47613
|
1 |
theory Abs_Int1_parity
|
|
2 |
imports Abs_Int1
|
|
3 |
begin
|
|
4 |
|
|
5 |
subsection "Parity Analysis"
|
|
6 |
|
|
7 |
datatype parity = Even | Odd | Either
|
|
8 |
|
|
9 |
text{* Instantiation of class @{class preord} with type @{typ parity}: *}
|
|
10 |
|
|
11 |
instantiation parity :: preord
|
|
12 |
begin
|
|
13 |
|
|
14 |
text{* First the definition of the interface function @{text"\<sqsubseteq>"}. Note that
|
|
15 |
the header of the definition must refer to the ascii name @{const le} of the
|
|
16 |
constants as @{text le_parity} and the definition is named @{text
|
|
17 |
le_parity_def}. Inside the definition the symbolic names can be used. *}
|
|
18 |
|
|
19 |
definition le_parity where
|
|
20 |
"x \<sqsubseteq> y = (y = Either \<or> x=y)"
|
|
21 |
|
|
22 |
text{* Now the instance proof, i.e.\ the proof that the definition fulfills
|
|
23 |
the axioms (assumptions) of the class. The initial proof-step generates the
|
|
24 |
necessary proof obligations. *}
|
|
25 |
|
|
26 |
instance
|
|
27 |
proof
|
|
28 |
fix x::parity show "x \<sqsubseteq> x" by(auto simp: le_parity_def)
|
|
29 |
next
|
|
30 |
fix x y z :: parity assume "x \<sqsubseteq> y" "y \<sqsubseteq> z" thus "x \<sqsubseteq> z"
|
|
31 |
by(auto simp: le_parity_def)
|
|
32 |
qed
|
|
33 |
|
|
34 |
end
|
|
35 |
|
49396
|
36 |
text{* Instantiation of class @{class semilattice} with type @{typ parity}: *}
|
47613
|
37 |
|
49396
|
38 |
instantiation parity :: semilattice
|
47613
|
39 |
begin
|
|
40 |
|
|
41 |
definition join_parity where
|
|
42 |
"x \<squnion> y = (if x \<sqsubseteq> y then y else if y \<sqsubseteq> x then x else Either)"
|
|
43 |
|
|
44 |
definition Top_parity where
|
|
45 |
"\<top> = Either"
|
|
46 |
|
|
47 |
text{* Now the instance proof. This time we take a lazy shortcut: we do not
|
|
48 |
write out the proof obligations but use the @{text goali} primitive to refer
|
|
49 |
to the assumptions of subgoal i and @{text "case?"} to refer to the
|
|
50 |
conclusion of subgoal i. The class axioms are presented in the same order as
|
|
51 |
in the class definition. *}
|
|
52 |
|
|
53 |
instance
|
|
54 |
proof
|
|
55 |
case goal1 (*join1*) show ?case by(auto simp: le_parity_def join_parity_def)
|
|
56 |
next
|
|
57 |
case goal2 (*join2*) show ?case by(auto simp: le_parity_def join_parity_def)
|
|
58 |
next
|
|
59 |
case goal3 (*join least*) thus ?case by(auto simp: le_parity_def join_parity_def)
|
|
60 |
next
|
|
61 |
case goal4 (*Top*) show ?case by(auto simp: le_parity_def Top_parity_def)
|
|
62 |
qed
|
|
63 |
|
|
64 |
end
|
|
65 |
|
|
66 |
|
|
67 |
text{* Now we define the functions used for instantiating the abstract
|
|
68 |
interpretation locales. Note that the Isabelle terminology is
|
|
69 |
\emph{interpretation}, not \emph{instantiation} of locales, but we use
|
|
70 |
instantiation to avoid confusion with abstract interpretation. *}
|
|
71 |
|
|
72 |
fun \<gamma>_parity :: "parity \<Rightarrow> val set" where
|
|
73 |
"\<gamma>_parity Even = {i. i mod 2 = 0}" |
|
|
74 |
"\<gamma>_parity Odd = {i. i mod 2 = 1}" |
|
|
75 |
"\<gamma>_parity Either = UNIV"
|
|
76 |
|
|
77 |
fun num_parity :: "val \<Rightarrow> parity" where
|
|
78 |
"num_parity i = (if i mod 2 = 0 then Even else Odd)"
|
|
79 |
|
|
80 |
fun plus_parity :: "parity \<Rightarrow> parity \<Rightarrow> parity" where
|
|
81 |
"plus_parity Even Even = Even" |
|
|
82 |
"plus_parity Odd Odd = Even" |
|
|
83 |
"plus_parity Even Odd = Odd" |
|
|
84 |
"plus_parity Odd Even = Odd" |
|
|
85 |
"plus_parity Either y = Either" |
|
|
86 |
"plus_parity x Either = Either"
|
|
87 |
|
|
88 |
text{* First we instantiate the abstract value interface and prove that the
|
|
89 |
functions on type @{typ parity} have all the necessary properties: *}
|
|
90 |
|
|
91 |
interpretation Val_abs
|
|
92 |
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity
|
|
93 |
proof txt{* of the locale axioms *}
|
|
94 |
fix a b :: parity
|
|
95 |
assume "a \<sqsubseteq> b" thus "\<gamma>_parity a \<subseteq> \<gamma>_parity b"
|
|
96 |
by(auto simp: le_parity_def)
|
|
97 |
next txt{* The rest in the lazy, implicit way *}
|
|
98 |
case goal2 show ?case by(auto simp: Top_parity_def)
|
|
99 |
next
|
|
100 |
case goal3 show ?case by auto
|
|
101 |
next
|
|
102 |
txt{* Warning: this subproof refers to the names @{text a1} and @{text a2}
|
|
103 |
from the statement of the axiom. *}
|
|
104 |
case goal4 thus ?case
|
|
105 |
proof(cases a1 a2 rule: parity.exhaust[case_product parity.exhaust])
|
|
106 |
qed (auto simp add:mod_add_eq)
|
|
107 |
qed
|
|
108 |
|
|
109 |
text{* Instantiating the abstract interpretation locale requires no more
|
|
110 |
proofs (they happened in the instatiation above) but delivers the
|
49344
|
111 |
instantiated abstract interpreter which we call @{text AI_parity}: *}
|
47613
|
112 |
|
|
113 |
interpretation Abs_Int
|
|
114 |
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity
|
|
115 |
defines aval_parity is aval' and step_parity is step' and AI_parity is AI
|
|
116 |
..
|
|
117 |
|
|
118 |
|
|
119 |
subsubsection "Tests"
|
|
120 |
|
|
121 |
definition "test1_parity =
|
|
122 |
''x'' ::= N 1;
|
|
123 |
WHILE Less (V ''x'') (N 100) DO ''x'' ::= Plus (V ''x'') (N 2)"
|
49396
|
124 |
value [code] "show_acom_opt (AI_parity test1_parity)"
|
47613
|
125 |
|
|
126 |
definition "test2_parity =
|
|
127 |
''x'' ::= N 1;
|
|
128 |
WHILE Less (V ''x'') (N 100) DO ''x'' ::= Plus (V ''x'') (N 3)"
|
|
129 |
|
|
130 |
definition "steps c i = (step_parity(top c) ^^ i) (bot c)"
|
|
131 |
|
|
132 |
value "show_acom (steps test2_parity 0)"
|
|
133 |
value "show_acom (steps test2_parity 1)"
|
|
134 |
value "show_acom (steps test2_parity 2)"
|
|
135 |
value "show_acom (steps test2_parity 3)"
|
|
136 |
value "show_acom (steps test2_parity 4)"
|
|
137 |
value "show_acom (steps test2_parity 5)"
|
49188
|
138 |
value "show_acom (steps test2_parity 6)"
|
47613
|
139 |
value "show_acom_opt (AI_parity test2_parity)"
|
|
140 |
|
|
141 |
|
|
142 |
subsubsection "Termination"
|
|
143 |
|
|
144 |
interpretation Abs_Int_mono
|
|
145 |
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity
|
|
146 |
proof
|
|
147 |
case goal1 thus ?case
|
|
148 |
proof(cases a1 a2 b1 b2
|
|
149 |
rule: parity.exhaust[case_product parity.exhaust[case_product parity.exhaust[case_product parity.exhaust]]]) (* FIXME - UGLY! *)
|
|
150 |
qed (auto simp add:le_parity_def)
|
|
151 |
qed
|
|
152 |
|
|
153 |
definition m_parity :: "parity \<Rightarrow> nat" where
|
|
154 |
"m_parity x = (if x=Either then 0 else 1)"
|
|
155 |
|
|
156 |
interpretation Abs_Int_measure
|
|
157 |
where \<gamma> = \<gamma>_parity and num' = num_parity and plus' = plus_parity
|
49433
|
158 |
and m = m_parity and h = "1"
|
47613
|
159 |
proof
|
|
160 |
case goal1 thus ?case by(auto simp add: m_parity_def le_parity_def)
|
|
161 |
next
|
|
162 |
case goal2 thus ?case by(auto simp add: m_parity_def le_parity_def)
|
|
163 |
next
|
|
164 |
case goal3 thus ?case by(auto simp add: m_parity_def le_parity_def)
|
|
165 |
qed
|
|
166 |
|
|
167 |
thm AI_Some_measure
|
|
168 |
|
|
169 |
end
|