43158
|
1 |
theory Sec_TypingT imports Sec_Type_Expr
|
|
2 |
begin
|
|
3 |
|
|
4 |
subsection "A Termination-Sensitive Syntax Directed System"
|
|
5 |
|
|
6 |
inductive sec_type :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile> _)" [0,0] 50) where
|
|
7 |
Skip:
|
|
8 |
"l \<turnstile> SKIP" |
|
|
9 |
Assign:
|
|
10 |
"\<lbrakk> sec x \<ge> sec_aexp a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile> x ::= a" |
|
47818
|
11 |
Seq:
|
43158
|
12 |
"l \<turnstile> c\<^isub>1 \<Longrightarrow> l \<turnstile> c\<^isub>2 \<Longrightarrow> l \<turnstile> c\<^isub>1;c\<^isub>2" |
|
|
13 |
If:
|
|
14 |
"\<lbrakk> max (sec_bexp b) l \<turnstile> c\<^isub>1; max (sec_bexp b) l \<turnstile> c\<^isub>2 \<rbrakk>
|
|
15 |
\<Longrightarrow> l \<turnstile> IF b THEN c\<^isub>1 ELSE c\<^isub>2" |
|
|
16 |
While:
|
|
17 |
"sec_bexp b = 0 \<Longrightarrow> 0 \<turnstile> c \<Longrightarrow> 0 \<turnstile> WHILE b DO c"
|
|
18 |
|
|
19 |
code_pred (expected_modes: i => i => bool) sec_type .
|
|
20 |
|
|
21 |
inductive_cases [elim!]:
|
|
22 |
"l \<turnstile> x ::= a" "l \<turnstile> c\<^isub>1;c\<^isub>2" "l \<turnstile> IF b THEN c\<^isub>1 ELSE c\<^isub>2" "l \<turnstile> WHILE b DO c"
|
|
23 |
|
|
24 |
|
|
25 |
lemma anti_mono: "l \<turnstile> c \<Longrightarrow> l' \<le> l \<Longrightarrow> l' \<turnstile> c"
|
45015
|
26 |
apply(induction arbitrary: l' rule: sec_type.induct)
|
43158
|
27 |
apply (metis sec_type.intros(1))
|
|
28 |
apply (metis le_trans sec_type.intros(2))
|
|
29 |
apply (metis sec_type.intros(3))
|
|
30 |
apply (metis If le_refl sup_mono sup_nat_def)
|
|
31 |
by (metis While le_0_eq)
|
|
32 |
|
|
33 |
|
|
34 |
lemma confinement: "(c,s) \<Rightarrow> t \<Longrightarrow> l \<turnstile> c \<Longrightarrow> s = t (< l)"
|
45015
|
35 |
proof(induction rule: big_step_induct)
|
43158
|
36 |
case Skip thus ?case by simp
|
|
37 |
next
|
|
38 |
case Assign thus ?case by auto
|
|
39 |
next
|
47818
|
40 |
case Seq thus ?case by auto
|
43158
|
41 |
next
|
|
42 |
case (IfTrue b s c1)
|
|
43 |
hence "max (sec_bexp b) l \<turnstile> c1" by auto
|
|
44 |
hence "l \<turnstile> c1" by (metis le_maxI2 anti_mono)
|
45015
|
45 |
thus ?case using IfTrue.IH by metis
|
43158
|
46 |
next
|
|
47 |
case (IfFalse b s c2)
|
|
48 |
hence "max (sec_bexp b) l \<turnstile> c2" by auto
|
|
49 |
hence "l \<turnstile> c2" by (metis le_maxI2 anti_mono)
|
45015
|
50 |
thus ?case using IfFalse.IH by metis
|
43158
|
51 |
next
|
|
52 |
case WhileFalse thus ?case by auto
|
|
53 |
next
|
|
54 |
case (WhileTrue b s1 c)
|
|
55 |
hence "l \<turnstile> c" by auto
|
|
56 |
thus ?case using WhileTrue by metis
|
|
57 |
qed
|
|
58 |
|
|
59 |
lemma termi_if_non0: "l \<turnstile> c \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> \<exists> t. (c,s) \<Rightarrow> t"
|
45015
|
60 |
apply(induction arbitrary: s rule: sec_type.induct)
|
43158
|
61 |
apply (metis big_step.Skip)
|
|
62 |
apply (metis big_step.Assign)
|
47818
|
63 |
apply (metis big_step.Seq)
|
43158
|
64 |
apply (metis IfFalse IfTrue le0 le_antisym le_maxI2)
|
|
65 |
apply simp
|
|
66 |
done
|
|
67 |
|
|
68 |
theorem noninterference: "(c,s) \<Rightarrow> s' \<Longrightarrow> 0 \<turnstile> c \<Longrightarrow> s = t (\<le> l)
|
|
69 |
\<Longrightarrow> \<exists> t'. (c,t) \<Rightarrow> t' \<and> s' = t' (\<le> l)"
|
45015
|
70 |
proof(induction arbitrary: t rule: big_step_induct)
|
43158
|
71 |
case Skip thus ?case by auto
|
|
72 |
next
|
|
73 |
case (Assign x a s)
|
|
74 |
have "sec x >= sec_aexp a" using `0 \<turnstile> x ::= a` by auto
|
|
75 |
have "(x ::= a,t) \<Rightarrow> t(x := aval a t)" by auto
|
|
76 |
moreover
|
|
77 |
have "s(x := aval a s) = t(x := aval a t) (\<le> l)"
|
|
78 |
proof auto
|
|
79 |
assume "sec x \<le> l"
|
|
80 |
with `sec x \<ge> sec_aexp a` have "sec_aexp a \<le> l" by arith
|
|
81 |
thus "aval a s = aval a t"
|
|
82 |
by (rule aval_eq_if_eq_le[OF `s = t (\<le> l)`])
|
|
83 |
next
|
|
84 |
fix y assume "y \<noteq> x" "sec y \<le> l"
|
|
85 |
thus "s y = t y" using `s = t (\<le> l)` by simp
|
|
86 |
qed
|
|
87 |
ultimately show ?case by blast
|
|
88 |
next
|
47818
|
89 |
case Seq thus ?case by blast
|
43158
|
90 |
next
|
|
91 |
case (IfTrue b s c1 s' c2)
|
|
92 |
have "sec_bexp b \<turnstile> c1" "sec_bexp b \<turnstile> c2" using IfTrue.prems by auto
|
|
93 |
obtain t' where t': "(c1, t) \<Rightarrow> t'" "s' = t' (\<le> l)"
|
|
94 |
using IfTrue(3)[OF anti_mono[OF `sec_bexp b \<turnstile> c1`] IfTrue.prems(2)] by blast
|
|
95 |
show ?case
|
|
96 |
proof cases
|
|
97 |
assume "sec_bexp b \<le> l"
|
|
98 |
hence "s = t (\<le> sec_bexp b)" using `s = t (\<le> l)` by auto
|
|
99 |
hence "bval b t" using `bval b s` by(simp add: bval_eq_if_eq_le)
|
|
100 |
thus ?thesis by (metis t' big_step.IfTrue)
|
|
101 |
next
|
|
102 |
assume "\<not> sec_bexp b \<le> l"
|
|
103 |
hence 0: "sec_bexp b \<noteq> 0" by arith
|
|
104 |
have 1: "sec_bexp b \<turnstile> IF b THEN c1 ELSE c2"
|
|
105 |
by(rule sec_type.intros)(simp_all add: `sec_bexp b \<turnstile> c1` `sec_bexp b \<turnstile> c2`)
|
|
106 |
from confinement[OF big_step.IfTrue[OF IfTrue(1,2)] 1] `\<not> sec_bexp b \<le> l`
|
|
107 |
have "s = s' (\<le> l)" by auto
|
|
108 |
moreover
|
|
109 |
from termi_if_non0[OF 1 0, of t] obtain t' where
|
|
110 |
"(IF b THEN c1 ELSE c2,t) \<Rightarrow> t'" ..
|
|
111 |
moreover
|
|
112 |
from confinement[OF this 1] `\<not> sec_bexp b \<le> l`
|
|
113 |
have "t = t' (\<le> l)" by auto
|
|
114 |
ultimately
|
|
115 |
show ?case using `s = t (\<le> l)` by auto
|
|
116 |
qed
|
|
117 |
next
|
|
118 |
case (IfFalse b s c2 s' c1)
|
|
119 |
have "sec_bexp b \<turnstile> c1" "sec_bexp b \<turnstile> c2" using IfFalse.prems by auto
|
|
120 |
obtain t' where t': "(c2, t) \<Rightarrow> t'" "s' = t' (\<le> l)"
|
|
121 |
using IfFalse(3)[OF anti_mono[OF `sec_bexp b \<turnstile> c2`] IfFalse.prems(2)] by blast
|
|
122 |
show ?case
|
|
123 |
proof cases
|
|
124 |
assume "sec_bexp b \<le> l"
|
|
125 |
hence "s = t (\<le> sec_bexp b)" using `s = t (\<le> l)` by auto
|
|
126 |
hence "\<not> bval b t" using `\<not> bval b s` by(simp add: bval_eq_if_eq_le)
|
|
127 |
thus ?thesis by (metis t' big_step.IfFalse)
|
|
128 |
next
|
|
129 |
assume "\<not> sec_bexp b \<le> l"
|
|
130 |
hence 0: "sec_bexp b \<noteq> 0" by arith
|
|
131 |
have 1: "sec_bexp b \<turnstile> IF b THEN c1 ELSE c2"
|
|
132 |
by(rule sec_type.intros)(simp_all add: `sec_bexp b \<turnstile> c1` `sec_bexp b \<turnstile> c2`)
|
|
133 |
from confinement[OF big_step.IfFalse[OF IfFalse(1,2)] 1] `\<not> sec_bexp b \<le> l`
|
|
134 |
have "s = s' (\<le> l)" by auto
|
|
135 |
moreover
|
|
136 |
from termi_if_non0[OF 1 0, of t] obtain t' where
|
|
137 |
"(IF b THEN c1 ELSE c2,t) \<Rightarrow> t'" ..
|
|
138 |
moreover
|
|
139 |
from confinement[OF this 1] `\<not> sec_bexp b \<le> l`
|
|
140 |
have "t = t' (\<le> l)" by auto
|
|
141 |
ultimately
|
|
142 |
show ?case using `s = t (\<le> l)` by auto
|
|
143 |
qed
|
|
144 |
next
|
|
145 |
case (WhileFalse b s c)
|
|
146 |
hence [simp]: "sec_bexp b = 0" by auto
|
|
147 |
have "s = t (\<le> sec_bexp b)" using `s = t (\<le> l)` by auto
|
|
148 |
hence "\<not> bval b t" using `\<not> bval b s` by (metis bval_eq_if_eq_le le_refl)
|
|
149 |
with WhileFalse.prems(2) show ?case by auto
|
|
150 |
next
|
|
151 |
case (WhileTrue b s c s'' s')
|
|
152 |
let ?w = "WHILE b DO c"
|
|
153 |
from `0 \<turnstile> ?w` have [simp]: "sec_bexp b = 0" by auto
|
|
154 |
have "0 \<turnstile> c" using WhileTrue.prems(1) by auto
|
45015
|
155 |
from WhileTrue.IH(1)[OF this WhileTrue.prems(2)]
|
43158
|
156 |
obtain t'' where "(c,t) \<Rightarrow> t''" and "s'' = t'' (\<le>l)" by blast
|
45015
|
157 |
from WhileTrue.IH(2)[OF `0 \<turnstile> ?w` this(2)]
|
43158
|
158 |
obtain t' where "(?w,t'') \<Rightarrow> t'" and "s' = t' (\<le>l)" by blast
|
|
159 |
from `bval b s` have "bval b t"
|
|
160 |
using bval_eq_if_eq_le[OF `s = t (\<le>l)`] by auto
|
|
161 |
show ?case
|
|
162 |
using big_step.WhileTrue[OF `bval b t` `(c,t) \<Rightarrow> t''` `(?w,t'') \<Rightarrow> t'`]
|
|
163 |
by (metis `s' = t' (\<le> l)`)
|
|
164 |
qed
|
|
165 |
|
|
166 |
subsection "The Standard Termination-Sensitive System"
|
|
167 |
|
|
168 |
text{* The predicate @{prop"l \<turnstile> c"} is nicely intuitive and executable. The
|
|
169 |
standard formulation, however, is slightly different, replacing the maximum
|
|
170 |
computation by an antimonotonicity rule. We introduce the standard system now
|
|
171 |
and show the equivalence with our formulation. *}
|
|
172 |
|
|
173 |
inductive sec_type' :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile>'' _)" [0,0] 50) where
|
|
174 |
Skip':
|
|
175 |
"l \<turnstile>' SKIP" |
|
|
176 |
Assign':
|
|
177 |
"\<lbrakk> sec x \<ge> sec_aexp a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile>' x ::= a" |
|
47818
|
178 |
Seq':
|
43158
|
179 |
"l \<turnstile>' c\<^isub>1 \<Longrightarrow> l \<turnstile>' c\<^isub>2 \<Longrightarrow> l \<turnstile>' c\<^isub>1;c\<^isub>2" |
|
|
180 |
If':
|
|
181 |
"\<lbrakk> sec_bexp b \<le> l; l \<turnstile>' c\<^isub>1; l \<turnstile>' c\<^isub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' IF b THEN c\<^isub>1 ELSE c\<^isub>2" |
|
|
182 |
While':
|
|
183 |
"\<lbrakk> sec_bexp b = 0; 0 \<turnstile>' c \<rbrakk> \<Longrightarrow> 0 \<turnstile>' WHILE b DO c" |
|
|
184 |
anti_mono':
|
|
185 |
"\<lbrakk> l \<turnstile>' c; l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile>' c"
|
|
186 |
|
|
187 |
lemma "l \<turnstile> c \<Longrightarrow> l \<turnstile>' c"
|
45015
|
188 |
apply(induction rule: sec_type.induct)
|
43158
|
189 |
apply (metis Skip')
|
|
190 |
apply (metis Assign')
|
47818
|
191 |
apply (metis Seq')
|
43158
|
192 |
apply (metis min_max.inf_sup_ord(3) min_max.sup_absorb2 nat_le_linear If' anti_mono')
|
|
193 |
by (metis While')
|
|
194 |
|
|
195 |
|
|
196 |
lemma "l \<turnstile>' c \<Longrightarrow> l \<turnstile> c"
|
45015
|
197 |
apply(induction rule: sec_type'.induct)
|
43158
|
198 |
apply (metis Skip)
|
|
199 |
apply (metis Assign)
|
47818
|
200 |
apply (metis Seq)
|
43158
|
201 |
apply (metis min_max.sup_absorb2 If)
|
|
202 |
apply (metis While)
|
|
203 |
by (metis anti_mono)
|
|
204 |
|
|
205 |
end
|