| 26166 |      1 | (*  ID:         $Id$
 | 
|  |      2 |     Author:     Tobias Nipkow, 2007
 | 
|  |      3 | *)
 | 
|  |      4 | 
 | 
|  |      5 | header "Lists as vectors"
 | 
|  |      6 | 
 | 
|  |      7 | theory ListVector
 | 
| 27487 |      8 | imports Plain "~~/src/HOL/List"
 | 
| 26166 |      9 | begin
 | 
|  |     10 | 
 | 
|  |     11 | text{* \noindent
 | 
|  |     12 | A vector-space like structure of lists and arithmetic operations on them.
 | 
|  |     13 | Is only a vector space if restricted to lists of the same length. *}
 | 
|  |     14 | 
 | 
|  |     15 | text{* Multiplication with a scalar: *}
 | 
|  |     16 | 
 | 
|  |     17 | abbreviation scale :: "('a::times) \<Rightarrow> 'a list \<Rightarrow> 'a list" (infix "*\<^sub>s" 70)
 | 
|  |     18 | where "x *\<^sub>s xs \<equiv> map (op * x) xs"
 | 
|  |     19 | 
 | 
|  |     20 | lemma scale1[simp]: "(1::'a::monoid_mult) *\<^sub>s xs = xs"
 | 
|  |     21 | by (induct xs) simp_all
 | 
|  |     22 | 
 | 
|  |     23 | subsection {* @{text"+"} and @{text"-"} *}
 | 
|  |     24 | 
 | 
|  |     25 | fun zipwith0 :: "('a::zero \<Rightarrow> 'b::zero \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list"
 | 
|  |     26 | where
 | 
|  |     27 | "zipwith0 f [] [] = []" |
 | 
|  |     28 | "zipwith0 f (x#xs) (y#ys) = f x y # zipwith0 f xs ys" |
 | 
|  |     29 | "zipwith0 f (x#xs) [] = f x 0 # zipwith0 f xs []" |
 | 
|  |     30 | "zipwith0 f [] (y#ys) = f 0 y # zipwith0 f [] ys"
 | 
|  |     31 | 
 | 
| 27109 |     32 | instantiation list :: ("{zero, plus}") plus
 | 
|  |     33 | begin
 | 
|  |     34 | 
 | 
|  |     35 | definition
 | 
|  |     36 |   list_add_def: "op + = zipwith0 (op +)"
 | 
|  |     37 | 
 | 
|  |     38 | instance ..
 | 
|  |     39 | 
 | 
|  |     40 | end
 | 
|  |     41 | 
 | 
|  |     42 | instantiation list :: ("{zero, uminus}") uminus
 | 
|  |     43 | begin
 | 
| 26166 |     44 | 
 | 
| 27109 |     45 | definition
 | 
|  |     46 |   list_uminus_def: "uminus = map uminus"
 | 
|  |     47 | 
 | 
|  |     48 | instance ..
 | 
|  |     49 | 
 | 
|  |     50 | end
 | 
| 26166 |     51 | 
 | 
| 27109 |     52 | instantiation list :: ("{zero,minus}") minus
 | 
|  |     53 | begin
 | 
|  |     54 | 
 | 
|  |     55 | definition
 | 
|  |     56 |   list_diff_def: "op - = zipwith0 (op -)"
 | 
|  |     57 | 
 | 
|  |     58 | instance ..
 | 
|  |     59 | 
 | 
|  |     60 | end
 | 
| 26166 |     61 | 
 | 
|  |     62 | lemma zipwith0_Nil[simp]: "zipwith0 f [] ys = map (f 0) ys"
 | 
|  |     63 | by(induct ys) simp_all
 | 
|  |     64 | 
 | 
|  |     65 | lemma list_add_Nil[simp]: "[] + xs = (xs::'a::monoid_add list)"
 | 
|  |     66 | by (induct xs) (auto simp:list_add_def)
 | 
|  |     67 | 
 | 
|  |     68 | lemma list_add_Nil2[simp]: "xs + [] = (xs::'a::monoid_add list)"
 | 
|  |     69 | by (induct xs) (auto simp:list_add_def)
 | 
|  |     70 | 
 | 
|  |     71 | lemma list_add_Cons[simp]: "(x#xs) + (y#ys) = (x+y)#(xs+ys)"
 | 
|  |     72 | by(auto simp:list_add_def)
 | 
|  |     73 | 
 | 
|  |     74 | lemma list_diff_Nil[simp]: "[] - xs = -(xs::'a::group_add list)"
 | 
|  |     75 | by (induct xs) (auto simp:list_diff_def list_uminus_def)
 | 
|  |     76 | 
 | 
|  |     77 | lemma list_diff_Nil2[simp]: "xs - [] = (xs::'a::group_add list)"
 | 
|  |     78 | by (induct xs) (auto simp:list_diff_def)
 | 
|  |     79 | 
 | 
|  |     80 | lemma list_diff_Cons_Cons[simp]: "(x#xs) - (y#ys) = (x-y)#(xs-ys)"
 | 
|  |     81 | by (induct xs) (auto simp:list_diff_def)
 | 
|  |     82 | 
 | 
|  |     83 | lemma list_uminus_Cons[simp]: "-(x#xs) = (-x)#(-xs)"
 | 
|  |     84 | by (induct xs) (auto simp:list_uminus_def)
 | 
|  |     85 | 
 | 
|  |     86 | lemma self_list_diff:
 | 
|  |     87 |   "xs - xs = replicate (length(xs::'a::group_add list)) 0"
 | 
|  |     88 | by(induct xs) simp_all
 | 
|  |     89 | 
 | 
|  |     90 | lemma list_add_assoc: fixes xs :: "'a::monoid_add list"
 | 
|  |     91 | shows "(xs+ys)+zs = xs+(ys+zs)"
 | 
|  |     92 | apply(induct xs arbitrary: ys zs)
 | 
|  |     93 |  apply simp
 | 
|  |     94 | apply(case_tac ys)
 | 
|  |     95 |  apply(simp)
 | 
|  |     96 | apply(simp)
 | 
|  |     97 | apply(case_tac zs)
 | 
|  |     98 |  apply(simp)
 | 
|  |     99 | apply(simp add:add_assoc)
 | 
|  |    100 | done
 | 
|  |    101 | 
 | 
|  |    102 | subsection "Inner product"
 | 
|  |    103 | 
 | 
|  |    104 | definition iprod :: "'a::ring list \<Rightarrow> 'a list \<Rightarrow> 'a" ("\<langle>_,_\<rangle>") where
 | 
|  |    105 | "\<langle>xs,ys\<rangle> = (\<Sum>(x,y) \<leftarrow> zip xs ys. x*y)"
 | 
|  |    106 | 
 | 
|  |    107 | lemma iprod_Nil[simp]: "\<langle>[],ys\<rangle> = 0"
 | 
|  |    108 | by(simp add:iprod_def)
 | 
|  |    109 | 
 | 
|  |    110 | lemma iprod_Nil2[simp]: "\<langle>xs,[]\<rangle> = 0"
 | 
|  |    111 | by(simp add:iprod_def)
 | 
|  |    112 | 
 | 
|  |    113 | lemma iprod_Cons[simp]: "\<langle>x#xs,y#ys\<rangle> = x*y + \<langle>xs,ys\<rangle>"
 | 
|  |    114 | by(simp add:iprod_def)
 | 
|  |    115 | 
 | 
|  |    116 | lemma iprod0_if_coeffs0: "\<forall>c\<in>set cs. c = 0 \<Longrightarrow> \<langle>cs,xs\<rangle> = 0"
 | 
|  |    117 | apply(induct cs arbitrary:xs)
 | 
|  |    118 |  apply simp
 | 
|  |    119 | apply(case_tac xs) apply simp
 | 
|  |    120 | apply auto
 | 
|  |    121 | done
 | 
|  |    122 | 
 | 
|  |    123 | lemma iprod_uminus[simp]: "\<langle>-xs,ys\<rangle> = -\<langle>xs,ys\<rangle>"
 | 
|  |    124 | by(simp add: iprod_def uminus_listsum_map o_def split_def map_zip_map list_uminus_def)
 | 
|  |    125 | 
 | 
|  |    126 | lemma iprod_left_add_distrib: "\<langle>xs + ys,zs\<rangle> = \<langle>xs,zs\<rangle> + \<langle>ys,zs\<rangle>"
 | 
|  |    127 | apply(induct xs arbitrary: ys zs)
 | 
|  |    128 | apply (simp add: o_def split_def)
 | 
|  |    129 | apply(case_tac ys)
 | 
|  |    130 | apply simp
 | 
|  |    131 | apply(case_tac zs)
 | 
|  |    132 | apply (simp)
 | 
|  |    133 | apply(simp add:left_distrib)
 | 
|  |    134 | done
 | 
|  |    135 | 
 | 
|  |    136 | lemma iprod_left_diff_distrib: "\<langle>xs - ys, zs\<rangle> = \<langle>xs,zs\<rangle> - \<langle>ys,zs\<rangle>"
 | 
|  |    137 | apply(induct xs arbitrary: ys zs)
 | 
|  |    138 | apply (simp add: o_def split_def)
 | 
|  |    139 | apply(case_tac ys)
 | 
|  |    140 | apply simp
 | 
|  |    141 | apply(case_tac zs)
 | 
|  |    142 | apply (simp)
 | 
|  |    143 | apply(simp add:left_diff_distrib)
 | 
|  |    144 | done
 | 
|  |    145 | 
 | 
|  |    146 | lemma iprod_assoc: "\<langle>x *\<^sub>s xs, ys\<rangle> = x * \<langle>xs,ys\<rangle>"
 | 
|  |    147 | apply(induct xs arbitrary: ys)
 | 
|  |    148 | apply simp
 | 
|  |    149 | apply(case_tac ys)
 | 
|  |    150 | apply (simp)
 | 
|  |    151 | apply (simp add:right_distrib mult_assoc)
 | 
|  |    152 | done
 | 
|  |    153 | 
 | 
|  |    154 | end |