| author | huffman | 
| Thu, 10 May 2012 22:00:24 +0200 | |
| changeset 47908 | 25686e1e0024 | 
| parent 44890 | 22f665a2e91c | 
| permissions | -rw-r--r-- | 
| 37772 | 1 | theory Mrec | 
| 2 | imports Heap_Monad | |
| 3 | begin | |
| 4 | ||
| 5 | subsubsection {* A monadic combinator for simple recursive functions *}
 | |
| 6 | ||
| 7 | text {* Using a locale to fix arguments f and g of MREC *}
 | |
| 8 | ||
| 9 | locale mrec = | |
| 10 |   fixes f :: "'a \<Rightarrow> ('b + 'a) Heap"
 | |
| 11 | and g :: "'a \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'b Heap" | |
| 12 | begin | |
| 13 | ||
| 14 | function (default "\<lambda>(x, h). None") mrec :: "'a \<Rightarrow> heap \<Rightarrow> ('b \<times> heap) option" where
 | |
| 15 | "mrec x h = (case execute (f x) h of | |
| 16 | Some (Inl r, h') \<Rightarrow> Some (r, h') | |
| 17 | | Some (Inr s, h') \<Rightarrow> (case mrec s h' of | |
| 18 | Some (z, h'') \<Rightarrow> execute (g x s z) h'' | |
| 19 | | None \<Rightarrow> None) | |
| 20 | | None \<Rightarrow> None)" | |
| 21 | by auto | |
| 22 | ||
| 23 | lemma graph_implies_dom: | |
| 24 | "mrec_graph x y \<Longrightarrow> mrec_dom x" | |
| 25 | apply (induct rule:mrec_graph.induct) | |
| 26 | apply (rule accpI) | |
| 27 | apply (erule mrec_rel.cases) | |
| 28 | by simp | |
| 29 | ||
| 30 | lemma mrec_default: "\<not> mrec_dom (x, h) \<Longrightarrow> mrec x h = None" | |
| 31 | unfolding mrec_def | |
| 32 | by (rule fundef_default_value[OF mrec_sumC_def graph_implies_dom, of _ _ "(x, h)", simplified]) | |
| 33 | ||
| 34 | lemma mrec_di_reverse: | |
| 35 | assumes "\<not> mrec_dom (x, h)" | |
| 36 | shows " | |
| 37 | (case execute (f x) h of | |
| 38 | Some (Inl r, h') \<Rightarrow> False | |
| 39 | | Some (Inr s, h') \<Rightarrow> \<not> mrec_dom (s, h') | |
| 40 | | None \<Rightarrow> False | |
| 41 | )" | |
| 42 | using assms apply (auto split: option.split sum.split) | |
| 43 | apply (rule ccontr) | |
| 44 | apply (erule notE, rule accpI, elim mrec_rel.cases, auto)+ | |
| 45 | done | |
| 46 | ||
| 47 | lemma mrec_rule: | |
| 48 | "mrec x h = | |
| 49 | (case execute (f x) h of | |
| 50 | Some (Inl r, h') \<Rightarrow> Some (r, h') | |
| 51 | | Some (Inr s, h') \<Rightarrow> | |
| 52 | (case mrec s h' of | |
| 53 | Some (z, h'') \<Rightarrow> execute (g x s z) h'' | |
| 54 | | None \<Rightarrow> None) | |
| 55 | | None \<Rightarrow> None | |
| 56 | )" | |
| 39754 | 57 | apply (cases "mrec_dom (x,h)", simp add: mrec.psimps) | 
| 37772 | 58 | apply (frule mrec_default) | 
| 59 | apply (frule mrec_di_reverse, simp) | |
| 60 | by (auto split: sum.split option.split simp: mrec_default) | |
| 61 | ||
| 62 | definition | |
| 63 | "MREC x = Heap_Monad.Heap (mrec x)" | |
| 64 | ||
| 65 | lemma MREC_rule: | |
| 66 | "MREC x = | |
| 37792 | 67 |   do { y \<leftarrow> f x;
 | 
| 37772 | 68 | (case y of | 
| 69 | Inl r \<Rightarrow> return r | |
| 70 | | Inr s \<Rightarrow> | |
| 37792 | 71 |                 do { z \<leftarrow> MREC s ;
 | 
| 72 | g x s z })}" | |
| 37772 | 73 | unfolding MREC_def | 
| 74 | unfolding bind_def return_def | |
| 75 | apply simp | |
| 76 | apply (rule ext) | |
| 77 | apply (unfold mrec_rule[of x]) | |
| 37787 
30dc3abf4a58
theorem collections do not contain default rules any longer
 haftmann parents: 
37772diff
changeset | 78 | by (auto simp add: execute_simps split: option.splits prod.splits sum.splits) | 
| 37772 | 79 | |
| 80 | lemma MREC_pinduct: | |
| 81 | assumes "execute (MREC x) h = Some (r, h')" | |
| 82 | assumes non_rec_case: "\<And> x h h' r. execute (f x) h = Some (Inl r, h') \<Longrightarrow> P x h h' r" | |
| 83 | assumes rec_case: "\<And> x h h1 h2 h' s z r. execute (f x) h = Some (Inr s, h1) \<Longrightarrow> execute (MREC s) h1 = Some (z, h2) \<Longrightarrow> P s h1 h2 z | |
| 84 | \<Longrightarrow> execute (g x s z) h2 = Some (r, h') \<Longrightarrow> P x h h' r" | |
| 85 | shows "P x h h' r" | |
| 86 | proof - | |
| 87 | from assms(1) have mrec: "mrec x h = Some (r, h')" | |
| 88 | unfolding MREC_def execute.simps . | |
| 89 | from mrec have dom: "mrec_dom (x, h)" | |
| 90 | apply - | |
| 91 | apply (rule ccontr) | |
| 92 | apply (drule mrec_default) by auto | |
| 93 | from mrec have h'_r: "h' = snd (the (mrec x h))" "r = fst (the (mrec x h))" | |
| 94 | by auto | |
| 95 | from mrec have "P x h (snd (the (mrec x h))) (fst (the (mrec x h)))" | |
| 96 | proof (induct arbitrary: r h' rule: mrec.pinduct[OF dom]) | |
| 97 | case (1 x h) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
40671diff
changeset | 98 | obtain rr h' where "the (mrec x h) = (rr, h')" by fastforce | 
| 37772 | 99 | show ?case | 
| 100 | proof (cases "execute (f x) h") | |
| 101 | case (Some result) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
40671diff
changeset | 102 | then obtain a h1 where exec_f: "execute (f x) h = Some (a, h1)" by fastforce | 
| 37772 | 103 | note Inl' = this | 
| 104 | show ?thesis | |
| 105 | proof (cases a) | |
| 106 | case (Inl aa) | |
| 107 | from this Inl' 1(1) exec_f mrec non_rec_case show ?thesis | |
| 39754 | 108 | by (auto simp: mrec.psimps) | 
| 37772 | 109 | next | 
| 110 | case (Inr b) | |
| 111 | note Inr' = this | |
| 112 | show ?thesis | |
| 113 | proof (cases "mrec b h1") | |
| 114 | case (Some result) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
40671diff
changeset | 115 | then obtain aaa h2 where mrec_rec: "mrec b h1 = Some (aaa, h2)" by fastforce | 
| 37772 | 116 | moreover from this have "P b h1 (snd (the (mrec b h1))) (fst (the (mrec b h1)))" | 
| 117 | apply (intro 1(2)) | |
| 118 | apply (auto simp add: Inr Inl') | |
| 119 | done | |
| 120 | moreover note mrec mrec_rec exec_f Inl' Inr' 1(1) 1(3) | |
| 121 | ultimately show ?thesis | |
| 122 | apply auto | |
| 123 | apply (rule rec_case) | |
| 124 | apply auto | |
| 39754 | 125 | unfolding MREC_def by (auto simp: mrec.psimps) | 
| 37772 | 126 | next | 
| 127 | case None | |
| 39754 | 128 | from this 1(1) exec_f mrec Inr' 1(3) show ?thesis by (auto simp: mrec.psimps) | 
| 37772 | 129 | qed | 
| 130 | qed | |
| 131 | next | |
| 132 | case None | |
| 39754 | 133 | from this 1(1) mrec 1(3) show ?thesis by (simp add: mrec.psimps) | 
| 37772 | 134 | qed | 
| 135 | qed | |
| 136 | from this h'_r show ?thesis by simp | |
| 137 | qed | |
| 138 | ||
| 139 | end | |
| 140 | ||
| 141 | text {* Providing global versions of the constant and the theorems *}
 | |
| 142 | ||
| 143 | abbreviation "MREC == mrec.MREC" | |
| 144 | lemmas MREC_rule = mrec.MREC_rule | |
| 145 | lemmas MREC_pinduct = mrec.MREC_pinduct | |
| 146 | ||
| 147 | lemma MREC_induct: | |
| 40671 | 148 | assumes "effect (MREC f g x) h h' r" | 
| 149 | assumes "\<And> x h h' r. effect (f x) h h' (Inl r) \<Longrightarrow> P x h h' r" | |
| 150 | assumes "\<And> x h h1 h2 h' s z r. effect (f x) h h1 (Inr s) \<Longrightarrow> effect (MREC f g s) h1 h2 z \<Longrightarrow> P s h1 h2 z | |
| 151 | \<Longrightarrow> effect (g x s z) h2 h' r \<Longrightarrow> P x h h' r" | |
| 37772 | 152 | shows "P x h h' r" | 
| 40671 | 153 | proof (rule MREC_pinduct[OF assms(1) [unfolded effect_def]]) | 
| 37772 | 154 | fix x h h1 h2 h' s z r | 
| 155 | assume "Heap_Monad.execute (f x) h = Some (Inr s, h1)" | |
| 156 | "Heap_Monad.execute (MREC f g s) h1 = Some (z, h2)" | |
| 157 | "P s h1 h2 z" | |
| 158 | "Heap_Monad.execute (g x s z) h2 = Some (r, h')" | |
| 40671 | 159 | from assms(3) [unfolded effect_def, OF this(1) this(2) this(3) this(4)] | 
| 37772 | 160 | show "P x h h' r" . | 
| 161 | next | |
| 40671 | 162 | qed (auto simp add: assms(2)[unfolded effect_def]) | 
| 37772 | 163 | |
| 164 | end |