author | huffman |
Mon, 30 Jun 2008 22:16:47 +0200 | |
changeset 27402 | 253a06dfadce |
parent 27104 | 791607529f6d |
child 28486 | 873726bdfd47 |
permissions | -rw-r--r-- |
23449 | 1 |
(* Title: HOL/MetisTest/BT.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
||
5 |
Testing the metis method |
|
6 |
*) |
|
7 |
||
8 |
header {* Binary trees *} |
|
9 |
||
27104
791607529f6d
rep_datatype command now takes list of constructors as input arguments
haftmann
parents:
26312
diff
changeset
|
10 |
theory BT |
791607529f6d
rep_datatype command now takes list of constructors as input arguments
haftmann
parents:
26312
diff
changeset
|
11 |
imports Main |
791607529f6d
rep_datatype command now takes list of constructors as input arguments
haftmann
parents:
26312
diff
changeset
|
12 |
begin |
23449 | 13 |
|
14 |
||
15 |
datatype 'a bt = |
|
16 |
Lf |
|
17 |
| Br 'a "'a bt" "'a bt" |
|
18 |
||
19 |
consts |
|
20 |
n_nodes :: "'a bt => nat" |
|
21 |
n_leaves :: "'a bt => nat" |
|
22 |
depth :: "'a bt => nat" |
|
23 |
reflect :: "'a bt => 'a bt" |
|
24 |
bt_map :: "('a => 'b) => ('a bt => 'b bt)" |
|
25 |
preorder :: "'a bt => 'a list" |
|
26 |
inorder :: "'a bt => 'a list" |
|
27 |
postorder :: "'a bt => 'a list" |
|
28 |
appnd :: "'a bt => 'a bt => 'a bt" |
|
29 |
||
30 |
primrec |
|
31 |
"n_nodes Lf = 0" |
|
32 |
"n_nodes (Br a t1 t2) = Suc (n_nodes t1 + n_nodes t2)" |
|
33 |
||
34 |
primrec |
|
35 |
"n_leaves Lf = Suc 0" |
|
36 |
"n_leaves (Br a t1 t2) = n_leaves t1 + n_leaves t2" |
|
37 |
||
38 |
primrec |
|
39 |
"depth Lf = 0" |
|
40 |
"depth (Br a t1 t2) = Suc (max (depth t1) (depth t2))" |
|
41 |
||
42 |
primrec |
|
43 |
"reflect Lf = Lf" |
|
44 |
"reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)" |
|
45 |
||
46 |
primrec |
|
47 |
"bt_map f Lf = Lf" |
|
48 |
"bt_map f (Br a t1 t2) = Br (f a) (bt_map f t1) (bt_map f t2)" |
|
49 |
||
50 |
primrec |
|
51 |
"preorder Lf = []" |
|
52 |
"preorder (Br a t1 t2) = [a] @ (preorder t1) @ (preorder t2)" |
|
53 |
||
54 |
primrec |
|
55 |
"inorder Lf = []" |
|
56 |
"inorder (Br a t1 t2) = (inorder t1) @ [a] @ (inorder t2)" |
|
57 |
||
58 |
primrec |
|
59 |
"postorder Lf = []" |
|
60 |
"postorder (Br a t1 t2) = (postorder t1) @ (postorder t2) @ [a]" |
|
61 |
||
62 |
primrec |
|
63 |
"appnd Lf t = t" |
|
64 |
"appnd (Br a t1 t2) t = Br a (appnd t1 t) (appnd t2 t)" |
|
65 |
||
66 |
||
67 |
text {* \medskip BT simplification *} |
|
68 |
||
69 |
ML {*ResAtp.problem_name := "BT__n_leaves_reflect"*} |
|
70 |
lemma n_leaves_reflect: "n_leaves (reflect t) = n_leaves t" |
|
71 |
apply (induct t) |
|
72 |
apply (metis add_right_cancel n_leaves.simps(1) reflect.simps(1)) |
|
73 |
apply (metis add_commute n_leaves.simps(2) reflect.simps(2)) |
|
74 |
done |
|
75 |
||
76 |
ML {*ResAtp.problem_name := "BT__n_nodes_reflect"*} |
|
77 |
lemma n_nodes_reflect: "n_nodes (reflect t) = n_nodes t" |
|
78 |
apply (induct t) |
|
79 |
apply (metis reflect.simps(1)) |
|
80 |
apply (metis n_nodes.simps(2) nat_add_commute reflect.simps(2)) |
|
81 |
done |
|
82 |
||
83 |
ML {*ResAtp.problem_name := "BT__depth_reflect"*} |
|
84 |
lemma depth_reflect: "depth (reflect t) = depth t" |
|
85 |
apply (induct t) |
|
86 |
apply (metis depth.simps(1) reflect.simps(1)) |
|
87 |
apply (metis depth.simps(2) min_max.less_eq_less_sup.sup_commute reflect.simps(2)) |
|
88 |
done |
|
89 |
||
90 |
text {* |
|
91 |
The famous relationship between the numbers of leaves and nodes. |
|
92 |
*} |
|
93 |
||
94 |
ML {*ResAtp.problem_name := "BT__n_leaves_nodes"*} |
|
95 |
lemma n_leaves_nodes: "n_leaves t = Suc (n_nodes t)" |
|
96 |
apply (induct t) |
|
97 |
apply (metis n_leaves.simps(1) n_nodes.simps(1)) |
|
98 |
apply auto |
|
99 |
done |
|
100 |
||
101 |
ML {*ResAtp.problem_name := "BT__reflect_reflect_ident"*} |
|
102 |
lemma reflect_reflect_ident: "reflect (reflect t) = t" |
|
103 |
apply (induct t) |
|
104 |
apply (metis add_right_cancel reflect.simps(1)); |
|
27104
791607529f6d
rep_datatype command now takes list of constructors as input arguments
haftmann
parents:
26312
diff
changeset
|
105 |
apply (metis reflect.simps(2)) |
23449 | 106 |
done |
107 |
||
108 |
ML {*ResAtp.problem_name := "BT__bt_map_ident"*} |
|
109 |
lemma bt_map_ident: "bt_map (%x. x) = (%y. y)" |
|
110 |
apply (rule ext) |
|
111 |
apply (induct_tac y) |
|
112 |
apply (metis bt_map.simps(1)) |
|
113 |
txt{*BUG involving flex-flex pairs*} |
|
114 |
(* apply (metis bt_map.simps(2)) *) |
|
115 |
apply auto |
|
116 |
done |
|
117 |
||
118 |
||
119 |
ML {*ResAtp.problem_name := "BT__bt_map_appnd"*} |
|
120 |
lemma bt_map_appnd: "bt_map f (appnd t u) = appnd (bt_map f t) (bt_map f u)" |
|
121 |
apply (induct t) |
|
122 |
apply (metis appnd.simps(1) bt_map.simps(1)) |
|
123 |
apply (metis appnd.simps(2) bt_map.simps(2)) (*slow!!*) |
|
124 |
done |
|
125 |
||
126 |
||
127 |
ML {*ResAtp.problem_name := "BT__bt_map_compose"*} |
|
128 |
lemma bt_map_compose: "bt_map (f o g) t = bt_map f (bt_map g t)" |
|
129 |
apply (induct t) |
|
130 |
apply (metis bt_map.simps(1)) |
|
131 |
txt{*Metis runs forever*} |
|
132 |
(* apply (metis bt_map.simps(2) o_apply)*) |
|
133 |
apply auto |
|
134 |
done |
|
135 |
||
136 |
||
137 |
ML {*ResAtp.problem_name := "BT__bt_map_reflect"*} |
|
138 |
lemma bt_map_reflect: "bt_map f (reflect t) = reflect (bt_map f t)" |
|
139 |
apply (induct t) |
|
140 |
apply (metis add_right_cancel bt_map.simps(1) reflect.simps(1)) |
|
141 |
apply (metis add_right_cancel bt_map.simps(2) reflect.simps(2)) |
|
142 |
done |
|
143 |
||
144 |
ML {*ResAtp.problem_name := "BT__preorder_bt_map"*} |
|
145 |
lemma preorder_bt_map: "preorder (bt_map f t) = map f (preorder t)" |
|
146 |
apply (induct t) |
|
147 |
apply (metis bt_map.simps(1) map.simps(1) preorder.simps(1)) |
|
148 |
apply simp |
|
149 |
done |
|
150 |
||
151 |
ML {*ResAtp.problem_name := "BT__inorder_bt_map"*} |
|
152 |
lemma inorder_bt_map: "inorder (bt_map f t) = map f (inorder t)" |
|
153 |
apply (induct t) |
|
154 |
apply (metis bt_map.simps(1) inorder.simps(1) map.simps(1)) |
|
155 |
apply simp |
|
156 |
done |
|
157 |
||
158 |
ML {*ResAtp.problem_name := "BT__postorder_bt_map"*} |
|
159 |
lemma postorder_bt_map: "postorder (bt_map f t) = map f (postorder t)" |
|
160 |
apply (induct t) |
|
161 |
apply (metis bt_map.simps(1) map.simps(1) postorder.simps(1)) |
|
162 |
apply simp |
|
163 |
done |
|
164 |
||
165 |
ML {*ResAtp.problem_name := "BT__depth_bt_map"*} |
|
166 |
lemma depth_bt_map [simp]: "depth (bt_map f t) = depth t" |
|
167 |
apply (induct t) |
|
168 |
apply (metis bt_map.simps(1) depth.simps(1)) |
|
169 |
apply simp |
|
170 |
done |
|
171 |
||
172 |
ML {*ResAtp.problem_name := "BT__n_leaves_bt_map"*} |
|
173 |
lemma n_leaves_bt_map [simp]: "n_leaves (bt_map f t) = n_leaves t" |
|
174 |
apply (induct t) |
|
175 |
apply (metis One_nat_def Suc_eq_add_numeral_1 bt_map.simps(1) less_add_one less_antisym linorder_neq_iff n_leaves.simps(1)) |
|
25457 | 176 |
apply (metis bt_map.simps(2) n_leaves.simps(2)) |
23449 | 177 |
done |
178 |
||
179 |
||
180 |
ML {*ResAtp.problem_name := "BT__preorder_reflect"*} |
|
181 |
lemma preorder_reflect: "preorder (reflect t) = rev (postorder t)" |
|
182 |
apply (induct t) |
|
183 |
apply (metis postorder.simps(1) preorder.simps(1) reflect.simps(1) rev_is_Nil_conv) |
|
25457 | 184 |
apply (metis Cons_eq_append_conv monoid_append.add_0_left postorder.simps(2) preorder.simps(2) reflect.simps(2) rev.simps(2) rev_append rev_rev_ident) |
23449 | 185 |
done |
186 |
||
187 |
ML {*ResAtp.problem_name := "BT__inorder_reflect"*} |
|
188 |
lemma inorder_reflect: "inorder (reflect t) = rev (inorder t)" |
|
189 |
apply (induct t) |
|
190 |
apply (metis inorder.simps(1) reflect.simps(1) rev.simps(1)) |
|
191 |
apply simp |
|
192 |
done |
|
193 |
||
194 |
ML {*ResAtp.problem_name := "BT__postorder_reflect"*} |
|
195 |
lemma postorder_reflect: "postorder (reflect t) = rev (preorder t)" |
|
196 |
apply (induct t) |
|
197 |
apply (metis postorder.simps(1) preorder.simps(1) reflect.simps(1) rev.simps(1)) |
|
25457 | 198 |
apply (metis Cons_eq_appendI postorder.simps(2) preorder.simps(2) reflect.simps(2) rev.simps(2) rev_append self_append_conv2) |
23449 | 199 |
done |
200 |
||
201 |
text {* |
|
202 |
Analogues of the standard properties of the append function for lists. |
|
203 |
*} |
|
204 |
||
205 |
ML {*ResAtp.problem_name := "BT__appnd_assoc"*} |
|
206 |
lemma appnd_assoc [simp]: |
|
207 |
"appnd (appnd t1 t2) t3 = appnd t1 (appnd t2 t3)" |
|
208 |
apply (induct t1) |
|
209 |
apply (metis appnd.simps(1)) |
|
210 |
apply (metis appnd.simps(2)) |
|
211 |
done |
|
212 |
||
213 |
ML {*ResAtp.problem_name := "BT__appnd_Lf2"*} |
|
214 |
lemma appnd_Lf2 [simp]: "appnd t Lf = t" |
|
215 |
apply (induct t) |
|
216 |
apply (metis appnd.simps(1)) |
|
217 |
apply (metis appnd.simps(2)) |
|
218 |
done |
|
219 |
||
220 |
ML {*ResAtp.problem_name := "BT__depth_appnd"*} |
|
221 |
declare max_add_distrib_left [simp] |
|
222 |
lemma depth_appnd [simp]: "depth (appnd t1 t2) = depth t1 + depth t2" |
|
223 |
apply (induct t1) |
|
224 |
apply (metis add_0 appnd.simps(1) depth.simps(1)) |
|
225 |
apply (simp add: ); |
|
226 |
done |
|
227 |
||
228 |
ML {*ResAtp.problem_name := "BT__n_leaves_appnd"*} |
|
229 |
lemma n_leaves_appnd [simp]: |
|
230 |
"n_leaves (appnd t1 t2) = n_leaves t1 * n_leaves t2" |
|
231 |
apply (induct t1) |
|
232 |
apply (metis One_nat_def appnd.simps(1) less_irrefl less_linear n_leaves.simps(1) nat_mult_1) |
|
233 |
apply (simp add: left_distrib) |
|
234 |
done |
|
235 |
||
236 |
ML {*ResAtp.problem_name := "BT__bt_map_appnd"*} |
|
26312 | 237 |
lemma (*bt_map_appnd:*) |
23449 | 238 |
"bt_map f (appnd t1 t2) = appnd (bt_map f t1) (bt_map f t2)" |
239 |
apply (induct t1) |
|
240 |
apply (metis appnd.simps(1) bt_map_appnd) |
|
241 |
apply (metis bt_map_appnd) |
|
242 |
done |
|
243 |
||
244 |
end |