| author | wenzelm | 
| Mon, 29 Jul 2019 11:09:37 +0200 | |
| changeset 70436 | 251f1fb44ccd | 
| parent 70039 | 733e256ecdf3 | 
| child 73932 | fd21b4a93043 | 
| permissions | -rw-r--r-- | 
| 68582 | 1 | (* Title: HOL/Algebra/Generated_Groups.thy | 
| 2 | Author: Paulo Emílio de Vilhena | |
| 3 | *) | |
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 4 | |
| 70039 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 5 | section \<open>Generated Groups\<close> | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 6 | |
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 7 | theory Generated_Groups | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 8 | imports Group Coset | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 9 | |
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 10 | begin | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 11 | |
| 70039 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 12 | subsection \<open>Generated Groups\<close> | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 13 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 14 | inductive_set generate :: "('a, 'b) monoid_scheme \<Rightarrow> 'a set \<Rightarrow> 'a set"
 | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 15 | for G and H where | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 16 | one: "\<one>\<^bsub>G\<^esub> \<in> generate G H" | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 17 | | incl: "h \<in> H \<Longrightarrow> h \<in> generate G H" | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 18 | | inv: "h \<in> H \<Longrightarrow> inv\<^bsub>G\<^esub> h \<in> generate G H" | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 19 | | eng: "h1 \<in> generate G H \<Longrightarrow> h2 \<in> generate G H \<Longrightarrow> h1 \<otimes>\<^bsub>G\<^esub> h2 \<in> generate G H" | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 20 | |
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 21 | |
| 70039 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 22 | subsubsection \<open>Basic Properties\<close> | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 23 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 24 | lemma (in group) generate_consistent: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 25 | assumes "K \<subseteq> H" "subgroup H G" shows "generate (G \<lparr> carrier := H \<rparr>) K = generate G K" | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 26 | proof | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 27 | show "generate (G \<lparr> carrier := H \<rparr>) K \<subseteq> generate G K" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 28 | proof | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 29 | fix h assume "h \<in> generate (G \<lparr> carrier := H \<rparr>) K" thus "h \<in> generate G K" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 30 | proof (induction, simp add: one, simp_all add: incl[of _ K G] eng) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 31 | case inv thus ?case | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 32 | using m_inv_consistent assms generate.inv[of _ K G] by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 33 | qed | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 34 | qed | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 35 | next | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 36 | show "generate G K \<subseteq> generate (G \<lparr> carrier := H \<rparr>) K" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 37 | proof | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 38 | note gen_simps = one incl eng | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 39 | fix h assume "h \<in> generate G K" thus "h \<in> generate (G \<lparr> carrier := H \<rparr>) K" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 40 | using gen_simps[where ?G = "G \<lparr> carrier := H \<rparr>"] | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 41 | proof (induction, auto) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 42 | fix h assume "h \<in> K" thus "inv h \<in> generate (G \<lparr> carrier := H \<rparr>) K" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 43 | using m_inv_consistent assms generate.inv[of h K "G \<lparr> carrier := H \<rparr>"] by auto | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 44 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 45 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 46 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 47 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 48 | lemma (in group) generate_in_carrier: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 49 | assumes "H \<subseteq> carrier G" and "h \<in> generate G H" shows "h \<in> carrier G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 50 | using assms(2,1) by (induct h rule: generate.induct) (auto) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 51 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 52 | lemma (in group) generate_incl: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 53 | assumes "H \<subseteq> carrier G" shows "generate G H \<subseteq> carrier G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 54 | using generate_in_carrier[OF assms(1)] by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 55 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 56 | lemma (in group) generate_m_inv_closed: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 57 | assumes "H \<subseteq> carrier G" and "h \<in> generate G H" shows "(inv h) \<in> generate G H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 58 | using assms(2,1) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 59 | proof (induction rule: generate.induct, auto simp add: one inv incl) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 60 | fix h1 h2 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 61 | assume h1: "h1 \<in> generate G H" "inv h1 \<in> generate G H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 62 | and h2: "h2 \<in> generate G H" "inv h2 \<in> generate G H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 63 | hence "inv (h1 \<otimes> h2) = (inv h2) \<otimes> (inv h1)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 64 | by (meson assms generate_in_carrier group.inv_mult_group is_group) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 65 | thus "inv (h1 \<otimes> h2) \<in> generate G H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 66 | using generate.eng[OF h2(2) h1(2)] by simp | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 67 | qed | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 68 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 69 | lemma (in group) generate_is_subgroup: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 70 | assumes "H \<subseteq> carrier G" shows "subgroup (generate G H) G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 71 | using subgroup.intro[OF generate_incl eng one generate_m_inv_closed] assms by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 72 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 73 | lemma (in group) mono_generate: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 74 | assumes "K \<subseteq> H" shows "generate G K \<subseteq> generate G H" | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 75 | proof | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 76 | fix h assume "h \<in> generate G K" thus "h \<in> generate G H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 77 | using assms by (induction) (auto simp add: one incl inv eng) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 78 | qed | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 79 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 80 | lemma (in group) generate_subgroup_incl: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 81 | assumes "K \<subseteq> H" "subgroup H G" shows "generate G K \<subseteq> H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 82 | using group.generate_incl[OF subgroup_imp_group[OF assms(2)], of K] assms(1) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 83 | by (simp add: generate_consistent[OF assms]) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 84 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 85 | lemma (in group) generate_minimal: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 86 |   assumes "H \<subseteq> carrier G" shows "generate G H = \<Inter> { H'. subgroup H' G \<and> H \<subseteq> H' }"
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 87 | using generate_subgroup_incl generate_is_subgroup[OF assms] incl[of _ H] by blast | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 88 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 89 | lemma (in group) generateI: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 90 | assumes "subgroup E G" "H \<subseteq> E" and "\<And>K. \<lbrakk> subgroup K G; H \<subseteq> K \<rbrakk> \<Longrightarrow> E \<subseteq> K" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 91 | shows "E = generate G H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 92 | proof - | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 93 | have subset: "H \<subseteq> carrier G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 94 | using subgroup.subset assms by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 95 | show ?thesis | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 96 | using assms unfolding generate_minimal[OF subset] by blast | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 97 | qed | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 98 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 99 | lemma (in group) normal_generateI: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 100 | assumes "H \<subseteq> carrier G" and "\<And>h g. \<lbrakk> h \<in> H; g \<in> carrier G \<rbrakk> \<Longrightarrow> g \<otimes> h \<otimes> (inv g) \<in> H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 101 | shows "generate G H \<lhd> G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 102 | proof (rule normal_invI[OF generate_is_subgroup[OF assms(1)]]) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 103 | fix g h assume g: "g \<in> carrier G" show "h \<in> generate G H \<Longrightarrow> g \<otimes> h \<otimes> (inv g) \<in> generate G H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 104 | proof (induct h rule: generate.induct) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 105 | case one thus ?case | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 106 | using g generate.one by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 107 | next | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 108 | case incl show ?case | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 109 | using generate.incl[OF assms(2)[OF incl g]] . | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 110 | next | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 111 | case (inv h) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 112 | hence h: "h \<in> carrier G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 113 | using assms(1) by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 114 | hence "inv (g \<otimes> h \<otimes> (inv g)) = g \<otimes> (inv h) \<otimes> (inv g)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 115 | using g by (simp add: inv_mult_group m_assoc) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 116 | thus ?case | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 117 | using generate_m_inv_closed[OF assms(1) generate.incl[OF assms(2)[OF inv g]]] by simp | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 118 | next | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 119 | case (eng h1 h2) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 120 | note in_carrier = eng(1,3)[THEN generate_in_carrier[OF assms(1)]] | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 121 | have "g \<otimes> (h1 \<otimes> h2) \<otimes> inv g = (g \<otimes> h1 \<otimes> inv g) \<otimes> (g \<otimes> h2 \<otimes> inv g)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 122 | using in_carrier g by (simp add: inv_solve_left m_assoc) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 123 | thus ?case | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 124 | using generate.eng[OF eng(2,4)] by simp | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 125 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 126 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 127 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 128 | lemma (in group) subgroup_int_pow_closed: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 129 | assumes "subgroup H G" "h \<in> H" shows "h [^] (k :: int) \<in> H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 130 | using group.int_pow_closed[OF subgroup_imp_group[OF assms(1)]] assms(2) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 131 | unfolding int_pow_consistent[OF assms] by simp | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 132 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 133 | lemma (in group) generate_pow: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 134 |   assumes "a \<in> carrier G" shows "generate G { a } = { a [^] (k :: int) | k. k \<in> UNIV }"
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 135 | proof | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 136 |   show "{ a [^] (k :: int) | k. k \<in> UNIV } \<subseteq> generate G { a }"
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 137 |     using subgroup_int_pow_closed[OF generate_is_subgroup[of "{ a }"] incl[of a]] assms by auto
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 138 | next | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 139 |   show "generate G { a } \<subseteq> { a [^] (k :: int) | k. k \<in> UNIV }"
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 140 | proof | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 141 |     fix h assume "h \<in> generate G { a }" hence "\<exists>k :: int. h = a [^] k"
 | 
| 69749 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 142 | proof (induction) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 143 | case one | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 144 | then show ?case | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 145 | using int_pow_0 [of G] by metis | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 146 | next | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 147 | case (incl h) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 148 | then show ?case | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 149 | by (metis assms int_pow_1 singletonD) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 150 | next | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 151 | case (inv h) | 
| 69749 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 152 | then show ?case | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 153 | by (metis assms int_pow_1 int_pow_neg singletonD) | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 154 | next | 
| 69749 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 155 | case (eng h1 h2) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 156 | then show ?case | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 157 | using assms by (metis int_pow_mult) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 158 | qed | 
| 69749 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 159 |     then show "h \<in> { a [^] (k :: int) | k. k \<in> UNIV }"
 | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 160 | by blast | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 161 | qed | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 162 | qed | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 163 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 164 | corollary (in group) generate_one: "generate G { \<one> } = { \<one> }"
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 165 | using generate_pow[of "\<one>", OF one_closed] by simp | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 166 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 167 | corollary (in group) generate_empty: "generate G {} = { \<one> }"
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 168 |   using mono_generate[of "{}" "{ \<one> }"] generate.one unfolding generate_one by auto
 | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 169 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 170 | lemma (in group_hom) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 171 | "subgroup K G \<Longrightarrow> subgroup (h ` K) H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 172 | using subgroup_img_is_subgroup by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 173 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 174 | lemma (in group_hom) generate_img: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 175 | assumes "K \<subseteq> carrier G" shows "generate H (h ` K) = h ` (generate G K)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 176 | proof | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 177 | have "h ` K \<subseteq> h ` (generate G K)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 178 | using incl[of _ K G] by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 179 | thus "generate H (h ` K) \<subseteq> h ` (generate G K)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 180 | using generate_subgroup_incl subgroup_img_is_subgroup[OF G.generate_is_subgroup[OF assms]] by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 181 | next | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 182 | show "h ` (generate G K) \<subseteq> generate H (h ` K)" | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 183 | proof | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 184 | fix a assume "a \<in> h ` (generate G K)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 185 | then obtain k where "k \<in> generate G K" "a = h k" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 186 | by blast | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 187 | show "a \<in> generate H (h ` K)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 188 | using \<open>k \<in> generate G K\<close> unfolding \<open>a = h k\<close> | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 189 | proof (induct k, auto simp add: generate.one[of H] generate.incl[of _ "h ` K" H]) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 190 | case (inv k) show ?case | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 191 | using assms generate.inv[of "h k" "h ` K" H] inv by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 192 | next | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 193 | case eng show ?case | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 194 | using generate.eng[OF eng(2,4)] eng(1,3)[THEN G.generate_in_carrier[OF assms]] by auto | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 195 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 196 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 197 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 198 | |
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 199 | |
| 70039 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 200 | subsection \<open>Derived Subgroup\<close> | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 201 | |
| 70039 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 202 | subsubsection \<open>Definitions\<close> | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 203 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 204 | abbreviation derived_set :: "('a, 'b) monoid_scheme \<Rightarrow> 'a set \<Rightarrow> 'a set"
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 205 | where "derived_set G H \<equiv> | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 206 |            \<Union>h1 \<in> H. (\<Union>h2 \<in> H. { h1 \<otimes>\<^bsub>G\<^esub> h2 \<otimes>\<^bsub>G\<^esub> (inv\<^bsub>G\<^esub> h1) \<otimes>\<^bsub>G\<^esub> (inv\<^bsub>G\<^esub> h2) })"
 | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 207 | |
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 208 | definition derived :: "('a, 'b) monoid_scheme \<Rightarrow> 'a set \<Rightarrow> 'a set" where
 | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 209 | "derived G H = generate G (derived_set G H)" | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 210 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 211 | |
| 70039 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 212 | subsubsection \<open>Basic Properties\<close> | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 213 | |
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 214 | lemma (in group) derived_set_incl: | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 215 | assumes "K \<subseteq> H" "subgroup H G" shows "derived_set G K \<subseteq> H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 216 | using assms(1) subgroupE(3-4)[OF assms(2)] by (auto simp add: subset_iff) | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 217 | |
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 218 | lemma (in group) derived_incl: | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 219 | assumes "K \<subseteq> H" "subgroup H G" shows "derived G K \<subseteq> H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 220 | using generate_subgroup_incl[OF derived_set_incl] assms unfolding derived_def by auto | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 221 | |
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 222 | lemma (in group) derived_set_in_carrier: | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 223 | assumes "H \<subseteq> carrier G" shows "derived_set G H \<subseteq> carrier G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 224 | using derived_set_incl[OF assms subgroup_self] . | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 225 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 226 | lemma (in group) derived_in_carrier: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 227 | assumes "H \<subseteq> carrier G" shows "derived G H \<subseteq> carrier G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 228 | using derived_incl[OF assms subgroup_self] . | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 229 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 230 | lemma (in group) exp_of_derived_in_carrier: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 231 | assumes "H \<subseteq> carrier G" shows "(derived G ^^ n) H \<subseteq> carrier G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 232 | using assms derived_in_carrier by (induct n) (auto) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 233 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 234 | lemma (in group) derived_is_subgroup: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 235 | assumes "H \<subseteq> carrier G" shows "subgroup (derived G H) G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 236 | unfolding derived_def using generate_is_subgroup[OF derived_set_in_carrier[OF assms]] . | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 237 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 238 | lemma (in group) exp_of_derived_is_subgroup: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 239 | assumes "subgroup H G" shows "subgroup ((derived G ^^ n) H) G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 240 | using assms derived_is_subgroup subgroup.subset by (induct n) (auto) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 241 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 242 | lemma (in group) exp_of_derived_is_subgroup': | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 243 | assumes "H \<subseteq> carrier G" shows "subgroup ((derived G ^^ (Suc n)) H) G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 244 | using assms derived_is_subgroup[OF subgroup.subset] derived_is_subgroup by (induct n) (auto) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 245 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 246 | lemma (in group) mono_derived_set: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 247 | assumes "K \<subseteq> H" shows "derived_set G K \<subseteq> derived_set G H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 248 | using assms by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 249 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 250 | lemma (in group) mono_derived: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 251 | assumes "K \<subseteq> H" shows "derived G K \<subseteq> derived G H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 252 | unfolding derived_def using mono_generate[OF mono_derived_set[OF assms]] . | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 253 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 254 | lemma (in group) mono_exp_of_derived: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 255 | assumes "K \<subseteq> H" shows "(derived G ^^ n) K \<subseteq> (derived G ^^ n) H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 256 | using assms mono_derived by (induct n) (auto) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 257 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 258 | lemma (in group) derived_set_consistent: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 259 | assumes "K \<subseteq> H" "subgroup H G" shows "derived_set (G \<lparr> carrier := H \<rparr>) K = derived_set G K" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 260 | using m_inv_consistent[OF assms(2)] assms(1) by (auto simp add: subset_iff) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 261 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 262 | lemma (in group) derived_consistent: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 263 | assumes "K \<subseteq> H" "subgroup H G" shows "derived (G \<lparr> carrier := H \<rparr>) K = derived G K" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 264 | using generate_consistent[OF derived_set_incl] derived_set_consistent assms by (simp add: derived_def) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 265 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 266 | lemma (in comm_group) derived_eq_singleton: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 267 |   assumes "H \<subseteq> carrier G" shows "derived G H = { \<one> }"
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 268 | proof (cases "derived_set G H = {}")
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 269 | case True show ?thesis | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 270 | using generate_empty unfolding derived_def True by simp | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 271 | next | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 272 | case False | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 273 | have aux_lemma: "h \<in> derived_set G H \<Longrightarrow> h = \<one>" for h | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 274 | using assms by (auto simp add: subset_iff) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 275 | (metis (no_types, lifting) m_comm m_closed inv_closed inv_solve_right l_inv l_inv_ex) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 276 |   have "derived_set G H = { \<one> }"
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 277 | proof | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 278 |     show "derived_set G H \<subseteq> { \<one> }"
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 279 | using aux_lemma by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 280 | next | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 281 | obtain h where h: "h \<in> derived_set G H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 282 | using False by blast | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 283 |     thus "{ \<one> } \<subseteq> derived_set G H"
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 284 | using aux_lemma[OF h] by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 285 | qed | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 286 | thus ?thesis | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 287 | using generate_one unfolding derived_def by auto | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 288 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 289 | |
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 290 | lemma (in group) derived_is_normal: | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 291 | assumes "H \<lhd> G" shows "derived G H \<lhd> G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 292 | proof - | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 293 | interpret H: normal H G | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 294 | using assms . | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 295 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 296 | show ?thesis | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 297 | unfolding derived_def | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 298 | proof (rule normal_generateI[OF derived_set_in_carrier[OF H.subset]]) | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 299 | fix h g assume "h \<in> derived_set G H" and g: "g \<in> carrier G" | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 300 | then obtain h1 h2 where h: "h1 \<in> H" "h2 \<in> H" "h = h1 \<otimes> h2 \<otimes> inv h1 \<otimes> inv h2" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 301 | by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 302 | hence in_carrier: "h1 \<in> carrier G" "h2 \<in> carrier G" "g \<in> carrier G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 303 | using H.subset g by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 304 | have "g \<otimes> h \<otimes> inv g = | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 305 | g \<otimes> h1 \<otimes> (inv g \<otimes> g) \<otimes> h2 \<otimes> (inv g \<otimes> g) \<otimes> inv h1 \<otimes> (inv g \<otimes> g) \<otimes> inv h2 \<otimes> inv g" | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 306 | unfolding h(3) by (simp add: in_carrier m_assoc) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 307 | also have " ... = | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 308 | (g \<otimes> h1 \<otimes> inv g) \<otimes> (g \<otimes> h2 \<otimes> inv g) \<otimes> (g \<otimes> inv h1 \<otimes> inv g) \<otimes> (g \<otimes> inv h2 \<otimes> inv g)" | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 309 | using in_carrier m_assoc inv_closed m_closed by presburger | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 310 | finally have "g \<otimes> h \<otimes> inv g = | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 311 | (g \<otimes> h1 \<otimes> inv g) \<otimes> (g \<otimes> h2 \<otimes> inv g) \<otimes> inv (g \<otimes> h1 \<otimes> inv g) \<otimes> inv (g \<otimes> h2 \<otimes> inv g)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 312 | by (simp add: in_carrier inv_mult_group m_assoc) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 313 | thus "g \<otimes> h \<otimes> inv g \<in> derived_set G H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 314 | using h(1-2)[THEN H.inv_op_closed2[OF g]] by auto | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 315 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 316 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 317 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 318 | lemma (in group) normal_self: "carrier G \<lhd> G" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 319 | by (rule normal_invI[OF subgroup_self], simp) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 320 | |
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 321 | corollary (in group) derived_self_is_normal: "derived G (carrier G) \<lhd> G" | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 322 | using derived_is_normal[OF normal_self] . | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 323 | |
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 324 | corollary (in group) derived_subgroup_is_normal: | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 325 | assumes "subgroup H G" shows "derived G H \<lhd> G \<lparr> carrier := H \<rparr>" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 326 | using group.derived_self_is_normal[OF subgroup_imp_group[OF assms]] | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 327 | derived_consistent[OF _ assms] | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 328 | by simp | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 329 | |
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 330 | corollary (in group) derived_quot_is_group: "group (G Mod (derived G (carrier G)))" | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 331 | using normal.factorgroup_is_group[OF derived_self_is_normal] by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 332 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 333 | lemma (in group) derived_quot_is_comm_group: "comm_group (G Mod (derived G (carrier G)))" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 334 | proof (rule group.group_comm_groupI[OF derived_quot_is_group], simp add: FactGroup_def) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 335 | interpret DG: normal "derived G (carrier G)" G | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 336 | using derived_self_is_normal . | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 337 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 338 | fix H K assume "H \<in> rcosets derived G (carrier G)" and "K \<in> rcosets derived G (carrier G)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 339 | then obtain g1 g2 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 340 | where g1: "g1 \<in> carrier G" "H = derived G (carrier G) #> g1" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 341 | and g2: "g2 \<in> carrier G" "K = derived G (carrier G) #> g2" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 342 | unfolding RCOSETS_def by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 343 | hence "H <#> K = derived G (carrier G) #> (g1 \<otimes> g2)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 344 | by (simp add: DG.rcos_sum) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 345 | also have " ... = derived G (carrier G) #> (g2 \<otimes> g1)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 346 | proof - | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 347 |     { fix g1 g2 assume g1: "g1 \<in> carrier G" and g2: "g2 \<in> carrier G"
 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 348 | have "derived G (carrier G) #> (g1 \<otimes> g2) \<subseteq> derived G (carrier G) #> (g2 \<otimes> g1)" | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 349 | proof | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 350 | fix h assume "h \<in> derived G (carrier G) #> (g1 \<otimes> g2)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 351 | then obtain g' where h: "g' \<in> carrier G" "g' \<in> derived G (carrier G)" "h = g' \<otimes> (g1 \<otimes> g2)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 352 | using DG.subset unfolding r_coset_def by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 353 | hence "h = g' \<otimes> (g1 \<otimes> g2) \<otimes> (inv g1 \<otimes> inv g2 \<otimes> g2 \<otimes> g1)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 354 | using g1 g2 by (simp add: m_assoc) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 355 | hence "h = (g' \<otimes> (g1 \<otimes> g2 \<otimes> inv g1 \<otimes> inv g2)) \<otimes> (g2 \<otimes> g1)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 356 | using h(1) g1 g2 inv_closed m_assoc m_closed by presburger | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 357 | moreover have "g1 \<otimes> g2 \<otimes> inv g1 \<otimes> inv g2 \<in> derived G (carrier G)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 358 | using incl[of _ "derived_set G (carrier G)"] g1 g2 unfolding derived_def by blast | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 359 | hence "g' \<otimes> (g1 \<otimes> g2 \<otimes> inv g1 \<otimes> inv g2) \<in> derived G (carrier G)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 360 | using DG.m_closed[OF h(2)] by simp | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 361 | ultimately show "h \<in> derived G (carrier G) #> (g2 \<otimes> g1)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 362 | unfolding r_coset_def by blast | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 363 | qed } | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 364 | thus ?thesis | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 365 | using g1(1) g2(1) by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 366 | qed | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 367 | also have " ... = K <#> H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 368 | by (simp add: g1 g2 DG.rcos_sum) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 369 | finally show "H <#> K = K <#> H" . | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 370 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 371 | |
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 372 | corollary (in group) derived_quot_of_subgroup_is_comm_group: | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 373 | assumes "subgroup H G" shows "comm_group ((G \<lparr> carrier := H \<rparr>) Mod (derived G H))" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 374 | using group.derived_quot_is_comm_group[OF subgroup_imp_group[OF assms]] | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 375 | derived_consistent[OF _ assms] | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 376 | by simp | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 377 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 378 | proposition (in group) derived_minimal: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 379 | assumes "H \<lhd> G" and "comm_group (G Mod H)" shows "derived G (carrier G) \<subseteq> H" | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 380 | proof - | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 381 | interpret H: normal H G | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 382 | using assms(1) . | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 383 | |
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 384 | show ?thesis | 
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 385 | unfolding derived_def | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 386 | proof (rule generate_subgroup_incl[OF _ H.subgroup_axioms]) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 387 | show "derived_set G (carrier G) \<subseteq> H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 388 | proof | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 389 | fix h assume "h \<in> derived_set G (carrier G)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 390 | then obtain g1 g2 where h: "g1 \<in> carrier G" "g2 \<in> carrier G" "h = g1 \<otimes> g2 \<otimes> inv g1 \<otimes> inv g2" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 391 | by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 392 | have "H #> (g1 \<otimes> g2) = (H #> g1) <#> (H #> g2)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 393 | by (simp add: h(1-2) H.rcos_sum) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 394 | also have " ... = (H #> g2) <#> (H #> g1)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 395 | using comm_groupE(4)[OF assms(2)] h(1-2) unfolding FactGroup_def RCOSETS_def by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 396 | also have " ... = H #> (g2 \<otimes> g1)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 397 | by (simp add: h(1-2) H.rcos_sum) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 398 | finally have "H #> (g1 \<otimes> g2) = H #> (g2 \<otimes> g1)" . | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 399 | then obtain h' where "h' \<in> H" "\<one> \<otimes> (g1 \<otimes> g2) = h' \<otimes> (g2 \<otimes> g1)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 400 | using H.one_closed unfolding r_coset_def by blast | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 401 | thus "h \<in> H" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 402 | using h m_assoc by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 403 | qed | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 404 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 405 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 406 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 407 | proposition (in group) derived_of_subgroup_minimal: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 408 | assumes "K \<lhd> G \<lparr> carrier := H \<rparr>" "subgroup H G" and "comm_group ((G \<lparr> carrier := H \<rparr>) Mod K)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 409 | shows "derived G H \<subseteq> K" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 410 | using group.derived_minimal[OF subgroup_imp_group[OF assms(2)] assms(1,3)] | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 411 | derived_consistent[OF _ assms(2)] | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 412 | by simp | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 413 | |
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 414 | lemma (in group_hom) derived_img: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 415 | assumes "K \<subseteq> carrier G" shows "derived H (h ` K) = h ` (derived G K)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 416 | proof - | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 417 | have "derived_set H (h ` K) = h ` (derived_set G K)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 418 | proof | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 419 | show "derived_set H (h ` K) \<subseteq> h ` derived_set G K" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 420 | proof | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 421 | fix a assume "a \<in> derived_set H (h ` K)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 422 | then obtain k1 k2 | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 423 | where "k1 \<in> K" "k2 \<in> K" "a = (h k1) \<otimes>\<^bsub>H\<^esub> (h k2) \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h k1) \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h k2)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 424 | by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 425 | hence "a = h (k1 \<otimes> k2 \<otimes> inv k1 \<otimes> inv k2)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 426 | using assms by (simp add: subset_iff) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 427 | from this \<open>k1 \<in> K\<close> and \<open>k2 \<in> K\<close> show "a \<in> h ` derived_set G K" by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 428 | qed | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 429 | next | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 430 | show "h ` (derived_set G K) \<subseteq> derived_set H (h ` K)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 431 | proof | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 432 | fix a assume "a \<in> h ` (derived_set G K)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 433 | then obtain k1 k2 where "k1 \<in> K" "k2 \<in> K" "a = h (k1 \<otimes> k2 \<otimes> inv k1 \<otimes> inv k2)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 434 | by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 435 | hence "a = (h k1) \<otimes>\<^bsub>H\<^esub> (h k2) \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h k1) \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h k2)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 436 | using assms by (simp add: subset_iff) | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 437 | from this \<open>k1 \<in> K\<close> and \<open>k2 \<in> K\<close> show "a \<in> derived_set H (h ` K)" by auto | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 438 | qed | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 439 | qed | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 440 | thus ?thesis | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 441 | unfolding derived_def using generate_img[OF G.derived_set_in_carrier[OF assms]] by simp | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 442 | qed | 
| 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 443 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 444 | lemma (in group_hom) exp_of_derived_img: | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 445 | assumes "K \<subseteq> carrier G" shows "(derived H ^^ n) (h ` K) = h ` ((derived G ^^ n) K)" | 
| 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 446 | using derived_img[OF G.exp_of_derived_in_carrier[OF assms]] by (induct n) (auto) | 
| 68569 
c64319959bab
Lots of new algebra theories by Martin Baillon and Paulo Emílio de Vilhena
 paulson <lp15@cam.ac.uk> parents: diff
changeset | 447 | |
| 69749 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 448 | |
| 70039 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 449 | subsubsection \<open>Generated subgroup of a group\<close> | 
| 69749 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 450 | |
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 451 | definition subgroup_generated :: "('a, 'b) monoid_scheme \<Rightarrow> 'a set \<Rightarrow> ('a, 'b) monoid_scheme"
 | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 452 | where "subgroup_generated G S = G\<lparr>carrier := generate G (carrier G \<inter> S)\<rparr>" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 453 | |
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 454 | lemma carrier_subgroup_generated: "carrier (subgroup_generated G S) = generate G (carrier G \<inter> S)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 455 | by (auto simp: subgroup_generated_def) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 456 | |
| 70027 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 457 | lemma (in group) subgroup_generated_subset_carrier_subset: | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 458 | "S \<subseteq> carrier G \<Longrightarrow> S \<subseteq> carrier(subgroup_generated G S)" | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 459 | by (simp add: Int_absorb1 carrier_subgroup_generated generate.incl subsetI) | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 460 | |
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 461 | lemma (in group) subgroup_generated_minimal: | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 462 | "\<lbrakk>subgroup H G; S \<subseteq> H\<rbrakk> \<Longrightarrow> carrier(subgroup_generated G S) \<subseteq> H" | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 463 | by (simp add: carrier_subgroup_generated generate_subgroup_incl le_infI2) | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 464 | |
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 465 | lemma (in group) carrier_subgroup_generated_subset: | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 466 | "carrier (subgroup_generated G A) \<subseteq> carrier G" | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 467 | apply (clarsimp simp: carrier_subgroup_generated) | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 468 | by (meson Int_lower1 generate_in_carrier) | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 469 | |
| 69749 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 470 | lemma (in group) group_subgroup_generated [simp]: "group (subgroup_generated G S)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 471 | unfolding subgroup_generated_def | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 472 | by (simp add: generate_is_subgroup subgroup_imp_group) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 473 | |
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 474 | lemma (in group) abelian_subgroup_generated: | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 475 | assumes "comm_group G" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 476 | shows "comm_group (subgroup_generated G S)" (is "comm_group ?GS") | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 477 | proof (rule group.group_comm_groupI) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 478 | show "Group.group ?GS" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 479 | by simp | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 480 | next | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 481 | fix x y | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 482 | assume "x \<in> carrier ?GS" "y \<in> carrier ?GS" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 483 | with assms show "x \<otimes>\<^bsub>?GS\<^esub> y = y \<otimes>\<^bsub>?GS\<^esub> x" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 484 | apply (simp add: subgroup_generated_def) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 485 | by (meson Int_lower1 comm_groupE(4) generate_in_carrier) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 486 | qed | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 487 | |
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 488 | lemma (in group) subgroup_of_subgroup_generated: | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 489 | assumes "H \<subseteq> B" "subgroup H G" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 490 | shows "subgroup H (subgroup_generated G B)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 491 | proof unfold_locales | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 492 | fix x | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 493 | assume "x \<in> H" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 494 | with assms show "inv\<^bsub>subgroup_generated G B\<^esub> x \<in> H" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 495 | unfolding subgroup_generated_def | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 496 | by (metis IntI Int_commute Int_lower2 generate.incl generate_is_subgroup m_inv_consistent subgroup_def subsetCE) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 497 | next | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 498 | show "H \<subseteq> carrier (subgroup_generated G B)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 499 | using assms apply (auto simp: carrier_subgroup_generated) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 500 | by (metis Int_iff generate.incl inf.orderE subgroup.mem_carrier) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 501 | qed (use assms in \<open>auto simp: subgroup_generated_def subgroup_def\<close>) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 502 | |
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 503 | lemma carrier_subgroup_generated_alt: | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 504 | assumes "Group.group G" "S \<subseteq> carrier G" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 505 |   shows "carrier (subgroup_generated G S) = \<Inter>{H. subgroup H G \<and> carrier G \<inter> S \<subseteq> H}"
 | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 506 | using assms by (auto simp: group.generate_minimal subgroup_generated_def) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 507 | |
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 508 | lemma one_subgroup_generated [simp]: "\<one>\<^bsub>subgroup_generated G S\<^esub> = \<one>\<^bsub>G\<^esub>" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 509 | by (auto simp: subgroup_generated_def) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 510 | |
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 511 | lemma mult_subgroup_generated [simp]: "mult (subgroup_generated G S) = mult G" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 512 | by (auto simp: subgroup_generated_def) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 513 | |
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 514 | lemma (in group) inv_subgroup_generated [simp]: | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 515 | assumes "f \<in> carrier (subgroup_generated G S)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 516 | shows "inv\<^bsub>subgroup_generated G S\<^esub> f = inv f" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 517 | proof (rule group.inv_equality) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 518 | show "Group.group (subgroup_generated G S)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 519 | by simp | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 520 | have [simp]: "f \<in> carrier G" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 521 | by (metis Int_lower1 assms carrier_subgroup_generated generate_in_carrier) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 522 | show "inv f \<otimes>\<^bsub>subgroup_generated G S\<^esub> f = \<one>\<^bsub>subgroup_generated G S\<^esub>" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 523 | by (simp add: assms) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 524 | show "f \<in> carrier (subgroup_generated G S)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 525 | using assms by (simp add: generate.incl subgroup_generated_def) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 526 | show "inv f \<in> carrier (subgroup_generated G S)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 527 | using assms by (simp add: subgroup_generated_def generate_m_inv_closed) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 528 | qed | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 529 | |
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 530 | lemma subgroup_generated_restrict [simp]: | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 531 | "subgroup_generated G (carrier G \<inter> S) = subgroup_generated G S" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 532 | by (simp add: subgroup_generated_def) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 533 | |
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 534 | lemma (in subgroup) carrier_subgroup_generated_subgroup [simp]: | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 535 | "carrier (subgroup_generated G H) = H" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 536 | by (auto simp: generate.incl carrier_subgroup_generated elim: generate.induct) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 537 | |
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 538 | lemma (in group) subgroup_subgroup_generated_iff: | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 539 | "subgroup H (subgroup_generated G B) \<longleftrightarrow> subgroup H G \<and> H \<subseteq> carrier(subgroup_generated G B)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 540 | (is "?lhs = ?rhs") | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 541 | proof | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 542 | assume L: ?lhs | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 543 | then have Hsub: "H \<subseteq> generate G (carrier G \<inter> B)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 544 | by (simp add: subgroup_def subgroup_generated_def) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 545 | then have H: "H \<subseteq> carrier G" "H \<subseteq> carrier(subgroup_generated G B)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 546 | unfolding carrier_subgroup_generated | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 547 | using generate_incl by blast+ | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 548 | with Hsub have "subgroup H G" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 549 | by (metis Int_commute Int_lower2 L carrier_subgroup_generated generate_consistent | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 550 | generate_is_subgroup inf.orderE subgroup.carrier_subgroup_generated_subgroup subgroup_generated_def) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 551 | with H show ?rhs | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 552 | by blast | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 553 | next | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 554 | assume ?rhs | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 555 | then show ?lhs | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 556 | by (simp add: generate_is_subgroup subgroup_generated_def subgroup_incl) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 557 | qed | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 558 | |
| 70027 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 559 | lemma (in group) subgroup_subgroup_generated: | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 560 | "subgroup (carrier(subgroup_generated G S)) G" | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 561 | using group.subgroup_self group_subgroup_generated subgroup_subgroup_generated_iff by blast | 
| 69749 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 562 | |
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 563 | lemma pow_subgroup_generated: | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 564 | "pow (subgroup_generated G S) = (pow G :: 'a \<Rightarrow> nat \<Rightarrow> 'a)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 565 | proof - | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 566 | have "x [^]\<^bsub>subgroup_generated G S\<^esub> n = x [^]\<^bsub>G\<^esub> n" for x and n::nat | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 567 | by (induction n) auto | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 568 | then show ?thesis | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 569 | by force | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 570 | qed | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 571 | |
| 70027 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 572 | lemma (in group) subgroup_generated2 [simp]: "subgroup_generated (subgroup_generated G S) S = subgroup_generated G S" | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 573 | proof - | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 574 | have *: "\<And>A. carrier G \<inter> A \<subseteq> carrier (subgroup_generated (subgroup_generated G A) A)" | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 575 | by (metis (no_types, hide_lams) Int_assoc carrier_subgroup_generated generate.incl inf.order_iff subset_iff) | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 576 | show ?thesis | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 577 | apply (auto intro!: monoid.equality) | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 578 | using group.carrier_subgroup_generated_subset group_subgroup_generated apply blast | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 579 | apply (metis (no_types, hide_lams) "*" group.subgroup_subgroup_generated group_subgroup_generated subgroup_generated_minimal | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 580 | subgroup_generated_restrict subgroup_subgroup_generated_iff subset_eq) | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 581 | apply (simp add: subgroup_generated_def) | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 582 | done | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 583 | qed | 
| 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 584 | |
| 69749 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 585 | lemma (in group) int_pow_subgroup_generated: | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 586 | fixes n::int | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 587 | assumes "x \<in> carrier (subgroup_generated G S)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 588 | shows "x [^]\<^bsub>subgroup_generated G S\<^esub> n = x [^]\<^bsub>G\<^esub> n" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 589 | proof - | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 590 | have "x [^] nat (- n) \<in> carrier (subgroup_generated G S)" | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 591 | by (metis assms group.is_monoid group_subgroup_generated monoid.nat_pow_closed pow_subgroup_generated) | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 592 | then show ?thesis | 
| 70027 
94494b92d8d0
some new group theory results: integer group, trivial group, etc.
 paulson <lp15@cam.ac.uk> parents: 
70019diff
changeset | 593 | by (metis group.inv_subgroup_generated int_pow_def2 is_group pow_subgroup_generated) | 
| 69749 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 594 | qed | 
| 
10e48c47a549
some new results in group theory
 paulson <lp15@cam.ac.uk> parents: 
69122diff
changeset | 595 | |
| 70019 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69749diff
changeset | 596 | lemma kernel_from_subgroup_generated [simp]: | 
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69749diff
changeset | 597 | "subgroup S G \<Longrightarrow> kernel (subgroup_generated G S) H f = kernel G H f \<inter> S" | 
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69749diff
changeset | 598 | using subgroup.carrier_subgroup_generated_subgroup subgroup.subset | 
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69749diff
changeset | 599 | by (fastforce simp add: kernel_def set_eq_iff) | 
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69749diff
changeset | 600 | |
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69749diff
changeset | 601 | lemma kernel_to_subgroup_generated [simp]: | 
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69749diff
changeset | 602 | "kernel G (subgroup_generated H S) f = kernel G H f" | 
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69749diff
changeset | 603 | by (simp add: kernel_def) | 
| 
095dce9892e8
A few results in Algebra, and bits for Analysis
 paulson <lp15@cam.ac.uk> parents: 
69749diff
changeset | 604 | |
| 70039 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 605 | subsection \<open>And homomorphisms\<close> | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 606 | |
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 607 | lemma (in group) hom_from_subgroup_generated: | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 608 | "h \<in> hom G H \<Longrightarrow> h \<in> hom(subgroup_generated G A) H" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 609 | apply (simp add: hom_def carrier_subgroup_generated Pi_iff) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 610 | apply (metis group.generate_in_carrier inf_le1 is_group) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 611 | done | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 612 | |
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 613 | lemma hom_into_subgroup: | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 614 | "\<lbrakk>h \<in> hom G G'; h ` (carrier G) \<subseteq> H\<rbrakk> \<Longrightarrow> h \<in> hom G (subgroup_generated G' H)" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 615 | by (auto simp: hom_def carrier_subgroup_generated Pi_iff generate.incl image_subset_iff) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 616 | |
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 617 | lemma hom_into_subgroup_eq_gen: | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 618 | "group G \<Longrightarrow> | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 619 | h \<in> hom K (subgroup_generated G H) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 620 | \<longleftrightarrow> h \<in> hom K G \<and> h ` (carrier K) \<subseteq> carrier(subgroup_generated G H)" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 621 | using group.carrier_subgroup_generated_subset [of G H] by (auto simp: hom_def) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 622 | |
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 623 | lemma hom_into_subgroup_eq: | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 624 | "\<lbrakk>subgroup H G; group G\<rbrakk> | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 625 | \<Longrightarrow> (h \<in> hom K (subgroup_generated G H) \<longleftrightarrow> h \<in> hom K G \<and> h ` (carrier K) \<subseteq> H)" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 626 | by (simp add: hom_into_subgroup_eq_gen image_subset_iff subgroup.carrier_subgroup_generated_subgroup) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 627 | |
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 628 | lemma (in group_hom) hom_between_subgroups: | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 629 | assumes "h ` A \<subseteq> B" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 630 | shows "h \<in> hom (subgroup_generated G A) (subgroup_generated H B)" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 631 | proof - | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 632 | have [simp]: "group G" "group H" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 633 | by (simp_all add: G.is_group H.is_group) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 634 | have "x \<in> generate G (carrier G \<inter> A) \<Longrightarrow> h x \<in> generate H (carrier H \<inter> B)" for x | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 635 | proof (induction x rule: generate.induct) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 636 | case (incl h) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 637 | then show ?case | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 638 | by (meson IntE IntI assms generate.incl hom_closed image_subset_iff) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 639 | next | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 640 | case (inv h) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 641 | then show ?case | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 642 | by (metis G.inv_closed G.inv_inv IntE IntI assms generate.simps hom_inv image_subset_iff local.inv_closed) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 643 | next | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 644 | case (eng h1 h2) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 645 | then show ?case | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 646 | by (metis G.generate_in_carrier generate.simps inf.cobounded1 local.hom_mult) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 647 | qed (auto simp: generate.intros) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 648 | then have "h ` carrier (subgroup_generated G A) \<subseteq> carrier (subgroup_generated H B)" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 649 | using group.carrier_subgroup_generated_subset [of G A] | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 650 | by (auto simp: carrier_subgroup_generated) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 651 | then show ?thesis | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 652 | by (simp add: hom_into_subgroup_eq_gen group.hom_from_subgroup_generated homh) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 653 | qed | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 654 | |
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 655 | lemma (in group_hom) subgroup_generated_by_image: | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 656 | assumes "S \<subseteq> carrier G" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 657 | shows "carrier (subgroup_generated H (h ` S)) = h ` (carrier(subgroup_generated G S))" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 658 | proof | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 659 | have "x \<in> generate H (carrier H \<inter> h ` S) \<Longrightarrow> x \<in> h ` generate G (carrier G \<inter> S)" for x | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 660 | proof (erule generate.induct) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 661 | show "\<one>\<^bsub>H\<^esub> \<in> h ` generate G (carrier G \<inter> S)" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 662 | using generate.one by force | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 663 | next | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 664 | fix f | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 665 | assume "f \<in> carrier H \<inter> h ` S" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 666 | with assms show "f \<in> h ` generate G (carrier G \<inter> S)" "inv\<^bsub>H\<^esub> f \<in> h ` generate G (carrier G \<inter> S)" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 667 | apply (auto simp: Int_absorb1 generate.incl) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 668 | apply (metis generate.simps hom_inv imageI subsetCE) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 669 | done | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 670 | next | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 671 | fix h1 h2 | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 672 | assume | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 673 | "h1 \<in> generate H (carrier H \<inter> h ` S)" "h1 \<in> h ` generate G (carrier G \<inter> S)" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 674 | "h2 \<in> generate H (carrier H \<inter> h ` S)" "h2 \<in> h ` generate G (carrier G \<inter> S)" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 675 | then show "h1 \<otimes>\<^bsub>H\<^esub> h2 \<in> h ` generate G (carrier G \<inter> S)" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 676 | using H.subgroupE(4) group.generate_is_subgroup subgroup_img_is_subgroup | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 677 | by (simp add: G.generate_is_subgroup) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 678 | qed | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 679 | then | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 680 | show "carrier (subgroup_generated H (h ` S)) \<subseteq> h ` carrier (subgroup_generated G S)" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 681 | by (auto simp: carrier_subgroup_generated) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 682 | next | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 683 | have "h ` S \<subseteq> carrier H" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 684 | by (metis (no_types) assms hom_closed image_subset_iff subsetCE) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 685 | then show "h ` carrier (subgroup_generated G S) \<subseteq> carrier (subgroup_generated H (h ` S))" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 686 | apply (clarsimp simp: carrier_subgroup_generated) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 687 | by (metis Int_absorb1 assms generate_img imageI) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 688 | qed | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 689 | |
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 690 | lemma (in group_hom) iso_between_subgroups: | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 691 | assumes "h \<in> iso G H" "S \<subseteq> carrier G" "h ` S = T" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 692 | shows "h \<in> iso (subgroup_generated G S) (subgroup_generated H T)" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 693 | using assms | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 694 | by (metis G.carrier_subgroup_generated_subset Group.iso_iff hom_between_subgroups inj_on_subset subgroup_generated_by_image subsetI) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 695 | |
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 696 | lemma (in group) subgroup_generated_group_carrier: | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 697 | "subgroup_generated G (carrier G) = G" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 698 | proof (rule monoid.equality) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 699 | show "carrier (subgroup_generated G (carrier G)) = carrier G" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 700 | by (simp add: subgroup.carrier_subgroup_generated_subgroup subgroup_self) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 701 | qed (auto simp: subgroup_generated_def) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 702 | |
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 703 | lemma iso_onto_image: | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 704 | assumes "group G" "group H" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 705 | shows | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 706 | "f \<in> iso G (subgroup_generated H (f ` carrier G)) \<longleftrightarrow> f \<in> hom G H \<and> inj_on f (carrier G)" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 707 | using assms | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 708 | apply (auto simp: iso_def bij_betw_def hom_into_subgroup_eq_gen carrier_subgroup_generated hom_carrier generate.incl Int_absorb1 Int_absorb2) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 709 | by (metis group.generateI group.subgroupE(1) group.subgroup_self group_hom.generate_img group_hom.intro group_hom_axioms.intro) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 710 | |
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 711 | lemma (in group) iso_onto_image: | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 712 | "group H \<Longrightarrow> f \<in> iso G (subgroup_generated H (f ` carrier G)) \<longleftrightarrow> f \<in> mon G H" | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 713 | by (simp add: mon_def epi_def hom_into_subgroup_eq_gen iso_onto_image) | 
| 
733e256ecdf3
new group theory material, mostly ported from HOL Light
 paulson <lp15@cam.ac.uk> parents: 
70027diff
changeset | 714 | |
| 69122 
1b5178abaf97
updates to Algebra from Baillon and de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68687diff
changeset | 715 | end |