| author | hoelzl | 
| Mon, 03 Dec 2012 18:19:08 +0100 | |
| changeset 50328 | 25b1e8686ce0 | 
| parent 47982 | 7aa35601ff65 | 
| child 51377 | 7da251a6c16e | 
| permissions | -rw-r--r-- | 
| 47455 | 1 | (* Title: HOL/Library/Quotient_List.thy | 
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 2 | Author: Cezary Kaliszyk, Christian Urban and Brian Huffman | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 3 | *) | 
| 35788 | 4 | |
| 5 | header {* Quotient infrastructure for the list type *}
 | |
| 6 | ||
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 7 | theory Quotient_List | 
| 47929 | 8 | imports Main Quotient_Set Quotient_Product Quotient_Option | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 9 | begin | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 10 | |
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 11 | subsection {* Relator for list type *}
 | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 12 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 13 | lemma map_id [id_simps]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 14 | "map id = id" | 
| 46663 | 15 | by (fact List.map.id) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 16 | |
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 17 | lemma list_all2_eq [id_simps, relator_eq]: | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 18 | "list_all2 (op =) = (op =)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 19 | proof (rule ext)+ | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 20 | fix xs ys | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 21 | show "list_all2 (op =) xs ys \<longleftrightarrow> xs = ys" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 22 | by (induct xs ys rule: list_induct2') simp_all | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 23 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 24 | |
| 47660 | 25 | lemma list_all2_OO: "list_all2 (A OO B) = list_all2 A OO list_all2 B" | 
| 26 | proof (intro ext iffI) | |
| 27 | fix xs ys | |
| 28 | assume "list_all2 (A OO B) xs ys" | |
| 29 | thus "(list_all2 A OO list_all2 B) xs ys" | |
| 30 | unfolding OO_def | |
| 31 | by (induct, simp, simp add: list_all2_Cons1 list_all2_Cons2, fast) | |
| 32 | next | |
| 33 | fix xs ys | |
| 34 | assume "(list_all2 A OO list_all2 B) xs ys" | |
| 35 | then obtain zs where "list_all2 A xs zs" and "list_all2 B zs ys" .. | |
| 36 | thus "list_all2 (A OO B) xs ys" | |
| 37 | by (induct arbitrary: ys, simp, clarsimp simp add: list_all2_Cons1, fast) | |
| 38 | qed | |
| 39 | ||
| 47982 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 40 | lemma list_reflp[reflexivity_rule]: | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 41 | assumes "reflp R" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 42 | shows "reflp (list_all2 R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 43 | proof (rule reflpI) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 44 | from assms have *: "\<And>xs. R xs xs" by (rule reflpE) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 45 | fix xs | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 46 | show "list_all2 R xs xs" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 47 | by (induct xs) (simp_all add: *) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 48 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 49 | |
| 47982 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 50 | lemma list_left_total[reflexivity_rule]: | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 51 | assumes "left_total R" | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 52 | shows "left_total (list_all2 R)" | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 53 | proof (rule left_totalI) | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 54 | from assms have *: "\<And>xs. \<exists>ys. R xs ys" by (rule left_totalE) | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 55 | fix xs | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 56 | show "\<exists> ys. list_all2 R xs ys" | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 57 | by (induct xs) (simp_all add: * list_all2_Cons1) | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 58 | qed | 
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 59 | |
| 
7aa35601ff65
prove reflexivity also for the quotient composition relation; reflp_preserve renamed to reflexivity_rule
 kuncar parents: 
47936diff
changeset | 60 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 61 | lemma list_symp: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 62 | assumes "symp R" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 63 | shows "symp (list_all2 R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 64 | proof (rule sympI) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 65 | from assms have *: "\<And>xs ys. R xs ys \<Longrightarrow> R ys xs" by (rule sympE) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 66 | fix xs ys | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 67 | assume "list_all2 R xs ys" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 68 | then show "list_all2 R ys xs" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 69 | by (induct xs ys rule: list_induct2') (simp_all add: *) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 70 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 71 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 72 | lemma list_transp: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 73 | assumes "transp R" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 74 | shows "transp (list_all2 R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 75 | proof (rule transpI) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 76 | from assms have *: "\<And>xs ys zs. R xs ys \<Longrightarrow> R ys zs \<Longrightarrow> R xs zs" by (rule transpE) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 77 | fix xs ys zs | 
| 45803 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 78 | assume "list_all2 R xs ys" and "list_all2 R ys zs" | 
| 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 79 | then show "list_all2 R xs zs" | 
| 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 80 | by (induct arbitrary: zs) (auto simp: list_all2_Cons1 intro: *) | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 81 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 82 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 83 | lemma list_equivp [quot_equiv]: | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 84 | "equivp R \<Longrightarrow> equivp (list_all2 R)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 85 | by (blast intro: equivpI list_reflp list_symp list_transp elim: equivpE) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 86 | |
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 87 | lemma right_total_list_all2 [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 88 | "right_total R \<Longrightarrow> right_total (list_all2 R)" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 89 | unfolding right_total_def | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 90 | by (rule allI, induct_tac y, simp, simp add: list_all2_Cons2) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 91 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 92 | lemma right_unique_list_all2 [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 93 | "right_unique R \<Longrightarrow> right_unique (list_all2 R)" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 94 | unfolding right_unique_def | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 95 | apply (rule allI, rename_tac xs, induct_tac xs) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 96 | apply (auto simp add: list_all2_Cons1) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 97 | done | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 98 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 99 | lemma bi_total_list_all2 [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 100 | "bi_total A \<Longrightarrow> bi_total (list_all2 A)" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 101 | unfolding bi_total_def | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 102 | apply safe | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 103 | apply (rename_tac xs, induct_tac xs, simp, simp add: list_all2_Cons1) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 104 | apply (rename_tac ys, induct_tac ys, simp, simp add: list_all2_Cons2) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 105 | done | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 106 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 107 | lemma bi_unique_list_all2 [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 108 | "bi_unique A \<Longrightarrow> bi_unique (list_all2 A)" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 109 | unfolding bi_unique_def | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 110 | apply (rule conjI) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 111 | apply (rule allI, rename_tac xs, induct_tac xs) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 112 | apply (simp, force simp add: list_all2_Cons1) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 113 | apply (subst (2) all_comm, subst (1) all_comm) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 114 | apply (rule allI, rename_tac xs, induct_tac xs) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 115 | apply (simp, force simp add: list_all2_Cons2) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 116 | done | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 117 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 118 | subsection {* Transfer rules for transfer package *}
 | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 119 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 120 | lemma Nil_transfer [transfer_rule]: "(list_all2 A) [] []" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 121 | by simp | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 122 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 123 | lemma Cons_transfer [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 124 | "(A ===> list_all2 A ===> list_all2 A) Cons Cons" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 125 | unfolding fun_rel_def by simp | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 126 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 127 | lemma list_case_transfer [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 128 | "(B ===> (A ===> list_all2 A ===> B) ===> list_all2 A ===> B) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 129 | list_case list_case" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 130 | unfolding fun_rel_def by (simp split: list.split) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 131 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 132 | lemma list_rec_transfer [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 133 | "(B ===> (A ===> list_all2 A ===> B ===> B) ===> list_all2 A ===> B) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 134 | list_rec list_rec" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 135 | unfolding fun_rel_def by (clarify, erule list_all2_induct, simp_all) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 136 | |
| 47929 | 137 | lemma tl_transfer [transfer_rule]: | 
| 138 | "(list_all2 A ===> list_all2 A) tl tl" | |
| 139 | unfolding tl_def by transfer_prover | |
| 140 | ||
| 141 | lemma butlast_transfer [transfer_rule]: | |
| 142 | "(list_all2 A ===> list_all2 A) butlast butlast" | |
| 143 | by (rule fun_relI, erule list_all2_induct, auto) | |
| 144 | ||
| 145 | lemma set_transfer [transfer_rule]: | |
| 146 | "(list_all2 A ===> set_rel A) set set" | |
| 147 | unfolding set_def by transfer_prover | |
| 148 | ||
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 149 | lemma map_transfer [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 150 | "((A ===> B) ===> list_all2 A ===> list_all2 B) map map" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 151 | unfolding List.map_def by transfer_prover | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 152 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 153 | lemma append_transfer [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 154 | "(list_all2 A ===> list_all2 A ===> list_all2 A) append append" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 155 | unfolding List.append_def by transfer_prover | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 156 | |
| 47929 | 157 | lemma rev_transfer [transfer_rule]: | 
| 158 | "(list_all2 A ===> list_all2 A) rev rev" | |
| 159 | unfolding List.rev_def by transfer_prover | |
| 160 | ||
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 161 | lemma filter_transfer [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 162 | "((A ===> op =) ===> list_all2 A ===> list_all2 A) filter filter" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 163 | unfolding List.filter_def by transfer_prover | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 164 | |
| 47929 | 165 | lemma fold_transfer [transfer_rule]: | 
| 166 | "((A ===> B ===> B) ===> list_all2 A ===> B ===> B) fold fold" | |
| 167 | unfolding List.fold_def by transfer_prover | |
| 168 | ||
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 169 | lemma foldr_transfer [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 170 | "((A ===> B ===> B) ===> list_all2 A ===> B ===> B) foldr foldr" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 171 | unfolding List.foldr_def by transfer_prover | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 172 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 173 | lemma foldl_transfer [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 174 | "((B ===> A ===> B) ===> B ===> list_all2 A ===> B) foldl foldl" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 175 | unfolding List.foldl_def by transfer_prover | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 176 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 177 | lemma concat_transfer [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 178 | "(list_all2 (list_all2 A) ===> list_all2 A) concat concat" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 179 | unfolding List.concat_def by transfer_prover | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 180 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 181 | lemma drop_transfer [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 182 | "(op = ===> list_all2 A ===> list_all2 A) drop drop" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 183 | unfolding List.drop_def by transfer_prover | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 184 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 185 | lemma take_transfer [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 186 | "(op = ===> list_all2 A ===> list_all2 A) take take" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 187 | unfolding List.take_def by transfer_prover | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 188 | |
| 47929 | 189 | lemma list_update_transfer [transfer_rule]: | 
| 190 | "(list_all2 A ===> op = ===> A ===> list_all2 A) list_update list_update" | |
| 191 | unfolding list_update_def by transfer_prover | |
| 192 | ||
| 193 | lemma takeWhile_transfer [transfer_rule]: | |
| 194 | "((A ===> op =) ===> list_all2 A ===> list_all2 A) takeWhile takeWhile" | |
| 195 | unfolding takeWhile_def by transfer_prover | |
| 196 | ||
| 197 | lemma dropWhile_transfer [transfer_rule]: | |
| 198 | "((A ===> op =) ===> list_all2 A ===> list_all2 A) dropWhile dropWhile" | |
| 199 | unfolding dropWhile_def by transfer_prover | |
| 200 | ||
| 201 | lemma zip_transfer [transfer_rule]: | |
| 202 | "(list_all2 A ===> list_all2 B ===> list_all2 (prod_rel A B)) zip zip" | |
| 203 | unfolding zip_def by transfer_prover | |
| 204 | ||
| 205 | lemma insert_transfer [transfer_rule]: | |
| 206 | assumes [transfer_rule]: "bi_unique A" | |
| 207 | shows "(A ===> list_all2 A ===> list_all2 A) List.insert List.insert" | |
| 208 | unfolding List.insert_def [abs_def] by transfer_prover | |
| 209 | ||
| 210 | lemma find_transfer [transfer_rule]: | |
| 211 | "((A ===> op =) ===> list_all2 A ===> option_rel A) List.find List.find" | |
| 212 | unfolding List.find_def by transfer_prover | |
| 213 | ||
| 214 | lemma remove1_transfer [transfer_rule]: | |
| 215 | assumes [transfer_rule]: "bi_unique A" | |
| 216 | shows "(A ===> list_all2 A ===> list_all2 A) remove1 remove1" | |
| 217 | unfolding remove1_def by transfer_prover | |
| 218 | ||
| 219 | lemma removeAll_transfer [transfer_rule]: | |
| 220 | assumes [transfer_rule]: "bi_unique A" | |
| 221 | shows "(A ===> list_all2 A ===> list_all2 A) removeAll removeAll" | |
| 222 | unfolding removeAll_def by transfer_prover | |
| 223 | ||
| 224 | lemma distinct_transfer [transfer_rule]: | |
| 225 | assumes [transfer_rule]: "bi_unique A" | |
| 226 | shows "(list_all2 A ===> op =) distinct distinct" | |
| 227 | unfolding distinct_def by transfer_prover | |
| 228 | ||
| 229 | lemma remdups_transfer [transfer_rule]: | |
| 230 | assumes [transfer_rule]: "bi_unique A" | |
| 231 | shows "(list_all2 A ===> list_all2 A) remdups remdups" | |
| 232 | unfolding remdups_def by transfer_prover | |
| 233 | ||
| 234 | lemma replicate_transfer [transfer_rule]: | |
| 235 | "(op = ===> A ===> list_all2 A) replicate replicate" | |
| 236 | unfolding replicate_def by transfer_prover | |
| 237 | ||
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 238 | lemma length_transfer [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 239 | "(list_all2 A ===> op =) length length" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 240 | unfolding list_size_overloaded_def by transfer_prover | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 241 | |
| 47929 | 242 | lemma rotate1_transfer [transfer_rule]: | 
| 243 | "(list_all2 A ===> list_all2 A) rotate1 rotate1" | |
| 244 | unfolding rotate1_def by transfer_prover | |
| 245 | ||
| 246 | lemma funpow_transfer [transfer_rule]: (* FIXME: move to Transfer.thy *) | |
| 247 | "(op = ===> (A ===> A) ===> (A ===> A)) compow compow" | |
| 248 | unfolding funpow_def by transfer_prover | |
| 249 | ||
| 250 | lemma rotate_transfer [transfer_rule]: | |
| 251 | "(op = ===> list_all2 A ===> list_all2 A) rotate rotate" | |
| 252 | unfolding rotate_def [abs_def] by transfer_prover | |
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 253 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 254 | lemma list_all2_transfer [transfer_rule]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 255 | "((A ===> B ===> op =) ===> list_all2 A ===> list_all2 B ===> op =) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 256 | list_all2 list_all2" | 
| 47929 | 257 | apply (subst (4) list_all2_def [abs_def]) | 
| 258 | apply (subst (3) list_all2_def [abs_def]) | |
| 259 | apply transfer_prover | |
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 260 | done | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 261 | |
| 47929 | 262 | lemma sublist_transfer [transfer_rule]: | 
| 263 | "(list_all2 A ===> set_rel (op =) ===> list_all2 A) sublist sublist" | |
| 264 | unfolding sublist_def [abs_def] by transfer_prover | |
| 265 | ||
| 266 | lemma partition_transfer [transfer_rule]: | |
| 267 | "((A ===> op =) ===> list_all2 A ===> prod_rel (list_all2 A) (list_all2 A)) | |
| 268 | partition partition" | |
| 269 | unfolding partition_def by transfer_prover | |
| 47650 | 270 | |
| 47923 | 271 | lemma lists_transfer [transfer_rule]: | 
| 272 | "(set_rel A ===> set_rel (list_all2 A)) lists lists" | |
| 273 | apply (rule fun_relI, rule set_relI) | |
| 274 | apply (erule lists.induct, simp) | |
| 275 | apply (simp only: set_rel_def list_all2_Cons1, metis lists.Cons) | |
| 276 | apply (erule lists.induct, simp) | |
| 277 | apply (simp only: set_rel_def list_all2_Cons2, metis lists.Cons) | |
| 278 | done | |
| 279 | ||
| 47929 | 280 | lemma set_Cons_transfer [transfer_rule]: | 
| 281 | "(set_rel A ===> set_rel (list_all2 A) ===> set_rel (list_all2 A)) | |
| 282 | set_Cons set_Cons" | |
| 283 | unfolding fun_rel_def set_rel_def set_Cons_def | |
| 284 | apply safe | |
| 285 | apply (simp add: list_all2_Cons1, fast) | |
| 286 | apply (simp add: list_all2_Cons2, fast) | |
| 287 | done | |
| 288 | ||
| 289 | lemma listset_transfer [transfer_rule]: | |
| 290 | "(list_all2 (set_rel A) ===> set_rel (list_all2 A)) listset listset" | |
| 291 | unfolding listset_def by transfer_prover | |
| 292 | ||
| 293 | lemma null_transfer [transfer_rule]: | |
| 294 | "(list_all2 A ===> op =) List.null List.null" | |
| 295 | unfolding fun_rel_def List.null_def by auto | |
| 296 | ||
| 297 | lemma list_all_transfer [transfer_rule]: | |
| 298 | "((A ===> op =) ===> list_all2 A ===> op =) list_all list_all" | |
| 299 | unfolding list_all_iff [abs_def] by transfer_prover | |
| 300 | ||
| 301 | lemma list_ex_transfer [transfer_rule]: | |
| 302 | "((A ===> op =) ===> list_all2 A ===> op =) list_ex list_ex" | |
| 303 | unfolding list_ex_iff [abs_def] by transfer_prover | |
| 304 | ||
| 305 | lemma splice_transfer [transfer_rule]: | |
| 306 | "(list_all2 A ===> list_all2 A ===> list_all2 A) splice splice" | |
| 307 | apply (rule fun_relI, erule list_all2_induct, simp add: fun_rel_def, simp) | |
| 308 | apply (rule fun_relI) | |
| 309 | apply (erule_tac xs=x in list_all2_induct, simp, simp add: fun_rel_def) | |
| 310 | done | |
| 311 | ||
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 312 | subsection {* Setup for lifting package *}
 | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 313 | |
| 47777 
f29e7dcd7c40
use a quot_map theorem attribute instead of the complicated map attribute
 kuncar parents: 
47660diff
changeset | 314 | lemma Quotient_list[quot_map]: | 
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 315 | assumes "Quotient R Abs Rep T" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 316 | shows "Quotient (list_all2 R) (map Abs) (map Rep) (list_all2 T)" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 317 | proof (unfold Quotient_alt_def, intro conjI allI impI) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 318 | from assms have 1: "\<And>x y. T x y \<Longrightarrow> Abs x = y" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 319 | unfolding Quotient_alt_def by simp | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 320 | fix xs ys assume "list_all2 T xs ys" thus "map Abs xs = ys" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 321 | by (induct, simp, simp add: 1) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 322 | next | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 323 | from assms have 2: "\<And>x. T (Rep x) x" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 324 | unfolding Quotient_alt_def by simp | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 325 | fix xs show "list_all2 T (map Rep xs) xs" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 326 | by (induct xs, simp, simp add: 2) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 327 | next | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 328 | from assms have 3: "\<And>x y. R x y \<longleftrightarrow> T x (Abs x) \<and> T y (Abs y) \<and> Abs x = Abs y" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 329 | unfolding Quotient_alt_def by simp | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 330 | fix xs ys show "list_all2 R xs ys \<longleftrightarrow> list_all2 T xs (map Abs xs) \<and> | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 331 | list_all2 T ys (map Abs ys) \<and> map Abs xs = map Abs ys" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 332 | by (induct xs ys rule: list_induct2', simp_all, metis 3) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 333 | qed | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 334 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 335 | lemma list_invariant_commute [invariant_commute]: | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 336 | "list_all2 (Lifting.invariant P) = Lifting.invariant (list_all P)" | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 337 | apply (simp add: fun_eq_iff list_all2_def list_all_iff Lifting.invariant_def Ball_def) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 338 | apply (intro allI) | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 339 | apply (induct_tac rule: list_induct2') | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 340 | apply simp_all | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 341 | apply metis | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 342 | done | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 343 | |
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 344 | subsection {* Rules for quotient package *}
 | 
| 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 345 | |
| 47308 | 346 | lemma list_quotient3 [quot_thm]: | 
| 347 | assumes "Quotient3 R Abs Rep" | |
| 348 | shows "Quotient3 (list_all2 R) (map Abs) (map Rep)" | |
| 349 | proof (rule Quotient3I) | |
| 350 | from assms have "\<And>x. Abs (Rep x) = x" by (rule Quotient3_abs_rep) | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 351 | then show "\<And>xs. map Abs (map Rep xs) = xs" by (simp add: comp_def) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 352 | next | 
| 47308 | 353 | from assms have "\<And>x y. R (Rep x) (Rep y) \<longleftrightarrow> x = y" by (rule Quotient3_rel_rep) | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 354 | then show "\<And>xs. list_all2 R (map Rep xs) (map Rep xs)" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 355 | by (simp add: list_all2_map1 list_all2_map2 list_all2_eq) | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 356 | next | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 357 | fix xs ys | 
| 47308 | 358 | from assms have "\<And>x y. R x x \<and> R y y \<and> Abs x = Abs y \<longleftrightarrow> R x y" by (rule Quotient3_rel) | 
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 359 | then show "list_all2 R xs ys \<longleftrightarrow> list_all2 R xs xs \<and> list_all2 R ys ys \<and> map Abs xs = map Abs ys" | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 360 | by (induct xs ys rule: list_induct2') auto | 
| 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 361 | qed | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 362 | |
| 47308 | 363 | declare [[mapQ3 list = (list_all2, list_quotient3)]] | 
| 47094 | 364 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 365 | lemma cons_prs [quot_preserve]: | 
| 47308 | 366 | assumes q: "Quotient3 R Abs Rep" | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 367 | shows "(Rep ---> (map Rep) ---> (map Abs)) (op #) = (op #)" | 
| 47308 | 368 | by (auto simp add: fun_eq_iff comp_def Quotient3_abs_rep [OF q]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 369 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 370 | lemma cons_rsp [quot_respect]: | 
| 47308 | 371 | assumes q: "Quotient3 R Abs Rep" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 372 | shows "(R ===> list_all2 R ===> list_all2 R) (op #) (op #)" | 
| 40463 | 373 | by auto | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 374 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 375 | lemma nil_prs [quot_preserve]: | 
| 47308 | 376 | assumes q: "Quotient3 R Abs Rep" | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 377 | shows "map Abs [] = []" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 378 | by simp | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 379 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 380 | lemma nil_rsp [quot_respect]: | 
| 47308 | 381 | assumes q: "Quotient3 R Abs Rep" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 382 | shows "list_all2 R [] []" | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 383 | by simp | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 384 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 385 | lemma map_prs_aux: | 
| 47308 | 386 | assumes a: "Quotient3 R1 abs1 rep1" | 
| 387 | and b: "Quotient3 R2 abs2 rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 388 | shows "(map abs2) (map ((abs1 ---> rep2) f) (map rep1 l)) = map f l" | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 389 | by (induct l) | 
| 47308 | 390 | (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 391 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 392 | lemma map_prs [quot_preserve]: | 
| 47308 | 393 | assumes a: "Quotient3 R1 abs1 rep1" | 
| 394 | and b: "Quotient3 R2 abs2 rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 395 | shows "((abs1 ---> rep2) ---> (map rep1) ---> (map abs2)) map = map" | 
| 36216 
8fb6cc6f3b94
respectfullness and preservation of map for identity quotients
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36154diff
changeset | 396 | and "((abs1 ---> id) ---> map rep1 ---> id) map = map" | 
| 40463 | 397 | by (simp_all only: fun_eq_iff map_prs_aux[OF a b] comp_def) | 
| 47308 | 398 | (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b]) | 
| 40463 | 399 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 400 | lemma map_rsp [quot_respect]: | 
| 47308 | 401 | assumes q1: "Quotient3 R1 Abs1 Rep1" | 
| 402 | and q2: "Quotient3 R2 Abs2 Rep2" | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 403 | shows "((R1 ===> R2) ===> (list_all2 R1) ===> list_all2 R2) map map" | 
| 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 404 | and "((R1 ===> op =) ===> (list_all2 R1) ===> op =) map map" | 
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 405 | unfolding list_all2_eq [symmetric] by (rule map_transfer)+ | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 406 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 407 | lemma foldr_prs_aux: | 
| 47308 | 408 | assumes a: "Quotient3 R1 abs1 rep1" | 
| 409 | and b: "Quotient3 R2 abs2 rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 410 | shows "abs2 (foldr ((abs1 ---> abs2 ---> rep2) f) (map rep1 l) (rep2 e)) = foldr f l e" | 
| 47308 | 411 | by (induct l) (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 412 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 413 | lemma foldr_prs [quot_preserve]: | 
| 47308 | 414 | assumes a: "Quotient3 R1 abs1 rep1" | 
| 415 | and b: "Quotient3 R2 abs2 rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 416 | shows "((abs1 ---> abs2 ---> rep2) ---> (map rep1) ---> rep2 ---> abs2) foldr = foldr" | 
| 40463 | 417 | apply (simp add: fun_eq_iff) | 
| 418 | by (simp only: fun_eq_iff foldr_prs_aux[OF a b]) | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 419 | (simp) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 420 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 421 | lemma foldl_prs_aux: | 
| 47308 | 422 | assumes a: "Quotient3 R1 abs1 rep1" | 
| 423 | and b: "Quotient3 R2 abs2 rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 424 | shows "abs1 (foldl ((abs1 ---> abs2 ---> rep1) f) (rep1 e) (map rep2 l)) = foldl f e l" | 
| 47308 | 425 | by (induct l arbitrary:e) (simp_all add: Quotient3_abs_rep[OF a] Quotient3_abs_rep[OF b]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 426 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 427 | lemma foldl_prs [quot_preserve]: | 
| 47308 | 428 | assumes a: "Quotient3 R1 abs1 rep1" | 
| 429 | and b: "Quotient3 R2 abs2 rep2" | |
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 430 | shows "((abs1 ---> abs2 ---> rep1) ---> rep1 ---> (map rep2) ---> abs1) foldl = foldl" | 
| 40463 | 431 | by (simp add: fun_eq_iff foldl_prs_aux [OF a b]) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 432 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 433 | (* induct_tac doesn't accept 'arbitrary', so we manually 'spec' *) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 434 | lemma foldl_rsp[quot_respect]: | 
| 47308 | 435 | assumes q1: "Quotient3 R1 Abs1 Rep1" | 
| 436 | and q2: "Quotient3 R2 Abs2 Rep2" | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 437 | shows "((R1 ===> R2 ===> R1) ===> R1 ===> list_all2 R2 ===> R1) foldl foldl" | 
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 438 | by (rule foldl_transfer) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 439 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 440 | lemma foldr_rsp[quot_respect]: | 
| 47308 | 441 | assumes q1: "Quotient3 R1 Abs1 Rep1" | 
| 442 | and q2: "Quotient3 R2 Abs2 Rep2" | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 443 | shows "((R1 ===> R2 ===> R2) ===> list_all2 R1 ===> R2 ===> R2) foldr foldr" | 
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 444 | by (rule foldr_transfer) | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 445 | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 446 | lemma list_all2_rsp: | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 447 | assumes r: "\<forall>x y. R x y \<longrightarrow> (\<forall>a b. R a b \<longrightarrow> S x a = T y b)" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 448 | and l1: "list_all2 R x y" | 
| 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 449 | and l2: "list_all2 R a b" | 
| 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 450 | shows "list_all2 S x a = list_all2 T y b" | 
| 45803 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 451 | using l1 l2 | 
| 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 452 | by (induct arbitrary: a b rule: list_all2_induct, | 
| 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 453 | auto simp: list_all2_Cons1 list_all2_Cons2 r) | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 454 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 455 | lemma [quot_respect]: | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 456 | "((R ===> R ===> op =) ===> list_all2 R ===> list_all2 R ===> op =) list_all2 list_all2" | 
| 47641 
2cddc27a881f
new transfer package rules and lifting setup for lists
 huffman parents: 
47634diff
changeset | 457 | by (rule list_all2_transfer) | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 458 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 459 | lemma [quot_preserve]: | 
| 47308 | 460 | assumes a: "Quotient3 R abs1 rep1" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 461 | shows "((abs1 ---> abs1 ---> id) ---> map rep1 ---> map rep1 ---> id) list_all2 = list_all2" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 462 | apply (simp add: fun_eq_iff) | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 463 | apply clarify | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 464 | apply (induct_tac xa xb rule: list_induct2') | 
| 47308 | 465 | apply (simp_all add: Quotient3_abs_rep[OF a]) | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 466 | done | 
| 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 467 | |
| 40820 
fd9c98ead9a9
more systematic and compact proofs on type relation operators using natural deduction rules
 haftmann parents: 
40463diff
changeset | 468 | lemma [quot_preserve]: | 
| 47308 | 469 | assumes a: "Quotient3 R abs1 rep1" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 470 | shows "(list_all2 ((rep1 ---> rep1 ---> id) R) l m) = (l = m)" | 
| 47308 | 471 | by (induct l m rule: list_induct2') (simp_all add: Quotient3_rel_rep[OF a]) | 
| 36154 
11c6106d7787
Respectfullness and preservation of list_rel
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
35788diff
changeset | 472 | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 473 | lemma list_all2_find_element: | 
| 36276 
92011cc923f5
fun_rel introduction and list_rel elimination for quotient package
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36216diff
changeset | 474 | assumes a: "x \<in> set a" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 475 | and b: "list_all2 R a b" | 
| 36276 
92011cc923f5
fun_rel introduction and list_rel elimination for quotient package
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36216diff
changeset | 476 | shows "\<exists>y. (y \<in> set b \<and> R x y)" | 
| 45803 
fe44c0b216ef
remove some duplicate lemmas, simplify some proofs
 huffman parents: 
40820diff
changeset | 477 | using b a by induct auto | 
| 36276 
92011cc923f5
fun_rel introduction and list_rel elimination for quotient package
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36216diff
changeset | 478 | |
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 479 | lemma list_all2_refl: | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 480 | assumes a: "\<And>x y. R x y = (R x = R y)" | 
| 37492 
ab36b1a50ca8
Replace 'list_rel' by 'list_all2'; they are equivalent.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: 
36812diff
changeset | 481 | shows "list_all2 R x x" | 
| 35222 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 482 | by (induct x) (auto simp add: a) | 
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 483 | |
| 
4f1fba00f66d
Initial version of HOL quotient package.
 Cezary Kaliszyk <kaliszyk@in.tum.de> parents: diff
changeset | 484 | end |