| author | haftmann | 
| Sat, 17 Sep 2011 00:37:21 +0200 | |
| changeset 44945 | 2625de88c994 | 
| parent 44382 | 9afa4a0e6f3c | 
| child 47761 | dfe747e72fa8 | 
| permissions | -rw-r--r-- | 
| 13586 | 1  | 
(* Title: HOL/Library/FuncSet.thy  | 
| 
40631
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
2  | 
Author: Florian Kammueller and Lawrence C Paulson, Lukas Bulwahn  | 
| 13586 | 3  | 
*)  | 
4  | 
||
| 14706 | 5  | 
header {* Pi and Function Sets *}
 | 
| 13586 | 6  | 
|
| 15131 | 7  | 
theory FuncSet  | 
| 
30663
 
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
 
haftmann 
parents: 
28524 
diff
changeset
 | 
8  | 
imports Hilbert_Choice Main  | 
| 15131 | 9  | 
begin  | 
| 13586 | 10  | 
|
| 19736 | 11  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
12  | 
  Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" where
 | 
| 19736 | 13  | 
  "Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}"
 | 
| 13586 | 14  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
15  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
16  | 
  extensional :: "'a set => ('a => 'b) set" where
 | 
| 28524 | 17  | 
  "extensional A = {f. \<forall>x. x~:A --> f x = undefined}"
 | 
| 13586 | 18  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
19  | 
definition  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
20  | 
  "restrict" :: "['a => 'b, 'a set] => ('a => 'b)" where
 | 
| 28524 | 21  | 
"restrict f A = (%x. if x \<in> A then f x else undefined)"  | 
| 13586 | 22  | 
|
| 19536 | 23  | 
abbreviation  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
24  | 
  funcset :: "['a set, 'b set] => ('a => 'b) set"
 | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
25  | 
(infixr "->" 60) where  | 
| 19536 | 26  | 
"A -> B == Pi A (%_. B)"  | 
27  | 
||
| 21210 | 28  | 
notation (xsymbols)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19536 
diff
changeset
 | 
29  | 
funcset (infixr "\<rightarrow>" 60)  | 
| 19536 | 30  | 
|
| 13586 | 31  | 
syntax  | 
| 19736 | 32  | 
  "_Pi"  :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3PI _:_./ _)" 10)
 | 
33  | 
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3%_:_./ _)" [0,0,3] 3)
 | 
|
| 13586 | 34  | 
|
35  | 
syntax (xsymbols)  | 
|
| 19736 | 36  | 
  "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
37  | 
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | 
|
| 13586 | 38  | 
|
| 14565 | 39  | 
syntax (HTML output)  | 
| 19736 | 40  | 
  "_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set"  ("(3\<Pi> _\<in>_./ _)"   10)
 | 
41  | 
  "_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)"  ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)
 | 
|
| 14565 | 42  | 
|
| 13586 | 43  | 
translations  | 
| 20770 | 44  | 
"PI x:A. B" == "CONST Pi A (%x. B)"  | 
45  | 
"%x:A. f" == "CONST restrict (%x. f) A"  | 
|
| 13586 | 46  | 
|
| 19736 | 47  | 
definition  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
48  | 
  "compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" where
 | 
| 19736 | 49  | 
"compose A g f = (\<lambda>x\<in>A. g (f x))"  | 
| 13586 | 50  | 
|
51  | 
||
52  | 
subsection{*Basic Properties of @{term Pi}*}
 | 
|
53  | 
||
| 31754 | 54  | 
lemma Pi_I[intro!]: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B"  | 
| 14706 | 55  | 
by (simp add: Pi_def)  | 
| 13586 | 56  | 
|
| 31731 | 57  | 
lemma Pi_I'[simp]: "(!!x. x : A --> f x : B x) ==> f : Pi A B"  | 
58  | 
by(simp add:Pi_def)  | 
|
59  | 
||
| 13586 | 60  | 
lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B"  | 
| 14706 | 61  | 
by (simp add: Pi_def)  | 
| 13586 | 62  | 
|
63  | 
lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x"  | 
|
| 14706 | 64  | 
by (simp add: Pi_def)  | 
| 13586 | 65  | 
|
| 31759 | 66  | 
lemma PiE [elim]:  | 
| 31754 | 67  | 
"f : Pi A B ==> (f x : B x ==> Q) ==> (x ~: A ==> Q) ==> Q"  | 
68  | 
by(auto simp: Pi_def)  | 
|
69  | 
||
| 38656 | 70  | 
lemma Pi_cong:  | 
71  | 
"(\<And> w. w \<in> A \<Longrightarrow> f w = g w) \<Longrightarrow> f \<in> Pi A B \<longleftrightarrow> g \<in> Pi A B"  | 
|
72  | 
by (auto simp: Pi_def)  | 
|
73  | 
||
| 31769 | 74  | 
lemma funcset_id [simp]: "(\<lambda>x. x) \<in> A \<rightarrow> A"  | 
| 44382 | 75  | 
by auto  | 
| 31769 | 76  | 
|
| 13586 | 77  | 
lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B"  | 
| 14706 | 78  | 
by (simp add: Pi_def)  | 
| 13586 | 79  | 
|
| 14762 | 80  | 
lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B"  | 
| 31754 | 81  | 
by auto  | 
| 14762 | 82  | 
|
| 31754 | 83  | 
lemma Pi_eq_empty[simp]: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"
 | 
| 13593 | 84  | 
apply (simp add: Pi_def, auto)  | 
| 13586 | 85  | 
txt{*Converse direction requires Axiom of Choice to exhibit a function
 | 
86  | 
picking an element from each non-empty @{term "B x"}*}
 | 
|
| 13593 | 87  | 
apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto)  | 
| 14706 | 88  | 
apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto)  | 
| 13586 | 89  | 
done  | 
90  | 
||
| 13593 | 91  | 
lemma Pi_empty [simp]: "Pi {} B = UNIV"
 | 
| 31754 | 92  | 
by (simp add: Pi_def)  | 
| 13593 | 93  | 
|
94  | 
lemma Pi_UNIV [simp]: "A -> UNIV = UNIV"  | 
|
| 31754 | 95  | 
by (simp add: Pi_def)  | 
| 31727 | 96  | 
(*  | 
97  | 
lemma funcset_id [simp]: "(%x. x): A -> A"  | 
|
98  | 
by (simp add: Pi_def)  | 
|
99  | 
*)  | 
|
| 13586 | 100  | 
text{*Covariance of Pi-sets in their second argument*}
 | 
101  | 
lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C"  | 
|
| 31754 | 102  | 
by auto  | 
| 13586 | 103  | 
|
104  | 
text{*Contravariance of Pi-sets in their first argument*}
 | 
|
105  | 
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B"  | 
|
| 31754 | 106  | 
by auto  | 
| 13586 | 107  | 
|
| 
33271
 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 
paulson 
parents: 
33057 
diff
changeset
 | 
108  | 
lemma prod_final:  | 
| 
 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 
paulson 
parents: 
33057 
diff
changeset
 | 
109  | 
assumes 1: "fst \<circ> f \<in> Pi A B" and 2: "snd \<circ> f \<in> Pi A C"  | 
| 
 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 
paulson 
parents: 
33057 
diff
changeset
 | 
110  | 
shows "f \<in> (\<Pi> z \<in> A. B z \<times> C z)"  | 
| 
 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 
paulson 
parents: 
33057 
diff
changeset
 | 
111  | 
proof (rule Pi_I)  | 
| 
 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 
paulson 
parents: 
33057 
diff
changeset
 | 
112  | 
fix z  | 
| 
 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 
paulson 
parents: 
33057 
diff
changeset
 | 
113  | 
assume z: "z \<in> A"  | 
| 
 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 
paulson 
parents: 
33057 
diff
changeset
 | 
114  | 
have "f z = (fst (f z), snd (f z))"  | 
| 
 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 
paulson 
parents: 
33057 
diff
changeset
 | 
115  | 
by simp  | 
| 
 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 
paulson 
parents: 
33057 
diff
changeset
 | 
116  | 
also have "... \<in> B z \<times> C z"  | 
| 
 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 
paulson 
parents: 
33057 
diff
changeset
 | 
117  | 
by (metis SigmaI PiE o_apply 1 2 z)  | 
| 
 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 
paulson 
parents: 
33057 
diff
changeset
 | 
118  | 
finally show "f z \<in> B z \<times> C z" .  | 
| 
 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 
paulson 
parents: 
33057 
diff
changeset
 | 
119  | 
qed  | 
| 
 
7be66dee1a5a
New theory Probability, which contains a development of measure theory
 
paulson 
parents: 
33057 
diff
changeset
 | 
120  | 
|
| 13586 | 121  | 
|
122  | 
subsection{*Composition With a Restricted Domain: @{term compose}*}
 | 
|
123  | 
||
| 14706 | 124  | 
lemma funcset_compose:  | 
| 31754 | 125  | 
"[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C"  | 
126  | 
by (simp add: Pi_def compose_def restrict_def)  | 
|
| 13586 | 127  | 
|
128  | 
lemma compose_assoc:  | 
|
| 14706 | 129  | 
"[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |]  | 
| 13586 | 130  | 
==> compose A h (compose A g f) = compose A (compose B h g) f"  | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
131  | 
by (simp add: fun_eq_iff Pi_def compose_def restrict_def)  | 
| 13586 | 132  | 
|
133  | 
lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))"  | 
|
| 31754 | 134  | 
by (simp add: compose_def restrict_def)  | 
| 13586 | 135  | 
|
136  | 
lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C"  | 
|
| 14706 | 137  | 
by (auto simp add: image_def compose_eq)  | 
| 13586 | 138  | 
|
139  | 
||
140  | 
subsection{*Bounded Abstraction: @{term restrict}*}
 | 
|
141  | 
||
142  | 
lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B"  | 
|
| 14706 | 143  | 
by (simp add: Pi_def restrict_def)  | 
| 13586 | 144  | 
|
| 31754 | 145  | 
lemma restrictI[intro!]: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B"  | 
| 14706 | 146  | 
by (simp add: Pi_def restrict_def)  | 
| 13586 | 147  | 
|
148  | 
lemma restrict_apply [simp]:  | 
|
| 28524 | 149  | 
"(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else undefined)"  | 
| 14706 | 150  | 
by (simp add: restrict_def)  | 
| 13586 | 151  | 
|
| 14706 | 152  | 
lemma restrict_ext:  | 
| 13586 | 153  | 
"(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)"  | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
154  | 
by (simp add: fun_eq_iff Pi_def restrict_def)  | 
| 13586 | 155  | 
|
| 14853 | 156  | 
lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A"  | 
| 14706 | 157  | 
by (simp add: inj_on_def restrict_def)  | 
| 13586 | 158  | 
|
159  | 
lemma Id_compose:  | 
|
| 14706 | 160  | 
"[|f \<in> A -> B; f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f"  | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
161  | 
by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def)  | 
| 13586 | 162  | 
|
163  | 
lemma compose_Id:  | 
|
| 14706 | 164  | 
"[|g \<in> A -> B; g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g"  | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
165  | 
by (auto simp add: fun_eq_iff compose_def extensional_def Pi_def)  | 
| 13586 | 166  | 
|
| 14853 | 167  | 
lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A"  | 
| 19736 | 168  | 
by (auto simp add: restrict_def)  | 
| 13586 | 169  | 
|
| 14745 | 170  | 
|
| 14762 | 171  | 
subsection{*Bijections Between Sets*}
 | 
172  | 
||
| 
26106
 
be52145f482d
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas
 
nipkow 
parents: 
21404 
diff
changeset
 | 
173  | 
text{*The definition of @{const bij_betw} is in @{text "Fun.thy"}, but most of
 | 
| 14762 | 174  | 
the theorems belong here, or need at least @{term Hilbert_Choice}.*}
 | 
175  | 
||
| 39595 | 176  | 
lemma bij_betwI:  | 
177  | 
assumes "f \<in> A \<rightarrow> B" and "g \<in> B \<rightarrow> A"  | 
|
178  | 
and g_f: "\<And>x. x\<in>A \<Longrightarrow> g (f x) = x" and f_g: "\<And>y. y\<in>B \<Longrightarrow> f (g y) = y"  | 
|
179  | 
shows "bij_betw f A B"  | 
|
180  | 
unfolding bij_betw_def  | 
|
181  | 
proof  | 
|
182  | 
show "inj_on f A" by (metis g_f inj_on_def)  | 
|
183  | 
next  | 
|
184  | 
have "f ` A \<subseteq> B" using `f \<in> A \<rightarrow> B` by auto  | 
|
185  | 
moreover  | 
|
186  | 
have "B \<subseteq> f ` A" by auto (metis Pi_mem `g \<in> B \<rightarrow> A` f_g image_iff)  | 
|
187  | 
ultimately show "f ` A = B" by blast  | 
|
188  | 
qed  | 
|
189  | 
||
| 14762 | 190  | 
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B"  | 
| 32988 | 191  | 
by (auto simp add: bij_betw_def)  | 
| 14762 | 192  | 
|
| 14853 | 193  | 
lemma inj_on_compose:  | 
| 31754 | 194  | 
"[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A"  | 
195  | 
by (auto simp add: bij_betw_def inj_on_def compose_eq)  | 
|
| 14853 | 196  | 
|
| 14762 | 197  | 
lemma bij_betw_compose:  | 
| 31754 | 198  | 
"[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C"  | 
199  | 
apply (simp add: bij_betw_def compose_eq inj_on_compose)  | 
|
200  | 
apply (auto simp add: compose_def image_def)  | 
|
201  | 
done  | 
|
| 14762 | 202  | 
|
| 14853 | 203  | 
lemma bij_betw_restrict_eq [simp]:  | 
| 31754 | 204  | 
"bij_betw (restrict f A) A B = bij_betw f A B"  | 
205  | 
by (simp add: bij_betw_def)  | 
|
| 14853 | 206  | 
|
207  | 
||
208  | 
subsection{*Extensionality*}
 | 
|
209  | 
||
| 28524 | 210  | 
lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = undefined"  | 
| 31754 | 211  | 
by (simp add: extensional_def)  | 
| 14853 | 212  | 
|
213  | 
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A"  | 
|
| 31754 | 214  | 
by (simp add: restrict_def extensional_def)  | 
| 14853 | 215  | 
|
216  | 
lemma compose_extensional [simp]: "compose A f g \<in> extensional A"  | 
|
| 31754 | 217  | 
by (simp add: compose_def)  | 
| 14853 | 218  | 
|
219  | 
lemma extensionalityI:  | 
|
| 31754 | 220  | 
"[| f \<in> extensional A; g \<in> extensional A;  | 
| 14853 | 221  | 
!!x. x\<in>A ==> f x = g x |] ==> f = g"  | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39198 
diff
changeset
 | 
222  | 
by (force simp add: fun_eq_iff extensional_def)  | 
| 14853 | 223  | 
|
| 39595 | 224  | 
lemma extensional_restrict: "f \<in> extensional A \<Longrightarrow> restrict f A = f"  | 
225  | 
by(rule extensionalityI[OF restrict_extensional]) auto  | 
|
226  | 
||
| 33057 | 227  | 
lemma inv_into_funcset: "f ` A = B ==> (\<lambda>x\<in>B. inv_into A f x) : B -> A"  | 
228  | 
by (unfold inv_into_def) (fast intro: someI2)  | 
|
| 14853 | 229  | 
|
| 33057 | 230  | 
lemma compose_inv_into_id:  | 
231  | 
"bij_betw f A B ==> compose A (\<lambda>y\<in>B. inv_into A f y) f = (\<lambda>x\<in>A. x)"  | 
|
| 31754 | 232  | 
apply (simp add: bij_betw_def compose_def)  | 
233  | 
apply (rule restrict_ext, auto)  | 
|
234  | 
done  | 
|
| 14853 | 235  | 
|
| 33057 | 236  | 
lemma compose_id_inv_into:  | 
237  | 
"f ` A = B ==> compose B f (\<lambda>y\<in>B. inv_into A f y) = (\<lambda>x\<in>B. x)"  | 
|
| 31754 | 238  | 
apply (simp add: compose_def)  | 
239  | 
apply (rule restrict_ext)  | 
|
| 33057 | 240  | 
apply (simp add: f_inv_into_f)  | 
| 31754 | 241  | 
done  | 
| 14853 | 242  | 
|
| 14762 | 243  | 
|
| 14745 | 244  | 
subsection{*Cardinality*}
 | 
245  | 
||
246  | 
lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)"  | 
|
| 31754 | 247  | 
by (rule card_inj_on_le) auto  | 
| 14745 | 248  | 
|
249  | 
lemma card_bij:  | 
|
| 31754 | 250  | 
"[|f \<in> A\<rightarrow>B; inj_on f A;  | 
251  | 
g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)"  | 
|
252  | 
by (blast intro: card_inj order_antisym)  | 
|
| 14745 | 253  | 
|
| 
40631
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
254  | 
subsection {* Extensional Function Spaces *} 
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
255  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
256  | 
definition extensional_funcset  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
257  | 
where "extensional_funcset S T = (S -> T) \<inter> (extensional S)"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
258  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
259  | 
lemma extensional_empty[simp]: "extensional {} = {%x. undefined}"
 | 
| 44382 | 260  | 
unfolding extensional_def by auto  | 
| 
40631
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
261  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
262  | 
lemma extensional_funcset_empty_domain: "extensional_funcset {} T = {%x. undefined}"
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
263  | 
unfolding extensional_funcset_def by simp  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
264  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
265  | 
lemma extensional_funcset_empty_range:  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
266  | 
  assumes "S \<noteq> {}"
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
267  | 
  shows "extensional_funcset S {} = {}"
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
268  | 
using assms unfolding extensional_funcset_def by auto  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
269  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
270  | 
lemma extensional_funcset_arb:  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
271  | 
assumes "f \<in> extensional_funcset S T" "x \<notin> S"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
272  | 
shows "f x = undefined"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
273  | 
using assms  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
274  | 
unfolding extensional_funcset_def by auto (auto dest!: extensional_arb)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
275  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
276  | 
lemma extensional_funcset_mem: "f \<in> extensional_funcset S T \<Longrightarrow> x \<in> S \<Longrightarrow> f x \<in> T"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
277  | 
unfolding extensional_funcset_def by auto  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
278  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
279  | 
lemma extensional_subset: "f : extensional A ==> A <= B ==> f : extensional B"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
280  | 
unfolding extensional_def by auto  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
281  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
282  | 
lemma extensional_funcset_extend_domainI: "\<lbrakk> y \<in> T; f \<in> extensional_funcset S T\<rbrakk> \<Longrightarrow> f(x := y) \<in> extensional_funcset (insert x S) T"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
283  | 
unfolding extensional_funcset_def extensional_def by auto  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
284  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
285  | 
lemma extensional_funcset_restrict_domain:  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
286  | 
"x \<notin> S \<Longrightarrow> f \<in> extensional_funcset (insert x S) T \<Longrightarrow> f(x := undefined) \<in> extensional_funcset S T"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
287  | 
unfolding extensional_funcset_def extensional_def by auto  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
288  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
289  | 
lemma extensional_funcset_extend_domain_eq:  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
290  | 
assumes "x \<notin> S"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
291  | 
shows  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
292  | 
    "extensional_funcset (insert x S) T = (\<lambda>(y, g). g(x := y)) ` {(y, g). y \<in> T \<and> g \<in> extensional_funcset S T}"
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
293  | 
using assms  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
294  | 
proof -  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
295  | 
  {
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
296  | 
fix f  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
297  | 
assume "f : extensional_funcset (insert x S) T"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
298  | 
from this assms have "f : (%(y, g). g(x := y)) ` (T <*> extensional_funcset S T)"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
299  | 
unfolding image_iff  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
300  | 
apply (rule_tac x="(f x, f(x := undefined))" in bexI)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
301  | 
apply (auto intro: extensional_funcset_extend_domainI extensional_funcset_restrict_domain extensional_funcset_mem) done  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
302  | 
}  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
303  | 
moreover  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
304  | 
  {
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
305  | 
fix f  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
306  | 
assume "f : (%(y, g). g(x := y)) ` (T <*> extensional_funcset S T)"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
307  | 
from this assms have "f : extensional_funcset (insert x S) T"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
308  | 
by (auto intro: extensional_funcset_extend_domainI)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
309  | 
}  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
310  | 
ultimately show ?thesis by auto  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
311  | 
qed  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
312  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
313  | 
lemma extensional_funcset_fun_upd_restricts_rangeI:  "\<forall> y \<in> S. f x \<noteq> f y ==> f : extensional_funcset (insert x S) T ==> f(x := undefined) : extensional_funcset S (T - {f x})"
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
314  | 
unfolding extensional_funcset_def extensional_def  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
315  | 
apply auto  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
316  | 
apply (case_tac "x = xa")  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
317  | 
apply auto done  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
318  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
319  | 
lemma extensional_funcset_fun_upd_extends_rangeI:  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
320  | 
  assumes "a \<in> T" "f : extensional_funcset S (T - {a})"
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
321  | 
shows "f(x := a) : extensional_funcset (insert x S) T"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
322  | 
using assms unfolding extensional_funcset_def extensional_def by auto  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
323  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
324  | 
subsubsection {* Injective Extensional Function Spaces *}
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
325  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
326  | 
lemma extensional_funcset_fun_upd_inj_onI:  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
327  | 
  assumes "f \<in> extensional_funcset S (T - {a})" "inj_on f S"
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
328  | 
shows "inj_on (f(x := a)) S"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
329  | 
using assms unfolding extensional_funcset_def by (auto intro!: inj_on_fun_updI)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
330  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
331  | 
lemma extensional_funcset_extend_domain_inj_on_eq:  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
332  | 
assumes "x \<notin> S"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
333  | 
  shows"{f. f \<in> extensional_funcset (insert x S) T \<and> inj_on f (insert x S)} =
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
334  | 
    (%(y, g). g(x:=y)) ` {(y, g). y \<in> T \<and> g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S}"
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
335  | 
proof -  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
336  | 
from assms show ?thesis  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
337  | 
apply auto  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
338  | 
apply (auto intro: extensional_funcset_fun_upd_inj_onI extensional_funcset_fun_upd_extends_rangeI)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
339  | 
apply (auto simp add: image_iff inj_on_def)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
340  | 
apply (rule_tac x="xa x" in exI)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
341  | 
apply (auto intro: extensional_funcset_mem)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
342  | 
apply (rule_tac x="xa(x := undefined)" in exI)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
343  | 
apply (auto intro!: extensional_funcset_fun_upd_restricts_rangeI)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
344  | 
apply (auto dest!: extensional_funcset_mem split: split_if_asm)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
345  | 
done  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
346  | 
qed  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
347  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
348  | 
lemma extensional_funcset_extend_domain_inj_onI:  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
349  | 
assumes "x \<notin> S"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
350  | 
  shows "inj_on (\<lambda>(y, g). g(x := y)) {(y, g). y \<in> T \<and> g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S}"
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
351  | 
proof -  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
352  | 
from assms show ?thesis  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
353  | 
apply (auto intro!: inj_onI)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
354  | 
apply (metis fun_upd_same)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
355  | 
by (metis assms extensional_funcset_arb fun_upd_triv fun_upd_upd)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
356  | 
qed  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
357  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
358  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
359  | 
subsubsection {* Cardinality *}
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
360  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
361  | 
lemma card_extensional_funcset:  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
362  | 
assumes "finite S"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
363  | 
shows "card (extensional_funcset S T) = (card T) ^ (card S)"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
364  | 
using assms  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
365  | 
proof (induct rule: finite_induct)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
366  | 
case empty  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
367  | 
show ?case  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
368  | 
by (auto simp add: extensional_funcset_empty_domain)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
369  | 
next  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
370  | 
case (insert x S)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
371  | 
  {
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
372  | 
fix g g' y y'  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
373  | 
assume assms: "g \<in> extensional_funcset S T"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
374  | 
"g' \<in> extensional_funcset S T"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
375  | 
"y \<in> T" "y' \<in> T"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
376  | 
"g(x := y) = g'(x := y')"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
377  | 
from this have "y = y'"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
378  | 
by (metis fun_upd_same)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
379  | 
have "g = g'"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
380  | 
by (metis assms(1) assms(2) assms(5) extensional_funcset_arb fun_upd_triv fun_upd_upd insert(2))  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
381  | 
from `y = y'` `g = g'` have "y = y' & g = g'" by simp  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
382  | 
}  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
383  | 
from this have "inj_on (\<lambda>(y, g). g (x := y)) (T \<times> extensional_funcset S T)"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
384  | 
by (auto intro: inj_onI)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
385  | 
from this insert.hyps show ?case  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
386  | 
by (simp add: extensional_funcset_extend_domain_eq card_image card_cartesian_product)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
387  | 
qed  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
388  | 
|
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
389  | 
lemma finite_extensional_funcset:  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
390  | 
assumes "finite S" "finite T"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
391  | 
shows "finite (extensional_funcset S T)"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
392  | 
proof -  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
393  | 
from card_extensional_funcset[OF assms(1), of T] assms(2)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
394  | 
  have "(card (extensional_funcset S T) \<noteq> 0) \<or> (S \<noteq> {} \<and> T = {})"
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
395  | 
by auto  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
396  | 
from this show ?thesis  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
397  | 
proof  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
398  | 
assume "card (extensional_funcset S T) \<noteq> 0"  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
399  | 
from this show ?thesis  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
400  | 
by (auto intro: card_ge_0_finite)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
401  | 
next  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
402  | 
    assume "S \<noteq> {} \<and> T = {}"
 | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
403  | 
from this show ?thesis  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
404  | 
by (auto simp add: extensional_funcset_empty_range)  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
405  | 
qed  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
406  | 
qed  | 
| 
 
b3f85ba3dae4
adding extensional function spaces to the FuncSet library theory
 
bulwahn 
parents: 
39595 
diff
changeset
 | 
407  | 
|
| 13586 | 408  | 
end  |