"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   258
  unfolding ctwo_def by (rule card_of_Card_order)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   259
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   260
lemma ctwo_not_czero: "\<not> (ctwo =o czero)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   261
  using card_of_empty3[of "UNIV :: bool set"] ordIso_iff_ordLeq
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   262
  unfolding czero_def ctwo_def using UNIV_not_empty by auto
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   263
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   264
lemma ctwo_Cnotzero: "Cnotzero ctwo"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   265
  by (simp add: ctwo_not_czero Card_order_ctwo)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   266
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   267
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   268
subsection \<open>Family sum\<close>
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   269
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   270
definition Csum where
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   271
  "Csum r rs \<equiv> |SIGMA i : Field r. Field (rs i)|"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   272
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   273
(* Similar setup to the one for SIGMA from theory Big_Operators: *)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   274
syntax "_Csum" ::
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   275
  "pttrn => ('a * 'a) set => 'b * 'b set => (('a * 'b) * ('a * 'b)) set"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   276
  ("(3CSUM _:_. _)" [0, 51, 10] 10)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   277
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   278
translations
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   279
  "CSUM i:r. rs" == "CONST Csum r (%i. rs)"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   280
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   281
lemma SIGMA_CSUM: "|SIGMA i : I. As i| = (CSUM i : |I|. |As i| )"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   282
  by (auto simp: Csum_def Field_card_of)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   283
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   284
(* NB: Always, under the cardinal operator,
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   285
operations on sets are reduced automatically to operations on cardinals.
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   286
This should make cardinal reasoning more direct and natural.  *)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   287
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   288
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   289
subsection \<open>Product\<close>
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   290
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   291
definition cprod (infixr "*c" 80) where
61943
7fba644ed827 discontinued ASCII replacement syntax <*>;
wenzelm
parents: 60758
diff changeset
   292
  "r1 *c r2 = |Field r1 \<times> Field r2|"
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   293
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   294
lemma card_order_cprod:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   295
  assumes "card_order r1" "card_order r2"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   296
  shows "card_order (r1 *c r2)"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   297
proof -
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   298
  have "Field r1 = UNIV" "Field r2 = UNIV" 
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   299
    using assms card_order_on_Card_order by auto
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   300
  thus ?thesis by (auto simp: cprod_def card_of_card_order_on)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   301
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   302
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   303
lemma Card_order_cprod: "Card_order (r1 *c r2)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   304
  by (simp only: cprod_def Field_card_of card_of_card_order_on)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   305
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   306
lemma cprod_mono1: "p1 \<le>o r1 \<Longrightarrow> p1 *c q \<le>o r1 *c q"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   307
  by (simp only: cprod_def ordLeq_Times_mono1)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   308
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   309
lemma cprod_mono2: "p2 \<le>o r2 \<Longrightarrow> q *c p2 \<le>o q *c r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   310
  by (simp only: cprod_def ordLeq_Times_mono2)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   311
55851
3d40cf74726c optimize cardinal bounds involving natLeq (omega)
blanchet
parents: 55811
diff changeset
   312
lemma cprod_mono: "\<lbrakk>p1 \<le>o r1; p2 \<le>o r2\<rbrakk> \<Longrightarrow> p1 *c p2 \<le>o r1 *c r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   313
  by (rule ordLeq_transitive[OF cprod_mono1 cprod_mono2])
55851
3d40cf74726c optimize cardinal bounds involving natLeq (omega)
blanchet
parents: 55811
diff changeset
   314
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   315
lemma ordLeq_cprod2: "\<lbrakk>Cnotzero p1; Card_order p2\<rbrakk> \<Longrightarrow> p2 \<le>o p1 *c p2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   316
  unfolding cprod_def by (rule Card_order_Times2) (auto intro: czeroI)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   317
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   318
lemma cinfinite_cprod: "\<lbrakk>cinfinite r1; cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   319
  by (simp add: cinfinite_def cprod_def Field_card_of infinite_cartesian_product)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   320
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   321
lemma cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   322
  by (rule cinfinite_mono) (auto intro: ordLeq_cprod2)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   323
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   324
lemma Cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 *c r2)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   325
  by (blast intro: cinfinite_cprod2 Card_order_cprod)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   326
55851
3d40cf74726c optimize cardinal bounds involving natLeq (omega)
blanchet
parents: 55811
diff changeset
   327
lemma cprod_cong: "\<lbrakk>p1 =o r1; p2 =o r2\<rbrakk> \<Longrightarrow> p1 *c p2 =o r1 *c r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   328
  unfolding ordIso_iff_ordLeq by (blast intro: cprod_mono)
55851
3d40cf74726c optimize cardinal bounds involving natLeq (omega)
blanchet
parents: 55811
diff changeset
   329
3d40cf74726c optimize cardinal bounds involving natLeq (omega)
blanchet
parents: 55811
diff changeset
   330
lemma cprod_cong1: "\<lbrakk>p1 =o r1\<rbrakk> \<Longrightarrow> p1 *c p2 =o r1 *c p2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   331
  unfolding ordIso_iff_ordLeq by (blast intro: cprod_mono1)
55851
3d40cf74726c optimize cardinal bounds involving natLeq (omega)
blanchet
parents: 55811
diff changeset
   332
3d40cf74726c optimize cardinal bounds involving natLeq (omega)
blanchet
parents: 55811
diff changeset
   333
lemma cprod_cong2: "p2 =o r2 \<Longrightarrow> q *c p2 =o q *c r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   334
  unfolding ordIso_iff_ordLeq by (blast intro: cprod_mono2)
55851
3d40cf74726c optimize cardinal bounds involving natLeq (omega)
blanchet
parents: 55811
diff changeset
   335
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   336
lemma cprod_com: "p1 *c p2 =o p2 *c p1"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   337
  by (simp only: cprod_def card_of_Times_commute)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   338
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   339
lemma card_of_Csum_Times:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   340
  "\<forall>i \<in> I. |A i| \<le>o |B| \<Longrightarrow> (CSUM i : |I|. |A i| ) \<le>o |I| *c |B|"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   341
  by (simp only: Csum_def cprod_def Field_card_of card_of_Sigma_mono1)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   342
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   343
lemma card_of_Csum_Times':
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   344
  assumes "Card_order r" "\<forall>i \<in> I. |A i| \<le>o r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   345
  shows "(CSUM i : |I|. |A i| ) \<le>o |I| *c r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   346
proof -
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   347
  from assms(1) have *: "r =o |Field r|" by (simp add: card_of_unique)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   348
  with assms(2) have "\<forall>i \<in> I. |A i| \<le>o |Field r|" by (blast intro: ordLeq_ordIso_trans)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   349
  hence "(CSUM i : |I|. |A i| ) \<le>o |I| *c |Field r|" by (simp only: card_of_Csum_Times)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   350
  also from * have "|I| *c |Field r| \<le>o |I| *c r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   351
    by (simp only: Field_card_of card_of_refl cprod_def ordIso_imp_ordLeq)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   352
  finally show ?thesis .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   353
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   354
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   355
lemma cprod_csum_distrib1: "r1 *c r2 +c r1 *c r3 =o r1 *c (r2 +c r3)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   356
  unfolding csum_def cprod_def by (simp add: Field_card_of card_of_Times_Plus_distrib ordIso_symmetric)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   357
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   358
lemma csum_absorb2': "\<lbrakk>Card_order r2; r1 \<le>o r2; cinfinite r1 \<or> cinfinite r2\<rbrakk> \<Longrightarrow> r1 +c r2 =o r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   359
  unfolding csum_def 
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   360
  using Card_order_Plus_infinite
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   361
  by (fastforce simp: cinfinite_def dest: cinfinite_mono)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   362
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   363
lemma csum_absorb1':
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   364
  assumes card: "Card_order r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   365
    and r12: "r1 \<le>o r2" and cr12: "cinfinite r1 \<or> cinfinite r2"
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   366
  shows "r2 +c r1 =o r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   367
proof -
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   368
  have "r1 +c r2 =o r2"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   369
    by (simp add: csum_absorb2' assms)
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   370
  then show ?thesis
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   371
    by (blast intro: ordIso_transitive csum_com)
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   372
qed
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   373
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   374
lemma csum_absorb1: "\<lbrakk>Cinfinite r2; r1 \<le>o r2\<rbrakk> \<Longrightarrow> r2 +c r1 =o r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   375
  by (rule csum_absorb1') auto
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   376
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   377
lemma csum_absorb2: "\<lbrakk>Cinfinite r2 ; r1 \<le>o r2\<rbrakk> \<Longrightarrow> r1 +c r2 =o r2"
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   378
  using ordIso_transitive csum_com csum_absorb1 by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   379
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   380
lemma regularCard_csum:
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   381
  assumes "Cinfinite r" "Cinfinite s" "regularCard r" "regularCard s"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   382
  shows "regularCard (r +c s)"
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   383
proof (cases "r \<le>o s")
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   384
  case True
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   385
  then show ?thesis using regularCard_ordIso[of s] csum_absorb2'[THEN ordIso_symmetric] assms by auto
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   386
next
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   387
  case False
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   388
  have "Well_order s" "Well_order r" using assms card_order_on_well_order_on by auto
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   389
  then have "s \<le>o r" using not_ordLeq_iff_ordLess False ordLess_imp_ordLeq by auto
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   390
  then show ?thesis using regularCard_ordIso[of r] csum_absorb1'[THEN ordIso_symmetric] assms by auto
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   391
qed
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   392
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   393
lemma csum_mono_strict:
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   394
  assumes Card_order: "Card_order r" "Card_order q"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   395
    and Cinfinite: "Cinfinite r'" "Cinfinite q'"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   396
    and less: "r <o r'" "q <o q'"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   397
  shows "r +c q <o r' +c q'"
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   398
proof -
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   399
  have Well_order: "Well_order r" "Well_order q" "Well_order r'" "Well_order q'"
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   400
    using card_order_on_well_order_on Card_order Cinfinite by auto
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   401
  show ?thesis
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   402
  proof (cases "Cinfinite r")
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   403
    case outer: True
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   404
    then show ?thesis
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   405
    proof (cases "Cinfinite q")
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   406
      case inner: True
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   407
      then show ?thesis
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   408
      proof (cases "r \<le>o q")
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   409
        case True
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   410
        then have "r +c q =o q" using csum_absorb2 inner by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   411
        then show ?thesis
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   412
          using ordIso_ordLess_trans ordLess_ordLeq_trans less Cinfinite ordLeq_csum2 by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   413
      next
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   414
        case False
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   415
        then have "q \<le>o r" using not_ordLeq_iff_ordLess Well_order ordLess_imp_ordLeq by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   416
        then have "r +c q =o r" using csum_absorb1 outer by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   417
        then show ?thesis
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   418
          using ordIso_ordLess_trans ordLess_ordLeq_trans less Cinfinite ordLeq_csum1 by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   419
      qed
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   420
    next
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   421
      case False
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   422
      then have "Cfinite q" using Card_order cinfinite_def cfinite_def by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   423
      then have "q \<le>o r" using finite_ordLess_infinite cfinite_def cinfinite_def outer
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   424
          Well_order ordLess_imp_ordLeq by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   425
      then have "r +c q =o r" by (rule csum_absorb1[OF outer])
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   426
      then show ?thesis using ordIso_ordLess_trans ordLess_ordLeq_trans less ordLeq_csum1 Cinfinite by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   427
    qed
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   428
  next
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   429
    case False
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   430
    then have outer: "Cfinite r" using Card_order cinfinite_def cfinite_def by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   431
    then show ?thesis
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   432
    proof (cases "Cinfinite q")
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   433
      case True
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   434
      then have "r \<le>o q" using finite_ordLess_infinite cinfinite_def cfinite_def outer Well_order
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   435
          ordLess_imp_ordLeq by blast
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   436
      then have "r +c q =o q" by (rule csum_absorb2[OF True])
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   437
      then show ?thesis using ordIso_ordLess_trans ordLess_ordLeq_trans less ordLeq_csum2 Cinfinite by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   438
    next
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   439
      case False
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   440
      then have "Cfinite q" using Card_order cinfinite_def cfinite_def by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   441
      then have "Cfinite (r +c q)" using Cfinite_csum outer by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   442
      moreover have "Cinfinite (r' +c q')" using Cinfinite_csum1 Cinfinite by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   443
      ultimately show ?thesis using Cfinite_ordLess_Cinfinite by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   444
    qed
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   445
  qed
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   446
qed
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   447
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   448
subsection \<open>Exponentiation\<close>
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   449
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   450
definition cexp (infixr "^c" 90) where
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   451
  "r1 ^c r2 \<equiv> |Func (Field r2) (Field r1)|"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   452
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   453
lemma Card_order_cexp: "Card_order (r1 ^c r2)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   454
  unfolding cexp_def by (rule card_of_Card_order)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   455
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   456
lemma cexp_mono':
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   457
  assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   458
    and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}"
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   459
  shows "p1 ^c p2 \<le>o r1 ^c r2"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   460
proof(cases "Field p1 = {}")
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   461
  case True
55811
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   462
  hence "Field p2 \<noteq> {} \<Longrightarrow> Func (Field p2) {} = {}" unfolding Func_is_emp by simp
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   463
  with True have "|Field |Func (Field p2) (Field p1)|| \<le>o cone"
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   464
    unfolding cone_def Field_card_of
55811
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   465
    by (cases "Field p2 = {}", auto intro: surj_imp_ordLeq simp: Func_empty)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   466
  hence "|Func (Field p2) (Field p1)| \<le>o cone" by (simp add: Field_card_of cexp_def)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   467
  hence "p1 ^c p2 \<le>o cone" unfolding cexp_def .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   468
  thus ?thesis
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   469
  proof (cases "Field p2 = {}")
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   470
    case True
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   471
    with n have "Field r2 = {}" .
55604
42e4e8c2e8dc less flex-flex pairs
noschinl
parents: 55059
diff changeset
   472
    hence "cone \<le>o r1 ^c r2" unfolding cone_def cexp_def Func_def
42e4e8c2e8dc less flex-flex pairs
noschinl
parents: 55059
diff changeset
   473
      by (auto intro: card_of_ordLeqI[where f="\<lambda>_ _. undefined"])
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 58889
diff changeset
   474
    thus ?thesis using \<open>p1 ^c p2 \<le>o cone\<close> ordLeq_transitive by auto
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   475
  next
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   476
    case False with True have "|Field (p1 ^c p2)| =o czero"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   477
      unfolding card_of_ordIso_czero_iff_empty cexp_def Field_card_of Func_def by auto
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   478
    thus ?thesis unfolding cexp_def card_of_ordIso_czero_iff_empty Field_card_of
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   479
      by (simp add: card_of_empty)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   480
  qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   481
next
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   482
  case False
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   483
  have 1: "|Field p1| \<le>o |Field r1|" and 2: "|Field p2| \<le>o |Field r2|"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   484
    using 1 2 by (auto simp: card_of_mono2)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   485
  obtain f1 where f1: "f1 ` Field r1 = Field p1"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   486
    using 1 unfolding card_of_ordLeq2[OF False, symmetric] by auto
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   487
  obtain f2 where f2: "inj_on f2 (Field p2)" "f2 ` Field p2 \<subseteq> Field r2"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   488
    using 2 unfolding card_of_ordLeq[symmetric] by blast
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   489
  have 0: "Func_map (Field p2) f1 f2 ` (Field (r1 ^c r2)) = Field (p1 ^c p2)"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   490
    unfolding cexp_def Field_card_of using Func_map_surj[OF f1 f2 n, symmetric] .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   491
  have 00: "Field (p1 ^c p2) \<noteq> {}" unfolding cexp_def Field_card_of Func_is_emp
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   492
    using False by simp
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   493
  show ?thesis
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   494
    using 0 card_of_ordLeq2[OF 00] unfolding cexp_def Field_card_of by blast
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   495
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   496
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   497
lemma cexp_mono:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   498
  assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   499
    and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2"
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   500
  shows "p1 ^c p2 \<le>o r1 ^c r2"
55811
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   501
  by (rule cexp_mono'[OF 1 2 czeroE[OF n[OF czeroI[OF card]]]])
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   502
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   503
lemma cexp_mono1:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   504
  assumes 1: "p1 \<le>o r1" and q: "Card_order q"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   505
  shows "p1 ^c q \<le>o r1 ^c q"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   506
  using ordLeq_refl[OF q] by (rule cexp_mono[OF 1]) (auto simp: q)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   507
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   508
lemma cexp_mono2':
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   509
  assumes 2: "p2 \<le>o r2" and q: "Card_order q"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   510
    and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}"
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   511
  shows "q ^c p2 \<le>o q ^c r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   512
  using ordLeq_refl[OF q] by (rule cexp_mono'[OF _ 2 n]) auto
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   513
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   514
lemma cexp_mono2:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   515
  assumes 2: "p2 \<le>o r2" and q: "Card_order q"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   516
    and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2"
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   517
  shows "q ^c p2 \<le>o q ^c r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   518
  using ordLeq_refl[OF q] by (rule cexp_mono[OF _ 2 n card]) auto
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   519
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   520
lemma cexp_mono2_Cnotzero:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   521
  assumes "p2 \<le>o r2" "Card_order q" "Cnotzero p2"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   522
  shows "q ^c p2 \<le>o q ^c r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   523
  using assms(3) czeroI by (blast intro: cexp_mono2'[OF assms(1,2)])
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   524
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   525
lemma cexp_cong:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   526
  assumes 1: "p1 =o r1" and 2: "p2 =o r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   527
    and Cr: "Card_order r2"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   528
    and Cp: "Card_order p2"
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   529
  shows "p1 ^c p2 =o r1 ^c r2"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   530
proof -
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   531
  obtain f where "bij_betw f (Field p2) (Field r2)"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   532
    using 2 card_of_ordIso[of "Field p2" "Field r2"] card_of_cong by auto
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   533
  hence 0: "Field p2 = {} \<longleftrightarrow> Field r2 = {}" unfolding bij_betw_def by auto
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   534
  have r: "p2 =o czero \<Longrightarrow> r2 =o czero"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   535
    and p: "r2 =o czero \<Longrightarrow> p2 =o czero"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   536
    using 0 Cr Cp czeroE czeroI by auto
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   537
  show ?thesis using 0 1 2 unfolding ordIso_iff_ordLeq
55811
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   538
    using r p cexp_mono[OF _ _ _ Cp] cexp_mono[OF _ _ _ Cr] by blast
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   539
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   540
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   541
lemma cexp_cong1:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   542
  assumes 1: "p1 =o r1" and q: "Card_order q"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   543
  shows "p1 ^c q =o r1 ^c q"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   544
  by (rule cexp_cong[OF 1 _ q q]) (rule ordIso_refl[OF q])
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   545
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   546
lemma cexp_cong2:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   547
  assumes 2: "p2 =o r2" and q: "Card_order q" and p: "Card_order p2"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   548
  shows "q ^c p2 =o q ^c r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   549
  by (rule cexp_cong[OF _ 2]) (auto simp only: ordIso_refl Card_order_ordIso2[OF p 2] q p)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   550
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   551
lemma cexp_cone:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   552
  assumes "Card_order r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   553
  shows "r ^c cone =o r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   554
proof -
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   555
  have "r ^c cone =o |Field r|"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   556
    unfolding cexp_def cone_def Field_card_of Func_empty
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   557
      card_of_ordIso[symmetric] bij_betw_def Func_def inj_on_def image_def
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   558
    by (rule exI[of _ "\<lambda>f. f ()"]) auto
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   559
  also have "|Field r| =o r" by (rule card_of_Field_ordIso[OF assms])
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   560
  finally show ?thesis .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   561
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   562
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   563
lemma cexp_cprod:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   564
  assumes r1: "Card_order r1"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   565
  shows "(r1 ^c r2) ^c r3 =o r1 ^c (r2 *c r3)" (is "?L =o ?R")
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   566
proof -
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   567
  have "?L =o r1 ^c (r3 *c r2)"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   568
    unfolding cprod_def cexp_def Field_card_of
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   569
    using card_of_Func_Times by(rule ordIso_symmetric)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   570
  also have "r1 ^c (r3 *c r2) =o ?R"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   571
    using cprod_com r1 by (intro cexp_cong2, auto simp: Card_order_cprod)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   572
  finally show ?thesis .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   573
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   574
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   575
lemma cprod_infinite1': "\<lbrakk>Cinfinite r; Cnotzero p; p \<le>o r\<rbrakk> \<Longrightarrow> r *c p =o r"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   576
  unfolding cinfinite_def cprod_def
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   577
  by (rule Card_order_Times_infinite[THEN conjunct1]) (blast intro: czeroI)+
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   578
55851
3d40cf74726c optimize cardinal bounds involving natLeq (omega)
blanchet
parents: 55811
diff changeset
   579
lemma cprod_infinite: "Cinfinite r \<Longrightarrow> r *c r =o r"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   580
  using cprod_infinite1' Cinfinite_Cnotzero ordLeq_refl by blast
55851
3d40cf74726c optimize cardinal bounds involving natLeq (omega)
blanchet
parents: 55811
diff changeset
   581
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   582
lemma cexp_cprod_ordLeq:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   583
  assumes r1: "Card_order r1" and r2: "Cinfinite r2"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   584
    and r3: "Cnotzero r3" "r3 \<le>o r2"
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   585
  shows "(r1 ^c r2) ^c r3 =o r1 ^c r2" (is "?L =o ?R")
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   586
proof-
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   587
  have "?L =o r1 ^c (r2 *c r3)" using cexp_cprod[OF r1] .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   588
  also have "r1 ^c (r2 *c r3) =o ?R"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   589
    using assms by (fastforce simp: Card_order_cprod intro: cprod_infinite1' cexp_cong2)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   590
  finally show ?thesis .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   591
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   592
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   593
lemma Cnotzero_UNIV: "Cnotzero |UNIV|"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   594
  by (auto simp: card_of_Card_order card_of_ordIso_czero_iff_empty)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   595
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   596
lemma ordLess_ctwo_cexp:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   597
  assumes "Card_order r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   598
  shows "r <o ctwo ^c r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   599
proof -
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   600
  have "r <o |Pow (Field r)|" using assms by (rule Card_order_Pow)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   601
  also have "|Pow (Field r)| =o ctwo ^c r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   602
    unfolding ctwo_def cexp_def Field_card_of by (rule card_of_Pow_Func)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   603
  finally show ?thesis .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   604
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   605
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   606
lemma ordLeq_cexp1:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   607
  assumes "Cnotzero r" "Card_order q"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   608
  shows "q \<le>o q ^c r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   609
proof (cases "q =o (czero :: 'a rel)")
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   610
  case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   611
next
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   612
  case False
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   613
  have "q =o q ^c cone"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   614
    by (blast intro: assms ordIso_symmetric cexp_cone)
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   615
  also have "q ^c cone \<le>o q ^c r"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   616
    using assms
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   617
    by (intro cexp_mono2) (simp_all add: cone_ordLeq_Cnotzero cone_not_czero Card_order_cone)
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   618
  finally show ?thesis .
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   619
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   620
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   621
lemma ordLeq_cexp2:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   622
  assumes "ctwo \<le>o q" "Card_order r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   623
  shows "r \<le>o q ^c r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   624
proof (cases "r =o (czero :: 'a rel)")
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   625
  case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   626
next
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   627
  case False 
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   628
  have "r <o ctwo ^c r"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   629
    by (blast intro: assms ordLess_ctwo_cexp) 
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   630
  also have "ctwo ^c r \<le>o q ^c r"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   631
    by (blast intro: assms cexp_mono1)
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   632
  finally show ?thesis by (rule ordLess_imp_ordLeq)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   633
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   634
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   635
lemma cinfinite_cexp: "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> cinfinite (q ^c r)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   636
  by (rule cinfinite_mono[OF ordLeq_cexp2]) simp_all
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   637
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   638
lemma Cinfinite_cexp:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   639
  "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> Cinfinite (q ^c r)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   640
  by (simp add: cinfinite_cexp Card_order_cexp)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   641
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   642
lemma card_order_cexp:
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   643
  assumes "card_order r1" "card_order r2"
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   644
  shows "card_order (r1 ^c r2)"
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   645
proof -
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   646
  have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   647
  thus ?thesis unfolding cexp_def Func_def using card_of_card_order_on by simp
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   648
qed
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   649
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   650
lemma ctwo_ordLess_natLeq: "ctwo <o natLeq"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   651
  unfolding ctwo_def using finite_UNIV natLeq_cinfinite natLeq_Card_order
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   652
  by (intro Cfinite_ordLess_Cinfinite) (auto simp: cfinite_def card_of_Card_order)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   653
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   654
lemma ctwo_ordLess_Cinfinite: "Cinfinite r \<Longrightarrow> ctwo <o r"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   655
  by (rule ordLess_ordLeq_trans[OF ctwo_ordLess_natLeq natLeq_ordLeq_cinfinite])
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   656
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   657
lemma ctwo_ordLeq_Cinfinite:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   658
  assumes "Cinfinite r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   659
  shows "ctwo \<le>o r"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   660
  by (rule ordLess_imp_ordLeq[OF ctwo_ordLess_Cinfinite[OF assms]])
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   661
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   662
lemma Un_Cinfinite_bound: "\<lbrakk>|A| \<le>o r; |B| \<le>o r; Cinfinite r\<rbrakk> \<Longrightarrow> |A \<union> B| \<le>o r"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   663
  by (auto simp add: cinfinite_def card_of_Un_ordLeq_infinite_Field)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   664
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   665
lemma Un_Cinfinite_bound_strict: "\<lbrakk>|A| <o r; |B| <o r; Cinfinite r\<rbrakk> \<Longrightarrow> |A \<union> B| <o r"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   666
  by (auto simp add: cinfinite_def card_of_Un_ordLess_infinite_Field)
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   667
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   668
lemma UNION_Cinfinite_bound: "\<lbrakk>|I| \<le>o r; \<forall>i \<in> I. |A i| \<le>o r; Cinfinite r\<rbrakk> \<Longrightarrow> |\<Union>i \<in> I. A i| \<le>o r"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   669
  by (auto simp add: card_of_UNION_ordLeq_infinite_Field cinfinite_def)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   670
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   671
lemma csum_cinfinite_bound:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   672
  assumes "p \<le>o r" "q \<le>o r" "Card_order p" "Card_order q" "Cinfinite r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   673
  shows "p +c q \<le>o r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   674
proof -
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   675
  have "|Field p| \<le>o r" "|Field q| \<le>o r"
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   676
    using assms card_of_least ordLeq_transitive unfolding card_order_on_def by blast+
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   677
  with assms show ?thesis unfolding cinfinite_def csum_def
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   678
    by (blast intro: card_of_Plus_ordLeq_infinite_Field)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   679
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   680
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   681
lemma cprod_cinfinite_bound:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   682
  assumes "p \<le>o r" "q \<le>o r" "Card_order p" "Card_order q" "Cinfinite r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   683
  shows "p *c q \<le>o r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   684
proof -
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   685
  from assms(1-4) have "|Field p| \<le>o r" "|Field q| \<le>o r"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   686
    unfolding card_order_on_def using card_of_least ordLeq_transitive by blast+
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   687
  with assms show ?thesis unfolding cinfinite_def cprod_def
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   688
    by (blast intro: card_of_Times_ordLeq_infinite_Field)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   689
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   690
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   691
lemma cprod_infinite2': "\<lbrakk>Cnotzero r1; Cinfinite r2; r1 \<le>o r2\<rbrakk> \<Longrightarrow> r1 *c r2 =o r2"
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   692
  unfolding ordIso_iff_ordLeq
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   693
  by (intro conjI cprod_cinfinite_bound ordLeq_cprod2 ordLeq_refl)
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   694
    (auto dest!: ordIso_imp_ordLeq not_ordLeq_ordLess simp: czero_def Card_order_empty)
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   695
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   696
lemma regularCard_cprod:
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   697
  assumes "Cinfinite r" "Cinfinite s" "regularCard r" "regularCard s"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   698
  shows "regularCard (r *c s)"
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   699
proof (cases "r \<le>o s")
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   700
  case True
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   701
  with assms Cinfinite_Cnotzero show ?thesis
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   702
    by (force intro: regularCard_ordIso ordIso_symmetric[OF cprod_infinite2'])
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   703
next
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   704
  case False
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   705
  have "Well_order r" "Well_order s" using assms card_order_on_well_order_on by auto
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   706
  then have "s \<le>o r" using not_ordLeq_iff_ordLess ordLess_imp_ordLeq False by blast
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   707
  with assms Cinfinite_Cnotzero show ?thesis
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   708
    by (force intro: regularCard_ordIso ordIso_symmetric[OF cprod_infinite1'])
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   709
qed
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   710
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   711
lemma cprod_csum_cexp:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   712
  "r1 *c r2 \<le>o (r1 +c r2) ^c ctwo"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   713
  unfolding cprod_def csum_def cexp_def ctwo_def Field_card_of
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   714
proof -
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   715
  let ?f = "\<lambda>(a, b). %x. if x then Inl a else Inr b"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   716
  have "inj_on ?f (Field r1 \<times> Field r2)" (is "inj_on _ ?LHS")
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   717
    by (auto simp: inj_on_def fun_eq_iff split: bool.split)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   718
  moreover
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   719
  have "?f ` ?LHS \<subseteq> Func (UNIV :: bool set) (Field r1 <+> Field r2)" (is "_ \<subseteq> ?RHS")
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   720
    by (auto simp: Func_def)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   721
  ultimately show "|?LHS| \<le>o |?RHS|" using card_of_ordLeq by blast
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   722
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   723
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   724
lemma Cfinite_cprod_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r *c s \<le>o s"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   725
  by (intro cprod_cinfinite_bound)
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   726
    (auto intro: ordLeq_refl ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite])
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   727
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   728
lemma cprod_cexp: "(r *c s) ^c t =o r ^c t *c s ^c t"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   729
  unfolding cprod_def cexp_def Field_card_of by (rule Func_Times_Range)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   730
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   731
lemma cprod_cexp_csum_cexp_Cinfinite:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   732
  assumes t: "Cinfinite t"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   733
  shows "(r *c s) ^c t \<le>o (r +c s) ^c t"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   734
proof -
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   735
  have "(r *c s) ^c t \<le>o ((r +c s) ^c ctwo) ^c t"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   736
    by (rule cexp_mono1[OF cprod_csum_cexp conjunct2[OF t]])
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   737
  also have "((r +c s) ^c ctwo) ^c t =o (r +c s) ^c (ctwo *c t)"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   738
    by (rule cexp_cprod[OF Card_order_csum])
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   739
  also have "(r +c s) ^c (ctwo *c t) =o (r +c s) ^c (t *c ctwo)"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   740
    by (rule cexp_cong2[OF cprod_com Card_order_csum Card_order_cprod])
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   741
  also have "(r +c s) ^c (t *c ctwo) =o ((r +c s) ^c t) ^c ctwo"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   742
    by (rule ordIso_symmetric[OF cexp_cprod[OF Card_order_csum]])
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   743
  also have "((r +c s) ^c t) ^c ctwo =o (r +c s) ^c t"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   744
    by (rule cexp_cprod_ordLeq[OF Card_order_csum t ctwo_Cnotzero ctwo_ordLeq_Cinfinite[OF t]])
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   745
  finally show ?thesis .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   746
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   747
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   748
lemma Cfinite_cexp_Cinfinite:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   749
  assumes s: "Cfinite s" and t: "Cinfinite t"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   750
  shows "s ^c t \<le>o ctwo ^c t"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   751
proof (cases "s \<le>o ctwo")
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   752
  case True thus ?thesis using t by (blast intro: cexp_mono1)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   753
next
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   754
  case False
55811
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   755
  hence "ctwo \<le>o s" using ordLeq_total[of s ctwo] Card_order_ctwo s
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   756
    by (auto intro: card_order_on_well_order_on)
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   757
  hence "Cnotzero s" using Cnotzero_mono[OF ctwo_Cnotzero] s by blast
aa1acc25126b load Metis a little later
traytel
parents: 55604
diff changeset
   758
  hence st: "Cnotzero (s *c t)" by (intro Cinfinite_Cnotzero[OF Cinfinite_cprod2]) (auto simp: t)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   759
  have "s ^c t \<le>o (ctwo ^c s) ^c t"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   760
    using assms by (blast intro: cexp_mono1 ordLess_imp_ordLeq[OF ordLess_ctwo_cexp])
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   761
  also have "(ctwo ^c s) ^c t =o ctwo ^c (s *c t)"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   762
    by (blast intro: Card_order_ctwo cexp_cprod)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   763
  also have "ctwo ^c (s *c t) \<le>o ctwo ^c t"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   764
    using assms st by (intro cexp_mono2_Cnotzero Cfinite_cprod_Cinfinite Card_order_ctwo)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   765
  finally show ?thesis .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   766
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   767
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   768
lemma csum_Cfinite_cexp_Cinfinite:
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   769
  assumes r: "Card_order r" and s: "Cfinite s" and t: "Cinfinite t"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   770
  shows "(r +c s) ^c t \<le>o (r +c ctwo) ^c t"
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   771
proof (cases "Cinfinite r")
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   772
  case True
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   773
  hence "r +c s =o r" by (intro csum_absorb1 ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite] s)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   774
  hence "(r +c s) ^c t =o r ^c t" using t by (blast intro: cexp_cong1)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   775
  also have "r ^c t \<le>o (r +c ctwo) ^c t" using t by (blast intro: cexp_mono1 ordLeq_csum1 r)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   776
  finally show ?thesis .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   777
next
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   778
  case False
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   779
  with r have "Cfinite r" unfolding cinfinite_def cfinite_def by auto
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   780
  hence "Cfinite (r +c s)" by (intro Cfinite_csum s)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   781
  hence "(r +c s) ^c t \<le>o ctwo ^c t" by (intro Cfinite_cexp_Cinfinite t)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   782
  also have "ctwo ^c t \<le>o (r +c ctwo) ^c t" using t
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   783
    by (blast intro: cexp_mono1 ordLeq_csum2 Card_order_ctwo)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   784
  finally show ?thesis .
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   785
qed
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   786
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   787
(* cardSuc *)
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   788
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   789
lemma Cinfinite_cardSuc: "Cinfinite r \<Longrightarrow> Cinfinite (cardSuc r)"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   790
  by (simp add: cinfinite_def cardSuc_Card_order cardSuc_finite)
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   791
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   792
lemma cardSuc_UNION_Cinfinite:
69276
3d954183b707 replaced some ancient ASCII syntax
haftmann
parents: 67613
diff changeset
   793
  assumes "Cinfinite r" "relChain (cardSuc r) As" "B \<le> (\<Union>i \<in> Field (cardSuc r). As i)" "|B| <=o r"
67613
ce654b0e6d69 more symbols;
wenzelm
parents: 61943
diff changeset
   794
  shows "\<exists>i \<in> Field (cardSuc r). B \<le> As i"
76951
293caf3dbecd Tidying up BNF
paulson <lp15@cam.ac.uk>
parents: 75625
diff changeset
   795
  using cardSuc_UNION assms unfolding cinfinite_def by blast
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   796
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   797
lemma Cinfinite_card_suc: "\<lbrakk> Cinfinite r ; card_order r \<rbrakk> \<Longrightarrow> Cinfinite (card_suc r)"
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   798
  using Cinfinite_cong[OF cardSuc_ordIso_card_suc Cinfinite_cardSuc] .
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   799
75625
0dd3ac5fdbaa tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
traytel
parents: 75624
diff changeset
   800
lemma card_suc_least: "\<lbrakk>card_order r; Card_order s; r <o s\<rbrakk> \<Longrightarrow> card_suc r \<le>o s"
0dd3ac5fdbaa tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
traytel
parents: 75624
diff changeset
   801
  by (rule ordIso_ordLeq_trans[OF ordIso_symmetric[OF cardSuc_ordIso_card_suc]])
0dd3ac5fdbaa tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
traytel
parents: 75624
diff changeset
   802
    (auto intro!: cardSuc_least simp: card_order_on_Card_order)
0dd3ac5fdbaa tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
traytel
parents: 75624
diff changeset
   803
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   804
lemma regularCard_cardSuc: "Cinfinite k \<Longrightarrow> regularCard (cardSuc k)"
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   805
  by (rule infinite_cardSuc_regularCard) (auto simp: cinfinite_def)
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   806
75625
0dd3ac5fdbaa tuned BNF bounds for function space and bounded sets; NEWS and CONTRIBUTORS
traytel
parents: 75624
diff changeset
   807
lemma regularCard_card_suc: "card_order r \<Longrightarrow> Cinfinite r \<Longrightarrow> regularCard (card_suc r)"
75624
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   808
  using cardSuc_ordIso_card_suc Cinfinite_cardSuc regularCard_cardSuc regularCard_ordIso
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   809
  by blast
22d1c5f2b9f4 strict bounds for BNFs (by Jan van Brügge)
traytel
parents: 69276
diff changeset
   810
54474
6d5941722fae split 'Cardinal_Arithmetic' 3-way
blanchet
parents:
diff changeset
   811
end