author | wenzelm |
Thu, 21 Oct 1999 18:47:33 +0200 | |
changeset 7907 | 258f136864db |
parent 289 | 78541329ff35 |
permissions | -rw-r--r-- |
0 | 1 |
(* Title: CCL/hered |
2 |
ID: $Id$ |
|
3 |
Author: Martin Coen, Cambridge University Computer Laboratory |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
||
6 |
For hered.thy. |
|
7 |
*) |
|
8 |
||
9 |
open Hered; |
|
10 |
||
11 |
fun type_of_terms (Const("Trueprop",_) $ (Const("op =",(Type ("fun", [t,_])))$_$_)) = t; |
|
12 |
||
13 |
(*** Hereditary Termination ***) |
|
14 |
||
15 |
goalw Hered.thy [HTTgen_def] "mono(%X.HTTgen(X))"; |
|
16 |
br monoI 1; |
|
17 |
by (fast_tac set_cs 1); |
|
18 |
val HTTgen_mono = result(); |
|
19 |
||
20 |
goalw Hered.thy [HTTgen_def] |
|
21 |
"t : HTTgen(A) <-> t=true | t=false | (EX a b.t=<a,b> & a : A & b : A) | \ |
|
22 |
\ (EX f.t=lam x.f(x) & (ALL x.f(x) : A))"; |
|
23 |
by (fast_tac set_cs 1); |
|
24 |
val HTTgenXH = result(); |
|
25 |
||
26 |
goal Hered.thy |
|
27 |
"t : HTT <-> t=true | t=false | (EX a b.t=<a,b> & a : HTT & b : HTT) | \ |
|
28 |
\ (EX f.t=lam x.f(x) & (ALL x.f(x) : HTT))"; |
|
29 |
br (rewrite_rule [HTTgen_def] |
|
30 |
(HTTgen_mono RS (HTT_def RS def_gfp_Tarski) RS XHlemma1)) 1; |
|
31 |
by (fast_tac set_cs 1); |
|
32 |
val HTTXH = result(); |
|
33 |
||
34 |
(*** Introduction Rules for HTT ***) |
|
35 |
||
36 |
goal Hered.thy "~ bot : HTT"; |
|
37 |
by (fast_tac (term_cs addDs [XH_to_D HTTXH]) 1); |
|
38 |
val HTT_bot = result(); |
|
39 |
||
40 |
goal Hered.thy "true : HTT"; |
|
41 |
by (fast_tac (term_cs addIs [XH_to_I HTTXH]) 1); |
|
42 |
val HTT_true = result(); |
|
43 |
||
44 |
goal Hered.thy "false : HTT"; |
|
45 |
by (fast_tac (term_cs addIs [XH_to_I HTTXH]) 1); |
|
46 |
val HTT_false = result(); |
|
47 |
||
48 |
goal Hered.thy "<a,b> : HTT <-> a : HTT & b : HTT"; |
|
49 |
br (HTTXH RS iff_trans) 1; |
|
50 |
by (fast_tac term_cs 1); |
|
51 |
val HTT_pair = result(); |
|
52 |
||
53 |
goal Hered.thy "lam x.f(x) : HTT <-> (ALL x. f(x) : HTT)"; |
|
54 |
br (HTTXH RS iff_trans) 1; |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
55 |
by (simp_tac term_ss 1); |
0 | 56 |
by (safe_tac term_cs); |
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
57 |
by (asm_simp_tac term_ss 1); |
0 | 58 |
by (fast_tac term_cs 1); |
59 |
val HTT_lam = result(); |
|
60 |
||
61 |
local |
|
62 |
val raw_HTTrews = [HTT_bot,HTT_true,HTT_false,HTT_pair,HTT_lam]; |
|
63 |
fun mk_thm s = prove_goalw Hered.thy data_defs s (fn _ => |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
64 |
[simp_tac (term_ss addsimps raw_HTTrews) 1]); |
0 | 65 |
in |
66 |
val HTT_rews = raw_HTTrews @ |
|
67 |
map mk_thm ["one : HTT", |
|
68 |
"inl(a) : HTT <-> a : HTT", |
|
69 |
"inr(b) : HTT <-> b : HTT", |
|
70 |
"zero : HTT", |
|
71 |
"succ(n) : HTT <-> n : HTT", |
|
72 |
"[] : HTT", |
|
289 | 73 |
"x$xs : HTT <-> x : HTT & xs : HTT"]; |
0 | 74 |
end; |
75 |
||
76 |
val HTT_Is = HTT_rews @ (HTT_rews RL [iffD2]); |
|
77 |
||
78 |
(*** Coinduction for HTT ***) |
|
79 |
||
80 |
val prems = goal Hered.thy "[| t : R; R <= HTTgen(R) |] ==> t : HTT"; |
|
81 |
br (HTT_def RS def_coinduct) 1; |
|
82 |
by (REPEAT (ares_tac prems 1)); |
|
83 |
val HTT_coinduct = result(); |
|
84 |
||
85 |
fun HTT_coinduct_tac s i = res_inst_tac [("R",s)] HTT_coinduct i; |
|
86 |
||
87 |
val prems = goal Hered.thy |
|
88 |
"[| t : R; R <= HTTgen(lfp(%x. HTTgen(x) Un R Un HTT)) |] ==> t : HTT"; |
|
89 |
br (HTTgen_mono RSN(3,HTT_def RS def_coinduct3)) 1; |
|
90 |
by (REPEAT (ares_tac prems 1)); |
|
91 |
val HTT_coinduct3 = result(); |
|
92 |
val HTT_coinduct3_raw = rewrite_rule [HTTgen_def] HTT_coinduct3; |
|
93 |
||
94 |
fun HTT_coinduct3_tac s i = res_inst_tac [("R",s)] HTT_coinduct3 i; |
|
95 |
||
96 |
val HTTgenIs = map (mk_genIs Hered.thy data_defs HTTgenXH HTTgen_mono) |
|
97 |
["true : HTTgen(R)", |
|
98 |
"false : HTTgen(R)", |
|
99 |
"[| a : R; b : R |] ==> <a,b> : HTTgen(R)", |
|
100 |
"[| !!x. b(x) : R |] ==> lam x.b(x) : HTTgen(R)", |
|
101 |
"one : HTTgen(R)", |
|
102 |
"a : lfp(%x. HTTgen(x) Un R Un HTT) ==> \ |
|
103 |
\ inl(a) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))", |
|
104 |
"b : lfp(%x. HTTgen(x) Un R Un HTT) ==> \ |
|
105 |
\ inr(b) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))", |
|
106 |
"zero : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))", |
|
107 |
"n : lfp(%x. HTTgen(x) Un R Un HTT) ==> \ |
|
108 |
\ succ(n) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))", |
|
109 |
"[] : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))", |
|
110 |
"[| h : lfp(%x. HTTgen(x) Un R Un HTT); t : lfp(%x. HTTgen(x) Un R Un HTT) |] ==>\ |
|
289 | 111 |
\ h$t : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))"]; |
0 | 112 |
|
113 |
(*** Formation Rules for Types ***) |
|
114 |
||
115 |
goal Hered.thy "Unit <= HTT"; |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
116 |
by (simp_tac (CCL_ss addsimps ([subsetXH,UnitXH] @ HTT_rews)) 1); |
0 | 117 |
val UnitF = result(); |
118 |
||
119 |
goal Hered.thy "Bool <= HTT"; |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
120 |
by (simp_tac (CCL_ss addsimps ([subsetXH,BoolXH] @ HTT_rews)) 1); |
0 | 121 |
by (fast_tac (set_cs addIs HTT_Is @ (prems RL [subsetD])) 1); |
122 |
val BoolF = result(); |
|
123 |
||
124 |
val prems = goal Hered.thy "[| A <= HTT; B <= HTT |] ==> A + B <= HTT"; |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
125 |
by (simp_tac (CCL_ss addsimps ([subsetXH,PlusXH] @ HTT_rews)) 1); |
0 | 126 |
by (fast_tac (set_cs addIs HTT_Is @ (prems RL [subsetD])) 1); |
127 |
val PlusF = result(); |
|
128 |
||
129 |
val prems = goal Hered.thy |
|
130 |
"[| A <= HTT; !!x.x:A ==> B(x) <= HTT |] ==> SUM x:A.B(x) <= HTT"; |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
131 |
by (simp_tac (CCL_ss addsimps ([subsetXH,SgXH] @ HTT_rews)) 1); |
0 | 132 |
by (fast_tac (set_cs addIs HTT_Is @ (prems RL [subsetD])) 1); |
133 |
val SigmaF = result(); |
|
134 |
||
135 |
(*** Formation Rules for Recursive types - using coinduction these only need ***) |
|
136 |
(*** exhaution rule for type-former ***) |
|
137 |
||
138 |
(*Proof by induction - needs induction rule for type*) |
|
139 |
goal Hered.thy "Nat <= HTT"; |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
140 |
by (simp_tac (term_ss addsimps [subsetXH]) 1); |
0 | 141 |
by (safe_tac set_cs); |
142 |
be Nat_ind 1; |
|
143 |
by (ALLGOALS (fast_tac (set_cs addIs HTT_Is @ (prems RL [subsetD])))); |
|
144 |
val NatF = result(); |
|
145 |
||
146 |
goal Hered.thy "Nat <= HTT"; |
|
147 |
by (safe_tac set_cs); |
|
148 |
be HTT_coinduct3 1; |
|
149 |
by (fast_tac (set_cs addIs HTTgenIs |
|
150 |
addSEs [HTTgen_mono RS ci3_RI] addEs [XH_to_E NatXH]) 1); |
|
151 |
val NatF = result(); |
|
152 |
||
153 |
val [prem] = goal Hered.thy "A <= HTT ==> List(A) <= HTT"; |
|
154 |
by (safe_tac set_cs); |
|
155 |
be HTT_coinduct3 1; |
|
156 |
by (fast_tac (set_cs addSIs HTTgenIs |
|
157 |
addSEs [HTTgen_mono RS ci3_RI,prem RS subsetD RS (HTTgen_mono RS ci3_AI)] |
|
158 |
addEs [XH_to_E ListXH]) 1); |
|
159 |
val ListF = result(); |
|
160 |
||
161 |
val [prem] = goal Hered.thy "A <= HTT ==> Lists(A) <= HTT"; |
|
162 |
by (safe_tac set_cs); |
|
163 |
be HTT_coinduct3 1; |
|
164 |
by (fast_tac (set_cs addSIs HTTgenIs |
|
165 |
addSEs [HTTgen_mono RS ci3_RI,prem RS subsetD RS (HTTgen_mono RS ci3_AI)] |
|
166 |
addEs [XH_to_E ListsXH]) 1); |
|
167 |
val ListsF = result(); |
|
168 |
||
169 |
val [prem] = goal Hered.thy "A <= HTT ==> ILists(A) <= HTT"; |
|
170 |
by (safe_tac set_cs); |
|
171 |
be HTT_coinduct3 1; |
|
172 |
by (fast_tac (set_cs addSIs HTTgenIs |
|
173 |
addSEs [HTTgen_mono RS ci3_RI,prem RS subsetD RS (HTTgen_mono RS ci3_AI)] |
|
174 |
addEs [XH_to_E IListsXH]) 1); |
|
175 |
val IListsF = result(); |
|
176 |
||
177 |
(*** A possible use for this predicate is proving equality from pre-order ***) |
|
178 |
(*** but it seems as easy (and more general) to do this directly by coinduction ***) |
|
179 |
(* |
|
180 |
val prems = goal Hered.thy "[| t : HTT; t [= u |] ==> u [= t"; |
|
181 |
by (po_coinduct_tac "{p. EX a b.p=<a,b> & b : HTT & b [= a}" 1); |
|
182 |
by (fast_tac (ccl_cs addIs prems) 1); |
|
183 |
by (safe_tac ccl_cs); |
|
184 |
bd (poXH RS iffD1) 1; |
|
185 |
by (safe_tac (set_cs addSEs [HTT_bot RS notE])); |
|
186 |
by (REPEAT_SOME (rtac (POgenXH RS iffD2) ORELSE' etac rev_mp)); |
|
8
c3d2c6dcf3f0
Installation of new simplfier. Previously appeared to set up the old
lcp
parents:
0
diff
changeset
|
187 |
by (ALLGOALS (simp_tac (term_ss addsimps HTT_rews))); |
0 | 188 |
by (ALLGOALS (fast_tac ccl_cs)); |
189 |
val HTT_po_op = result(); |
|
190 |
||
191 |
val prems = goal Hered.thy "[| t : HTT; t [= u |] ==> t = u"; |
|
192 |
by (REPEAT (ares_tac (prems @ [conjI RS (eq_iff RS iffD2),HTT_po_op]) 1)); |
|
193 |
val HTT_po_eq = result(); |
|
194 |
*) |