| 0 |      1 | (*  Title: 	FOL/fol.ML
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      4 |     Copyright   1991  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Tactics and lemmas for fol.thy (classical First-Order Logic)
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
|  |      9 | open FOL;
 | 
|  |     10 | 
 | 
|  |     11 | signature FOL_LEMMAS = 
 | 
|  |     12 |   sig
 | 
|  |     13 |   val disjCI : thm
 | 
|  |     14 |   val excluded_middle : thm
 | 
|  |     15 |   val exCI : thm
 | 
|  |     16 |   val ex_classical : thm
 | 
|  |     17 |   val iffCE : thm
 | 
|  |     18 |   val impCE : thm
 | 
|  |     19 |   val notnotD : thm
 | 
|  |     20 |   val swap : thm
 | 
|  |     21 |   end;
 | 
|  |     22 | 
 | 
|  |     23 | 
 | 
|  |     24 | structure FOL_Lemmas : FOL_LEMMAS = 
 | 
|  |     25 | struct
 | 
|  |     26 | 
 | 
|  |     27 | (*** Classical introduction rules for | and EX ***)
 | 
|  |     28 | 
 | 
|  |     29 | val disjCI = prove_goal FOL.thy 
 | 
|  |     30 |    "(~Q ==> P) ==> P|Q"
 | 
|  |     31 |  (fn prems=>
 | 
|  |     32 |   [ (resolve_tac [classical] 1),
 | 
|  |     33 |     (REPEAT (ares_tac (prems@[disjI1,notI]) 1)),
 | 
|  |     34 |     (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]);
 | 
|  |     35 | 
 | 
|  |     36 | (*introduction rule involving only EX*)
 | 
|  |     37 | val ex_classical = prove_goal FOL.thy 
 | 
|  |     38 |    "( ~(EX x. P(x)) ==> P(a)) ==> EX x.P(x)"
 | 
|  |     39 |  (fn prems=>
 | 
|  |     40 |   [ (resolve_tac [classical] 1),
 | 
|  |     41 |     (eresolve_tac (prems RL [exI]) 1) ]);
 | 
|  |     42 | 
 | 
|  |     43 | (*version of above, simplifying ~EX to ALL~ *)
 | 
|  |     44 | val exCI = prove_goal FOL.thy 
 | 
|  |     45 |    "(ALL x. ~P(x) ==> P(a)) ==> EX x.P(x)"
 | 
|  |     46 |  (fn [prem]=>
 | 
|  |     47 |   [ (resolve_tac [ex_classical] 1),
 | 
|  |     48 |     (resolve_tac [notI RS allI RS prem] 1),
 | 
|  |     49 |     (eresolve_tac [notE] 1),
 | 
|  |     50 |     (eresolve_tac [exI] 1) ]);
 | 
|  |     51 | 
 | 
|  |     52 | val excluded_middle = prove_goal FOL.thy "~P | P"
 | 
|  |     53 |  (fn _=> [ rtac disjCI 1, assume_tac 1 ]);
 | 
|  |     54 | 
 | 
|  |     55 | 
 | 
|  |     56 | (*** Special elimination rules *)
 | 
|  |     57 | 
 | 
|  |     58 | 
 | 
|  |     59 | (*Classical implies (-->) elimination. *)
 | 
|  |     60 | val impCE = prove_goal FOL.thy 
 | 
|  |     61 |     "[| P-->Q;  ~P ==> R;  Q ==> R |] ==> R"
 | 
|  |     62 |  (fn major::prems=>
 | 
|  |     63 |   [ (resolve_tac [excluded_middle RS disjE] 1),
 | 
|  |     64 |     (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ]);
 | 
|  |     65 | 
 | 
|  |     66 | (*Double negation law*)
 | 
|  |     67 | val notnotD = prove_goal FOL.thy "~~P ==> P"
 | 
|  |     68 |  (fn [major]=>
 | 
|  |     69 |   [ (resolve_tac [classical] 1), (eresolve_tac [major RS notE] 1) ]);
 | 
|  |     70 | 
 | 
|  |     71 | 
 | 
|  |     72 | (*** Tactics for implication and contradiction ***)
 | 
|  |     73 | 
 | 
|  |     74 | (*Classical <-> elimination.  Proof substitutes P=Q in 
 | 
|  |     75 |     ~P ==> ~Q    and    P ==> Q  *)
 | 
|  |     76 | val iffCE = prove_goalw FOL.thy [iff_def]
 | 
|  |     77 |     "[| P<->Q;  [| P; Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R"
 | 
|  |     78 |  (fn prems =>
 | 
|  |     79 |   [ (resolve_tac [conjE] 1),
 | 
|  |     80 |     (REPEAT (DEPTH_SOLVE_1 
 | 
|  |     81 | 	(etac impCE 1  ORELSE  mp_tac 1  ORELSE  ares_tac prems 1))) ]);
 | 
|  |     82 | 
 | 
|  |     83 | 
 | 
|  |     84 | (*Should be used as swap since ~P becomes redundant*)
 | 
|  |     85 | val swap = prove_goal FOL.thy 
 | 
|  |     86 |    "~P ==> (~Q ==> P) ==> Q"
 | 
|  |     87 |  (fn major::prems=>
 | 
|  |     88 |   [ (resolve_tac [classical] 1),
 | 
|  |     89 |     (rtac (major RS notE) 1),
 | 
|  |     90 |     (REPEAT (ares_tac prems 1)) ]);
 | 
|  |     91 | 
 | 
|  |     92 | end;
 | 
|  |     93 | 
 | 
|  |     94 | open FOL_Lemmas;
 |