author | haftmann |
Mon, 31 May 2021 20:27:45 +0000 | |
changeset 73793 | 26c0ccf17f31 |
parent 70365 | 4df0628e8545 |
child 75878 | fcd118d9242f |
permissions | -rw-r--r-- |
41959 | 1 |
(* Title: HOL/Archimedean_Field.thy |
2 |
Author: Brian Huffman |
|
30096 | 3 |
*) |
4 |
||
60758 | 5 |
section \<open>Archimedean Fields, Floor and Ceiling Functions\<close> |
30096 | 6 |
|
7 |
theory Archimedean_Field |
|
8 |
imports Main |
|
9 |
begin |
|
10 |
||
63331 | 11 |
lemma cInf_abs_ge: |
63489 | 12 |
fixes S :: "'a::{linordered_idom,conditionally_complete_linorder} set" |
13 |
assumes "S \<noteq> {}" |
|
14 |
and bdd: "\<And>x. x\<in>S \<Longrightarrow> \<bar>x\<bar> \<le> a" |
|
63331 | 15 |
shows "\<bar>Inf S\<bar> \<le> a" |
16 |
proof - |
|
17 |
have "Sup (uminus ` S) = - (Inf S)" |
|
18 |
proof (rule antisym) |
|
63489 | 19 |
show "- (Inf S) \<le> Sup (uminus ` S)" |
63331 | 20 |
apply (subst minus_le_iff) |
21 |
apply (rule cInf_greatest [OF \<open>S \<noteq> {}\<close>]) |
|
22 |
apply (subst minus_le_iff) |
|
63489 | 23 |
apply (rule cSup_upper) |
24 |
apply force |
|
25 |
using bdd |
|
26 |
apply (force simp: abs_le_iff bdd_above_def) |
|
63331 | 27 |
done |
28 |
next |
|
70365
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
68721
diff
changeset
|
29 |
have *: "\<And>x. x \<in> S \<Longrightarrow> Inf S \<le> x" |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
68721
diff
changeset
|
30 |
by (meson abs_le_iff bdd bdd_below_def cInf_lower minus_le_iff) |
63331 | 31 |
show "Sup (uminus ` S) \<le> - Inf S" |
70365
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
68721
diff
changeset
|
32 |
using \<open>S \<noteq> {}\<close> by (force intro: * cSup_least) |
63331 | 33 |
qed |
63489 | 34 |
with cSup_abs_le [of "uminus ` S"] assms show ?thesis |
35 |
by fastforce |
|
63331 | 36 |
qed |
37 |
||
38 |
lemma cSup_asclose: |
|
63489 | 39 |
fixes S :: "'a::{linordered_idom,conditionally_complete_linorder} set" |
63331 | 40 |
assumes S: "S \<noteq> {}" |
41 |
and b: "\<forall>x\<in>S. \<bar>x - l\<bar> \<le> e" |
|
42 |
shows "\<bar>Sup S - l\<bar> \<le> e" |
|
43 |
proof - |
|
63489 | 44 |
have *: "\<bar>x - l\<bar> \<le> e \<longleftrightarrow> l - e \<le> x \<and> x \<le> l + e" for x l e :: 'a |
63331 | 45 |
by arith |
46 |
have "bdd_above S" |
|
47 |
using b by (auto intro!: bdd_aboveI[of _ "l + e"]) |
|
48 |
with S b show ?thesis |
|
63489 | 49 |
unfolding * by (auto intro!: cSup_upper2 cSup_least) |
63331 | 50 |
qed |
51 |
||
52 |
lemma cInf_asclose: |
|
63489 | 53 |
fixes S :: "'a::{linordered_idom,conditionally_complete_linorder} set" |
63331 | 54 |
assumes S: "S \<noteq> {}" |
55 |
and b: "\<forall>x\<in>S. \<bar>x - l\<bar> \<le> e" |
|
56 |
shows "\<bar>Inf S - l\<bar> \<le> e" |
|
57 |
proof - |
|
63489 | 58 |
have *: "\<bar>x - l\<bar> \<le> e \<longleftrightarrow> l - e \<le> x \<and> x \<le> l + e" for x l e :: 'a |
63331 | 59 |
by arith |
60 |
have "bdd_below S" |
|
61 |
using b by (auto intro!: bdd_belowI[of _ "l - e"]) |
|
62 |
with S b show ?thesis |
|
63489 | 63 |
unfolding * by (auto intro!: cInf_lower2 cInf_greatest) |
63331 | 64 |
qed |
65 |
||
63489 | 66 |
|
60758 | 67 |
subsection \<open>Class of Archimedean fields\<close> |
30096 | 68 |
|
60758 | 69 |
text \<open>Archimedean fields have no infinite elements.\<close> |
30096 | 70 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
71 |
class archimedean_field = linordered_field + |
30096 | 72 |
assumes ex_le_of_int: "\<exists>z. x \<le> of_int z" |
73 |
||
63489 | 74 |
lemma ex_less_of_int: "\<exists>z. x < of_int z" |
75 |
for x :: "'a::archimedean_field" |
|
30096 | 76 |
proof - |
77 |
from ex_le_of_int obtain z where "x \<le> of_int z" .. |
|
78 |
then have "x < of_int (z + 1)" by simp |
|
79 |
then show ?thesis .. |
|
80 |
qed |
|
81 |
||
63489 | 82 |
lemma ex_of_int_less: "\<exists>z. of_int z < x" |
83 |
for x :: "'a::archimedean_field" |
|
30096 | 84 |
proof - |
85 |
from ex_less_of_int obtain z where "- x < of_int z" .. |
|
86 |
then have "of_int (- z) < x" by simp |
|
87 |
then show ?thesis .. |
|
88 |
qed |
|
89 |
||
63489 | 90 |
lemma reals_Archimedean2: "\<exists>n. x < of_nat n" |
91 |
for x :: "'a::archimedean_field" |
|
30096 | 92 |
proof - |
63489 | 93 |
obtain z where "x < of_int z" |
94 |
using ex_less_of_int .. |
|
95 |
also have "\<dots> \<le> of_int (int (nat z))" |
|
96 |
by simp |
|
97 |
also have "\<dots> = of_nat (nat z)" |
|
98 |
by (simp only: of_int_of_nat_eq) |
|
30096 | 99 |
finally show ?thesis .. |
100 |
qed |
|
101 |
||
63489 | 102 |
lemma real_arch_simple: "\<exists>n. x \<le> of_nat n" |
103 |
for x :: "'a::archimedean_field" |
|
30096 | 104 |
proof - |
63489 | 105 |
obtain n where "x < of_nat n" |
106 |
using reals_Archimedean2 .. |
|
107 |
then have "x \<le> of_nat n" |
|
108 |
by simp |
|
30096 | 109 |
then show ?thesis .. |
110 |
qed |
|
111 |
||
60758 | 112 |
text \<open>Archimedean fields have no infinitesimal elements.\<close> |
30096 | 113 |
|
62623
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
paulson <lp15@cam.ac.uk>
parents:
62348
diff
changeset
|
114 |
lemma reals_Archimedean: |
30096 | 115 |
fixes x :: "'a::archimedean_field" |
63489 | 116 |
assumes "0 < x" |
117 |
shows "\<exists>n. inverse (of_nat (Suc n)) < x" |
|
30096 | 118 |
proof - |
60758 | 119 |
from \<open>0 < x\<close> have "0 < inverse x" |
30096 | 120 |
by (rule positive_imp_inverse_positive) |
121 |
obtain n where "inverse x < of_nat n" |
|
62623
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
paulson <lp15@cam.ac.uk>
parents:
62348
diff
changeset
|
122 |
using reals_Archimedean2 .. |
30096 | 123 |
then obtain m where "inverse x < of_nat (Suc m)" |
60758 | 124 |
using \<open>0 < inverse x\<close> by (cases n) (simp_all del: of_nat_Suc) |
30096 | 125 |
then have "inverse (of_nat (Suc m)) < inverse (inverse x)" |
60758 | 126 |
using \<open>0 < inverse x\<close> by (rule less_imp_inverse_less) |
30096 | 127 |
then have "inverse (of_nat (Suc m)) < x" |
60758 | 128 |
using \<open>0 < x\<close> by (simp add: nonzero_inverse_inverse_eq) |
30096 | 129 |
then show ?thesis .. |
130 |
qed |
|
131 |
||
132 |
lemma ex_inverse_of_nat_less: |
|
133 |
fixes x :: "'a::archimedean_field" |
|
63489 | 134 |
assumes "0 < x" |
135 |
shows "\<exists>n>0. inverse (of_nat n) < x" |
|
62623
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
paulson <lp15@cam.ac.uk>
parents:
62348
diff
changeset
|
136 |
using reals_Archimedean [OF \<open>0 < x\<close>] by auto |
30096 | 137 |
|
138 |
lemma ex_less_of_nat_mult: |
|
139 |
fixes x :: "'a::archimedean_field" |
|
63489 | 140 |
assumes "0 < x" |
141 |
shows "\<exists>n. y < of_nat n * x" |
|
30096 | 142 |
proof - |
63489 | 143 |
obtain n where "y / x < of_nat n" |
144 |
using reals_Archimedean2 .. |
|
145 |
with \<open>0 < x\<close> have "y < of_nat n * x" |
|
146 |
by (simp add: pos_divide_less_eq) |
|
30096 | 147 |
then show ?thesis .. |
148 |
qed |
|
149 |
||
150 |
||
60758 | 151 |
subsection \<open>Existence and uniqueness of floor function\<close> |
30096 | 152 |
|
153 |
lemma exists_least_lemma: |
|
154 |
assumes "\<not> P 0" and "\<exists>n. P n" |
|
155 |
shows "\<exists>n. \<not> P n \<and> P (Suc n)" |
|
156 |
proof - |
|
63489 | 157 |
from \<open>\<exists>n. P n\<close> have "P (Least P)" |
158 |
by (rule LeastI_ex) |
|
60758 | 159 |
with \<open>\<not> P 0\<close> obtain n where "Least P = Suc n" |
30096 | 160 |
by (cases "Least P") auto |
63489 | 161 |
then have "n < Least P" |
162 |
by simp |
|
163 |
then have "\<not> P n" |
|
164 |
by (rule not_less_Least) |
|
30096 | 165 |
then have "\<not> P n \<and> P (Suc n)" |
60758 | 166 |
using \<open>P (Least P)\<close> \<open>Least P = Suc n\<close> by simp |
30096 | 167 |
then show ?thesis .. |
168 |
qed |
|
169 |
||
170 |
lemma floor_exists: |
|
171 |
fixes x :: "'a::archimedean_field" |
|
172 |
shows "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)" |
|
63489 | 173 |
proof (cases "0 \<le> x") |
174 |
case True |
|
175 |
then have "\<not> x < of_nat 0" |
|
176 |
by simp |
|
30096 | 177 |
then have "\<exists>n. \<not> x < of_nat n \<and> x < of_nat (Suc n)" |
62623
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
paulson <lp15@cam.ac.uk>
parents:
62348
diff
changeset
|
178 |
using reals_Archimedean2 by (rule exists_least_lemma) |
30096 | 179 |
then obtain n where "\<not> x < of_nat n \<and> x < of_nat (Suc n)" .. |
63489 | 180 |
then have "of_int (int n) \<le> x \<and> x < of_int (int n + 1)" |
181 |
by simp |
|
30096 | 182 |
then show ?thesis .. |
183 |
next |
|
63489 | 184 |
case False |
185 |
then have "\<not> - x \<le> of_nat 0" |
|
186 |
by simp |
|
30096 | 187 |
then have "\<exists>n. \<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)" |
62623
dbc62f86a1a9
rationalisation of theorem names esp about "real Archimedian" etc.
paulson <lp15@cam.ac.uk>
parents:
62348
diff
changeset
|
188 |
using real_arch_simple by (rule exists_least_lemma) |
30096 | 189 |
then obtain n where "\<not> - x \<le> of_nat n \<and> - x \<le> of_nat (Suc n)" .. |
63489 | 190 |
then have "of_int (- int n - 1) \<le> x \<and> x < of_int (- int n - 1 + 1)" |
191 |
by simp |
|
30096 | 192 |
then show ?thesis .. |
193 |
qed |
|
194 |
||
63489 | 195 |
lemma floor_exists1: "\<exists>!z. of_int z \<le> x \<and> x < of_int (z + 1)" |
196 |
for x :: "'a::archimedean_field" |
|
30096 | 197 |
proof (rule ex_ex1I) |
198 |
show "\<exists>z. of_int z \<le> x \<and> x < of_int (z + 1)" |
|
199 |
by (rule floor_exists) |
|
200 |
next |
|
63489 | 201 |
fix y z |
202 |
assume "of_int y \<le> x \<and> x < of_int (y + 1)" |
|
203 |
and "of_int z \<le> x \<and> x < of_int (z + 1)" |
|
54281 | 204 |
with le_less_trans [of "of_int y" "x" "of_int (z + 1)"] |
63489 | 205 |
le_less_trans [of "of_int z" "x" "of_int (y + 1)"] show "y = z" |
206 |
by (simp del: of_int_add) |
|
30096 | 207 |
qed |
208 |
||
209 |
||
60758 | 210 |
subsection \<open>Floor function\<close> |
30096 | 211 |
|
43732
6b2bdc57155b
adding a floor_ceiling type class for different instantiations of floor (changeset from Brian Huffman)
bulwahn
parents:
43704
diff
changeset
|
212 |
class floor_ceiling = archimedean_field + |
61942 | 213 |
fixes floor :: "'a \<Rightarrow> int" ("\<lfloor>_\<rfloor>") |
214 |
assumes floor_correct: "of_int \<lfloor>x\<rfloor> \<le> x \<and> x < of_int (\<lfloor>x\<rfloor> + 1)" |
|
30096 | 215 |
|
63489 | 216 |
lemma floor_unique: "of_int z \<le> x \<Longrightarrow> x < of_int z + 1 \<Longrightarrow> \<lfloor>x\<rfloor> = z" |
30096 | 217 |
using floor_correct [of x] floor_exists1 [of x] by auto |
218 |
||
66515 | 219 |
lemma floor_eq_iff: "\<lfloor>x\<rfloor> = a \<longleftrightarrow> of_int a \<le> x \<and> x < of_int a + 1" |
220 |
using floor_correct floor_unique by auto |
|
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
221 |
|
61942 | 222 |
lemma of_int_floor_le [simp]: "of_int \<lfloor>x\<rfloor> \<le> x" |
30096 | 223 |
using floor_correct .. |
224 |
||
61942 | 225 |
lemma le_floor_iff: "z \<le> \<lfloor>x\<rfloor> \<longleftrightarrow> of_int z \<le> x" |
30096 | 226 |
proof |
61942 | 227 |
assume "z \<le> \<lfloor>x\<rfloor>" |
228 |
then have "(of_int z :: 'a) \<le> of_int \<lfloor>x\<rfloor>" by simp |
|
229 |
also have "of_int \<lfloor>x\<rfloor> \<le> x" by (rule of_int_floor_le) |
|
30096 | 230 |
finally show "of_int z \<le> x" . |
231 |
next |
|
232 |
assume "of_int z \<le> x" |
|
61942 | 233 |
also have "x < of_int (\<lfloor>x\<rfloor> + 1)" using floor_correct .. |
234 |
finally show "z \<le> \<lfloor>x\<rfloor>" by (simp del: of_int_add) |
|
30096 | 235 |
qed |
236 |
||
61942 | 237 |
lemma floor_less_iff: "\<lfloor>x\<rfloor> < z \<longleftrightarrow> x < of_int z" |
30096 | 238 |
by (simp add: not_le [symmetric] le_floor_iff) |
239 |
||
61942 | 240 |
lemma less_floor_iff: "z < \<lfloor>x\<rfloor> \<longleftrightarrow> of_int z + 1 \<le> x" |
30096 | 241 |
using le_floor_iff [of "z + 1" x] by auto |
242 |
||
61942 | 243 |
lemma floor_le_iff: "\<lfloor>x\<rfloor> \<le> z \<longleftrightarrow> x < of_int z + 1" |
30096 | 244 |
by (simp add: not_less [symmetric] less_floor_iff) |
245 |
||
61942 | 246 |
lemma floor_split[arith_split]: "P \<lfloor>t\<rfloor> \<longleftrightarrow> (\<forall>i. of_int i \<le> t \<and> t < of_int i + 1 \<longrightarrow> P i)" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
54489
diff
changeset
|
247 |
by (metis floor_correct floor_unique less_floor_iff not_le order_refl) |
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
54489
diff
changeset
|
248 |
|
61942 | 249 |
lemma floor_mono: |
250 |
assumes "x \<le> y" |
|
251 |
shows "\<lfloor>x\<rfloor> \<le> \<lfloor>y\<rfloor>" |
|
30096 | 252 |
proof - |
61942 | 253 |
have "of_int \<lfloor>x\<rfloor> \<le> x" by (rule of_int_floor_le) |
60758 | 254 |
also note \<open>x \<le> y\<close> |
30096 | 255 |
finally show ?thesis by (simp add: le_floor_iff) |
256 |
qed |
|
257 |
||
61942 | 258 |
lemma floor_less_cancel: "\<lfloor>x\<rfloor> < \<lfloor>y\<rfloor> \<Longrightarrow> x < y" |
30096 | 259 |
by (auto simp add: not_le [symmetric] floor_mono) |
260 |
||
61942 | 261 |
lemma floor_of_int [simp]: "\<lfloor>of_int z\<rfloor> = z" |
30096 | 262 |
by (rule floor_unique) simp_all |
263 |
||
61942 | 264 |
lemma floor_of_nat [simp]: "\<lfloor>of_nat n\<rfloor> = int n" |
30096 | 265 |
using floor_of_int [of "of_nat n"] by simp |
266 |
||
61942 | 267 |
lemma le_floor_add: "\<lfloor>x\<rfloor> + \<lfloor>y\<rfloor> \<le> \<lfloor>x + y\<rfloor>" |
47307
5e5ca36692b3
add floor/ceiling lemmas suggested by René Thiemann
huffman
parents:
47108
diff
changeset
|
268 |
by (simp only: le_floor_iff of_int_add add_mono of_int_floor_le) |
5e5ca36692b3
add floor/ceiling lemmas suggested by René Thiemann
huffman
parents:
47108
diff
changeset
|
269 |
|
63489 | 270 |
|
271 |
text \<open>Floor with numerals.\<close> |
|
30096 | 272 |
|
61942 | 273 |
lemma floor_zero [simp]: "\<lfloor>0\<rfloor> = 0" |
30096 | 274 |
using floor_of_int [of 0] by simp |
275 |
||
61942 | 276 |
lemma floor_one [simp]: "\<lfloor>1\<rfloor> = 1" |
30096 | 277 |
using floor_of_int [of 1] by simp |
278 |
||
61942 | 279 |
lemma floor_numeral [simp]: "\<lfloor>numeral v\<rfloor> = numeral v" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
280 |
using floor_of_int [of "numeral v"] by simp |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
281 |
|
61942 | 282 |
lemma floor_neg_numeral [simp]: "\<lfloor>- numeral v\<rfloor> = - numeral v" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54281
diff
changeset
|
283 |
using floor_of_int [of "- numeral v"] by simp |
30096 | 284 |
|
61942 | 285 |
lemma zero_le_floor [simp]: "0 \<le> \<lfloor>x\<rfloor> \<longleftrightarrow> 0 \<le> x" |
30096 | 286 |
by (simp add: le_floor_iff) |
287 |
||
61942 | 288 |
lemma one_le_floor [simp]: "1 \<le> \<lfloor>x\<rfloor> \<longleftrightarrow> 1 \<le> x" |
30096 | 289 |
by (simp add: le_floor_iff) |
290 |
||
63489 | 291 |
lemma numeral_le_floor [simp]: "numeral v \<le> \<lfloor>x\<rfloor> \<longleftrightarrow> numeral v \<le> x" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
292 |
by (simp add: le_floor_iff) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
293 |
|
63489 | 294 |
lemma neg_numeral_le_floor [simp]: "- numeral v \<le> \<lfloor>x\<rfloor> \<longleftrightarrow> - numeral v \<le> x" |
30096 | 295 |
by (simp add: le_floor_iff) |
296 |
||
61942 | 297 |
lemma zero_less_floor [simp]: "0 < \<lfloor>x\<rfloor> \<longleftrightarrow> 1 \<le> x" |
30096 | 298 |
by (simp add: less_floor_iff) |
299 |
||
61942 | 300 |
lemma one_less_floor [simp]: "1 < \<lfloor>x\<rfloor> \<longleftrightarrow> 2 \<le> x" |
30096 | 301 |
by (simp add: less_floor_iff) |
302 |
||
63489 | 303 |
lemma numeral_less_floor [simp]: "numeral v < \<lfloor>x\<rfloor> \<longleftrightarrow> numeral v + 1 \<le> x" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
304 |
by (simp add: less_floor_iff) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
305 |
|
63489 | 306 |
lemma neg_numeral_less_floor [simp]: "- numeral v < \<lfloor>x\<rfloor> \<longleftrightarrow> - numeral v + 1 \<le> x" |
30096 | 307 |
by (simp add: less_floor_iff) |
308 |
||
61942 | 309 |
lemma floor_le_zero [simp]: "\<lfloor>x\<rfloor> \<le> 0 \<longleftrightarrow> x < 1" |
30096 | 310 |
by (simp add: floor_le_iff) |
311 |
||
61942 | 312 |
lemma floor_le_one [simp]: "\<lfloor>x\<rfloor> \<le> 1 \<longleftrightarrow> x < 2" |
30096 | 313 |
by (simp add: floor_le_iff) |
314 |
||
63489 | 315 |
lemma floor_le_numeral [simp]: "\<lfloor>x\<rfloor> \<le> numeral v \<longleftrightarrow> x < numeral v + 1" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
316 |
by (simp add: floor_le_iff) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
317 |
|
63489 | 318 |
lemma floor_le_neg_numeral [simp]: "\<lfloor>x\<rfloor> \<le> - numeral v \<longleftrightarrow> x < - numeral v + 1" |
30096 | 319 |
by (simp add: floor_le_iff) |
320 |
||
61942 | 321 |
lemma floor_less_zero [simp]: "\<lfloor>x\<rfloor> < 0 \<longleftrightarrow> x < 0" |
30096 | 322 |
by (simp add: floor_less_iff) |
323 |
||
61942 | 324 |
lemma floor_less_one [simp]: "\<lfloor>x\<rfloor> < 1 \<longleftrightarrow> x < 1" |
30096 | 325 |
by (simp add: floor_less_iff) |
326 |
||
63489 | 327 |
lemma floor_less_numeral [simp]: "\<lfloor>x\<rfloor> < numeral v \<longleftrightarrow> x < numeral v" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
328 |
by (simp add: floor_less_iff) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
329 |
|
63489 | 330 |
lemma floor_less_neg_numeral [simp]: "\<lfloor>x\<rfloor> < - numeral v \<longleftrightarrow> x < - numeral v" |
30096 | 331 |
by (simp add: floor_less_iff) |
332 |
||
66154
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
333 |
lemma le_mult_floor_Ints: |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
334 |
assumes "0 \<le> a" "a \<in> Ints" |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
335 |
shows "of_int (\<lfloor>a\<rfloor> * \<lfloor>b\<rfloor>) \<le> (of_int\<lfloor>a * b\<rfloor> :: 'a :: linordered_idom)" |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
336 |
by (metis Ints_cases assms floor_less_iff floor_of_int linorder_not_less mult_left_mono of_int_floor_le of_int_less_iff of_int_mult) |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
337 |
|
63489 | 338 |
|
339 |
text \<open>Addition and subtraction of integers.\<close> |
|
30096 | 340 |
|
63599 | 341 |
lemma floor_add_int: "\<lfloor>x\<rfloor> + z = \<lfloor>x + of_int z\<rfloor>" |
342 |
using floor_correct [of x] by (simp add: floor_unique[symmetric]) |
|
30096 | 343 |
|
63599 | 344 |
lemma int_add_floor: "z + \<lfloor>x\<rfloor> = \<lfloor>of_int z + x\<rfloor>" |
345 |
using floor_correct [of x] by (simp add: floor_unique[symmetric]) |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
346 |
|
63599 | 347 |
lemma one_add_floor: "\<lfloor>x\<rfloor> + 1 = \<lfloor>x + 1\<rfloor>" |
348 |
using floor_add_int [of x 1] by simp |
|
30096 | 349 |
|
61942 | 350 |
lemma floor_diff_of_int [simp]: "\<lfloor>x - of_int z\<rfloor> = \<lfloor>x\<rfloor> - z" |
63599 | 351 |
using floor_add_int [of x "- z"] by (simp add: algebra_simps) |
30096 | 352 |
|
61942 | 353 |
lemma floor_uminus_of_int [simp]: "\<lfloor>- (of_int z)\<rfloor> = - z" |
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
354 |
by (metis floor_diff_of_int [of 0] diff_0 floor_zero) |
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
355 |
|
63489 | 356 |
lemma floor_diff_numeral [simp]: "\<lfloor>x - numeral v\<rfloor> = \<lfloor>x\<rfloor> - numeral v" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
357 |
using floor_diff_of_int [of x "numeral v"] by simp |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
358 |
|
61942 | 359 |
lemma floor_diff_one [simp]: "\<lfloor>x - 1\<rfloor> = \<lfloor>x\<rfloor> - 1" |
30096 | 360 |
using floor_diff_of_int [of x 1] by simp |
361 |
||
58097
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58040
diff
changeset
|
362 |
lemma le_mult_floor: |
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58040
diff
changeset
|
363 |
assumes "0 \<le> a" and "0 \<le> b" |
61942 | 364 |
shows "\<lfloor>a\<rfloor> * \<lfloor>b\<rfloor> \<le> \<lfloor>a * b\<rfloor>" |
58097
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58040
diff
changeset
|
365 |
proof - |
63489 | 366 |
have "of_int \<lfloor>a\<rfloor> \<le> a" and "of_int \<lfloor>b\<rfloor> \<le> b" |
367 |
by (auto intro: of_int_floor_le) |
|
368 |
then have "of_int (\<lfloor>a\<rfloor> * \<lfloor>b\<rfloor>) \<le> a * b" |
|
58097
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58040
diff
changeset
|
369 |
using assms by (auto intro!: mult_mono) |
61942 | 370 |
also have "a * b < of_int (\<lfloor>a * b\<rfloor> + 1)" |
58097
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58040
diff
changeset
|
371 |
using floor_correct[of "a * b"] by auto |
63489 | 372 |
finally show ?thesis |
373 |
unfolding of_int_less_iff by simp |
|
58097
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58040
diff
changeset
|
374 |
qed |
cfd3cff9387b
add simp rules for divisions of numerals in floor and ceiling.
hoelzl
parents:
58040
diff
changeset
|
375 |
|
63489 | 376 |
lemma floor_divide_of_int_eq: "\<lfloor>of_int k / of_int l\<rfloor> = k div l" |
377 |
for k l :: int |
|
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
378 |
proof (cases "l = 0") |
63489 | 379 |
case True |
380 |
then show ?thesis by simp |
|
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
381 |
next |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
382 |
case False |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
383 |
have *: "\<lfloor>of_int (k mod l) / of_int l :: 'a\<rfloor> = 0" |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
384 |
proof (cases "l > 0") |
63489 | 385 |
case True |
386 |
then show ?thesis |
|
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
387 |
by (auto intro: floor_unique) |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
388 |
next |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
389 |
case False |
63489 | 390 |
obtain r where "r = - l" |
391 |
by blast |
|
392 |
then have l: "l = - r" |
|
393 |
by simp |
|
63540 | 394 |
with \<open>l \<noteq> 0\<close> False have "r > 0" |
63489 | 395 |
by simp |
63540 | 396 |
with l show ?thesis |
63489 | 397 |
using pos_mod_bound [of r] |
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
398 |
by (auto simp add: zmod_zminus2_eq_if less_le field_simps intro: floor_unique) |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
399 |
qed |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
400 |
have "(of_int k :: 'a) = of_int (k div l * l + k mod l)" |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
401 |
by simp |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
402 |
also have "\<dots> = (of_int (k div l) + of_int (k mod l) / of_int l) * of_int l" |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
403 |
using False by (simp only: of_int_add) (simp add: field_simps) |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
404 |
finally have "(of_int k / of_int l :: 'a) = \<dots> / of_int l" |
63331 | 405 |
by simp |
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
406 |
then have "(of_int k / of_int l :: 'a) = of_int (k div l) + of_int (k mod l) / of_int l" |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
407 |
using False by (simp only:) (simp add: field_simps) |
63331 | 408 |
then have "\<lfloor>of_int k / of_int l :: 'a\<rfloor> = \<lfloor>of_int (k div l) + of_int (k mod l) / of_int l :: 'a\<rfloor>" |
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
409 |
by simp |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
410 |
then have "\<lfloor>of_int k / of_int l :: 'a\<rfloor> = \<lfloor>of_int (k mod l) / of_int l + of_int (k div l) :: 'a\<rfloor>" |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
411 |
by (simp add: ac_simps) |
60128 | 412 |
then have "\<lfloor>of_int k / of_int l :: 'a\<rfloor> = \<lfloor>of_int (k mod l) / of_int l :: 'a\<rfloor> + k div l" |
63599 | 413 |
by (simp add: floor_add_int) |
63489 | 414 |
with * show ?thesis |
415 |
by simp |
|
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
416 |
qed |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
417 |
|
63489 | 418 |
lemma floor_divide_of_nat_eq: "\<lfloor>of_nat m / of_nat n\<rfloor> = of_nat (m div n)" |
419 |
for m n :: nat |
|
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
420 |
proof (cases "n = 0") |
63489 | 421 |
case True |
422 |
then show ?thesis by simp |
|
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
423 |
next |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
424 |
case False |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
425 |
then have *: "\<lfloor>of_nat (m mod n) / of_nat n :: 'a\<rfloor> = 0" |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
426 |
by (auto intro: floor_unique) |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
427 |
have "(of_nat m :: 'a) = of_nat (m div n * n + m mod n)" |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
428 |
by simp |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
429 |
also have "\<dots> = (of_nat (m div n) + of_nat (m mod n) / of_nat n) * of_nat n" |
63489 | 430 |
using False by (simp only: of_nat_add) (simp add: field_simps) |
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
431 |
finally have "(of_nat m / of_nat n :: 'a) = \<dots> / of_nat n" |
63331 | 432 |
by simp |
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
433 |
then have "(of_nat m / of_nat n :: 'a) = of_nat (m div n) + of_nat (m mod n) / of_nat n" |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
434 |
using False by (simp only:) simp |
63331 | 435 |
then have "\<lfloor>of_nat m / of_nat n :: 'a\<rfloor> = \<lfloor>of_nat (m div n) + of_nat (m mod n) / of_nat n :: 'a\<rfloor>" |
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
436 |
by simp |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
437 |
then have "\<lfloor>of_nat m / of_nat n :: 'a\<rfloor> = \<lfloor>of_nat (m mod n) / of_nat n + of_nat (m div n) :: 'a\<rfloor>" |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
438 |
by (simp add: ac_simps) |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
439 |
moreover have "(of_nat (m div n) :: 'a) = of_int (of_nat (m div n))" |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
440 |
by simp |
63489 | 441 |
ultimately have "\<lfloor>of_nat m / of_nat n :: 'a\<rfloor> = |
442 |
\<lfloor>of_nat (m mod n) / of_nat n :: 'a\<rfloor> + of_nat (m div n)" |
|
63599 | 443 |
by (simp only: floor_add_int) |
63489 | 444 |
with * show ?thesis |
445 |
by simp |
|
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
446 |
qed |
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
447 |
|
68499
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
448 |
lemma floor_divide_lower: |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
449 |
fixes q :: "'a::floor_ceiling" |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
450 |
shows "q > 0 \<Longrightarrow> of_int \<lfloor>p / q\<rfloor> * q \<le> p" |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
451 |
using of_int_floor_le pos_le_divide_eq by blast |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
452 |
|
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
453 |
lemma floor_divide_upper: |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
454 |
fixes q :: "'a::floor_ceiling" |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
455 |
shows "q > 0 \<Longrightarrow> p < (of_int \<lfloor>p / q\<rfloor> + 1) * q" |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
456 |
by (meson floor_eq_iff pos_divide_less_eq) |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
457 |
|
59984
4f1eccec320c
conversion between division on nat/int and division in archmedean fields
haftmann
parents:
59613
diff
changeset
|
458 |
|
60758 | 459 |
subsection \<open>Ceiling function\<close> |
30096 | 460 |
|
61942 | 461 |
definition ceiling :: "'a::floor_ceiling \<Rightarrow> int" ("\<lceil>_\<rceil>") |
462 |
where "\<lceil>x\<rceil> = - \<lfloor>- x\<rfloor>" |
|
30096 | 463 |
|
61942 | 464 |
lemma ceiling_correct: "of_int \<lceil>x\<rceil> - 1 < x \<and> x \<le> of_int \<lceil>x\<rceil>" |
63489 | 465 |
unfolding ceiling_def using floor_correct [of "- x"] |
466 |
by (simp add: le_minus_iff) |
|
30096 | 467 |
|
63489 | 468 |
lemma ceiling_unique: "of_int z - 1 < x \<Longrightarrow> x \<le> of_int z \<Longrightarrow> \<lceil>x\<rceil> = z" |
30096 | 469 |
unfolding ceiling_def using floor_unique [of "- z" "- x"] by simp |
470 |
||
66515 | 471 |
lemma ceiling_eq_iff: "\<lceil>x\<rceil> = a \<longleftrightarrow> of_int a - 1 < x \<and> x \<le> of_int a" |
472 |
using ceiling_correct ceiling_unique by auto |
|
473 |
||
61942 | 474 |
lemma le_of_int_ceiling [simp]: "x \<le> of_int \<lceil>x\<rceil>" |
30096 | 475 |
using ceiling_correct .. |
476 |
||
61942 | 477 |
lemma ceiling_le_iff: "\<lceil>x\<rceil> \<le> z \<longleftrightarrow> x \<le> of_int z" |
30096 | 478 |
unfolding ceiling_def using le_floor_iff [of "- z" "- x"] by auto |
479 |
||
61942 | 480 |
lemma less_ceiling_iff: "z < \<lceil>x\<rceil> \<longleftrightarrow> of_int z < x" |
30096 | 481 |
by (simp add: not_le [symmetric] ceiling_le_iff) |
482 |
||
61942 | 483 |
lemma ceiling_less_iff: "\<lceil>x\<rceil> < z \<longleftrightarrow> x \<le> of_int z - 1" |
30096 | 484 |
using ceiling_le_iff [of x "z - 1"] by simp |
485 |
||
61942 | 486 |
lemma le_ceiling_iff: "z \<le> \<lceil>x\<rceil> \<longleftrightarrow> of_int z - 1 < x" |
30096 | 487 |
by (simp add: not_less [symmetric] ceiling_less_iff) |
488 |
||
61942 | 489 |
lemma ceiling_mono: "x \<ge> y \<Longrightarrow> \<lceil>x\<rceil> \<ge> \<lceil>y\<rceil>" |
30096 | 490 |
unfolding ceiling_def by (simp add: floor_mono) |
491 |
||
61942 | 492 |
lemma ceiling_less_cancel: "\<lceil>x\<rceil> < \<lceil>y\<rceil> \<Longrightarrow> x < y" |
30096 | 493 |
by (auto simp add: not_le [symmetric] ceiling_mono) |
494 |
||
61942 | 495 |
lemma ceiling_of_int [simp]: "\<lceil>of_int z\<rceil> = z" |
30096 | 496 |
by (rule ceiling_unique) simp_all |
497 |
||
61942 | 498 |
lemma ceiling_of_nat [simp]: "\<lceil>of_nat n\<rceil> = int n" |
30096 | 499 |
using ceiling_of_int [of "of_nat n"] by simp |
500 |
||
61942 | 501 |
lemma ceiling_add_le: "\<lceil>x + y\<rceil> \<le> \<lceil>x\<rceil> + \<lceil>y\<rceil>" |
47307
5e5ca36692b3
add floor/ceiling lemmas suggested by René Thiemann
huffman
parents:
47108
diff
changeset
|
502 |
by (simp only: ceiling_le_iff of_int_add add_mono le_of_int_ceiling) |
5e5ca36692b3
add floor/ceiling lemmas suggested by René Thiemann
huffman
parents:
47108
diff
changeset
|
503 |
|
66154
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
504 |
lemma mult_ceiling_le: |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
505 |
assumes "0 \<le> a" and "0 \<le> b" |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
506 |
shows "\<lceil>a * b\<rceil> \<le> \<lceil>a\<rceil> * \<lceil>b\<rceil>" |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
507 |
by (metis assms ceiling_le_iff ceiling_mono le_of_int_ceiling mult_mono of_int_mult) |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
508 |
|
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
509 |
lemma mult_ceiling_le_Ints: |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
510 |
assumes "0 \<le> a" "a \<in> Ints" |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
511 |
shows "(of_int \<lceil>a * b\<rceil> :: 'a :: linordered_idom) \<le> of_int(\<lceil>a\<rceil> * \<lceil>b\<rceil>)" |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
512 |
by (metis Ints_cases assms ceiling_le_iff ceiling_of_int le_of_int_ceiling mult_left_mono of_int_le_iff of_int_mult) |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
513 |
|
63879
15bbf6360339
simple new lemmas, mostly about sets
paulson <lp15@cam.ac.uk>
parents:
63621
diff
changeset
|
514 |
lemma finite_int_segment: |
15bbf6360339
simple new lemmas, mostly about sets
paulson <lp15@cam.ac.uk>
parents:
63621
diff
changeset
|
515 |
fixes a :: "'a::floor_ceiling" |
15bbf6360339
simple new lemmas, mostly about sets
paulson <lp15@cam.ac.uk>
parents:
63621
diff
changeset
|
516 |
shows "finite {x \<in> \<int>. a \<le> x \<and> x \<le> b}" |
15bbf6360339
simple new lemmas, mostly about sets
paulson <lp15@cam.ac.uk>
parents:
63621
diff
changeset
|
517 |
proof - |
15bbf6360339
simple new lemmas, mostly about sets
paulson <lp15@cam.ac.uk>
parents:
63621
diff
changeset
|
518 |
have "finite {ceiling a..floor b}" |
15bbf6360339
simple new lemmas, mostly about sets
paulson <lp15@cam.ac.uk>
parents:
63621
diff
changeset
|
519 |
by simp |
15bbf6360339
simple new lemmas, mostly about sets
paulson <lp15@cam.ac.uk>
parents:
63621
diff
changeset
|
520 |
moreover have "{x \<in> \<int>. a \<le> x \<and> x \<le> b} = of_int ` {ceiling a..floor b}" |
15bbf6360339
simple new lemmas, mostly about sets
paulson <lp15@cam.ac.uk>
parents:
63621
diff
changeset
|
521 |
by (auto simp: le_floor_iff ceiling_le_iff elim!: Ints_cases) |
15bbf6360339
simple new lemmas, mostly about sets
paulson <lp15@cam.ac.uk>
parents:
63621
diff
changeset
|
522 |
ultimately show ?thesis |
15bbf6360339
simple new lemmas, mostly about sets
paulson <lp15@cam.ac.uk>
parents:
63621
diff
changeset
|
523 |
by simp |
15bbf6360339
simple new lemmas, mostly about sets
paulson <lp15@cam.ac.uk>
parents:
63621
diff
changeset
|
524 |
qed |
15bbf6360339
simple new lemmas, mostly about sets
paulson <lp15@cam.ac.uk>
parents:
63621
diff
changeset
|
525 |
|
66154
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
526 |
corollary finite_abs_int_segment: |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
527 |
fixes a :: "'a::floor_ceiling" |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
528 |
shows "finite {k \<in> \<int>. \<bar>k\<bar> \<le> a}" |
bc5e6461f759
Tidying up integration theory and some new theorems
paulson <lp15@cam.ac.uk>
parents:
64317
diff
changeset
|
529 |
using finite_int_segment [of "-a" a] by (auto simp add: abs_le_iff conj_commute minus_le_iff) |
63489 | 530 |
|
66793
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
531 |
|
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
532 |
subsubsection \<open>Ceiling with numerals.\<close> |
30096 | 533 |
|
61942 | 534 |
lemma ceiling_zero [simp]: "\<lceil>0\<rceil> = 0" |
30096 | 535 |
using ceiling_of_int [of 0] by simp |
536 |
||
61942 | 537 |
lemma ceiling_one [simp]: "\<lceil>1\<rceil> = 1" |
30096 | 538 |
using ceiling_of_int [of 1] by simp |
539 |
||
61942 | 540 |
lemma ceiling_numeral [simp]: "\<lceil>numeral v\<rceil> = numeral v" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
541 |
using ceiling_of_int [of "numeral v"] by simp |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
542 |
|
61942 | 543 |
lemma ceiling_neg_numeral [simp]: "\<lceil>- numeral v\<rceil> = - numeral v" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54281
diff
changeset
|
544 |
using ceiling_of_int [of "- numeral v"] by simp |
30096 | 545 |
|
61942 | 546 |
lemma ceiling_le_zero [simp]: "\<lceil>x\<rceil> \<le> 0 \<longleftrightarrow> x \<le> 0" |
30096 | 547 |
by (simp add: ceiling_le_iff) |
548 |
||
61942 | 549 |
lemma ceiling_le_one [simp]: "\<lceil>x\<rceil> \<le> 1 \<longleftrightarrow> x \<le> 1" |
30096 | 550 |
by (simp add: ceiling_le_iff) |
551 |
||
63489 | 552 |
lemma ceiling_le_numeral [simp]: "\<lceil>x\<rceil> \<le> numeral v \<longleftrightarrow> x \<le> numeral v" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
553 |
by (simp add: ceiling_le_iff) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
554 |
|
63489 | 555 |
lemma ceiling_le_neg_numeral [simp]: "\<lceil>x\<rceil> \<le> - numeral v \<longleftrightarrow> x \<le> - numeral v" |
30096 | 556 |
by (simp add: ceiling_le_iff) |
557 |
||
61942 | 558 |
lemma ceiling_less_zero [simp]: "\<lceil>x\<rceil> < 0 \<longleftrightarrow> x \<le> -1" |
30096 | 559 |
by (simp add: ceiling_less_iff) |
560 |
||
61942 | 561 |
lemma ceiling_less_one [simp]: "\<lceil>x\<rceil> < 1 \<longleftrightarrow> x \<le> 0" |
30096 | 562 |
by (simp add: ceiling_less_iff) |
563 |
||
63489 | 564 |
lemma ceiling_less_numeral [simp]: "\<lceil>x\<rceil> < numeral v \<longleftrightarrow> x \<le> numeral v - 1" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
565 |
by (simp add: ceiling_less_iff) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
566 |
|
63489 | 567 |
lemma ceiling_less_neg_numeral [simp]: "\<lceil>x\<rceil> < - numeral v \<longleftrightarrow> x \<le> - numeral v - 1" |
30096 | 568 |
by (simp add: ceiling_less_iff) |
569 |
||
61942 | 570 |
lemma zero_le_ceiling [simp]: "0 \<le> \<lceil>x\<rceil> \<longleftrightarrow> -1 < x" |
30096 | 571 |
by (simp add: le_ceiling_iff) |
572 |
||
61942 | 573 |
lemma one_le_ceiling [simp]: "1 \<le> \<lceil>x\<rceil> \<longleftrightarrow> 0 < x" |
30096 | 574 |
by (simp add: le_ceiling_iff) |
575 |
||
63489 | 576 |
lemma numeral_le_ceiling [simp]: "numeral v \<le> \<lceil>x\<rceil> \<longleftrightarrow> numeral v - 1 < x" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
577 |
by (simp add: le_ceiling_iff) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
578 |
|
63489 | 579 |
lemma neg_numeral_le_ceiling [simp]: "- numeral v \<le> \<lceil>x\<rceil> \<longleftrightarrow> - numeral v - 1 < x" |
30096 | 580 |
by (simp add: le_ceiling_iff) |
581 |
||
61942 | 582 |
lemma zero_less_ceiling [simp]: "0 < \<lceil>x\<rceil> \<longleftrightarrow> 0 < x" |
30096 | 583 |
by (simp add: less_ceiling_iff) |
584 |
||
61942 | 585 |
lemma one_less_ceiling [simp]: "1 < \<lceil>x\<rceil> \<longleftrightarrow> 1 < x" |
30096 | 586 |
by (simp add: less_ceiling_iff) |
587 |
||
63489 | 588 |
lemma numeral_less_ceiling [simp]: "numeral v < \<lceil>x\<rceil> \<longleftrightarrow> numeral v < x" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
589 |
by (simp add: less_ceiling_iff) |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
590 |
|
63489 | 591 |
lemma neg_numeral_less_ceiling [simp]: "- numeral v < \<lceil>x\<rceil> \<longleftrightarrow> - numeral v < x" |
30096 | 592 |
by (simp add: less_ceiling_iff) |
593 |
||
61942 | 594 |
lemma ceiling_altdef: "\<lceil>x\<rceil> = (if x = of_int \<lfloor>x\<rfloor> then \<lfloor>x\<rfloor> else \<lfloor>x\<rfloor> + 1)" |
63489 | 595 |
by (intro ceiling_unique; simp, linarith?) |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
596 |
|
61942 | 597 |
lemma floor_le_ceiling [simp]: "\<lfloor>x\<rfloor> \<le> \<lceil>x\<rceil>" |
598 |
by (simp add: ceiling_altdef) |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
599 |
|
63489 | 600 |
|
66793
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
601 |
subsubsection \<open>Addition and subtraction of integers.\<close> |
30096 | 602 |
|
61942 | 603 |
lemma ceiling_add_of_int [simp]: "\<lceil>x + of_int z\<rceil> = \<lceil>x\<rceil> + z" |
61649
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents:
61531
diff
changeset
|
604 |
using ceiling_correct [of x] by (simp add: ceiling_def) |
30096 | 605 |
|
61942 | 606 |
lemma ceiling_add_numeral [simp]: "\<lceil>x + numeral v\<rceil> = \<lceil>x\<rceil> + numeral v" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
607 |
using ceiling_add_of_int [of x "numeral v"] by simp |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
608 |
|
61942 | 609 |
lemma ceiling_add_one [simp]: "\<lceil>x + 1\<rceil> = \<lceil>x\<rceil> + 1" |
30096 | 610 |
using ceiling_add_of_int [of x 1] by simp |
611 |
||
61942 | 612 |
lemma ceiling_diff_of_int [simp]: "\<lceil>x - of_int z\<rceil> = \<lceil>x\<rceil> - z" |
30096 | 613 |
using ceiling_add_of_int [of x "- z"] by (simp add: algebra_simps) |
614 |
||
61942 | 615 |
lemma ceiling_diff_numeral [simp]: "\<lceil>x - numeral v\<rceil> = \<lceil>x\<rceil> - numeral v" |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
616 |
using ceiling_diff_of_int [of x "numeral v"] by simp |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
43733
diff
changeset
|
617 |
|
61942 | 618 |
lemma ceiling_diff_one [simp]: "\<lceil>x - 1\<rceil> = \<lceil>x\<rceil> - 1" |
30096 | 619 |
using ceiling_diff_of_int [of x 1] by simp |
620 |
||
61942 | 621 |
lemma ceiling_split[arith_split]: "P \<lceil>t\<rceil> \<longleftrightarrow> (\<forall>i. of_int i - 1 < t \<and> t \<le> of_int i \<longrightarrow> P i)" |
58040
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
54489
diff
changeset
|
622 |
by (auto simp add: ceiling_unique ceiling_correct) |
9a867afaab5a
better linarith support for floor, ceiling, natfloor, and natceiling
hoelzl
parents:
54489
diff
changeset
|
623 |
|
61942 | 624 |
lemma ceiling_diff_floor_le_1: "\<lceil>x\<rceil> - \<lfloor>x\<rfloor> \<le> 1" |
47592 | 625 |
proof - |
63331 | 626 |
have "of_int \<lceil>x\<rceil> - 1 < x" |
47592 | 627 |
using ceiling_correct[of x] by simp |
628 |
also have "x < of_int \<lfloor>x\<rfloor> + 1" |
|
629 |
using floor_correct[of x] by simp_all |
|
630 |
finally have "of_int (\<lceil>x\<rceil> - \<lfloor>x\<rfloor>) < (of_int 2::'a)" |
|
631 |
by simp |
|
632 |
then show ?thesis |
|
633 |
unfolding of_int_less_iff by simp |
|
634 |
qed |
|
30096 | 635 |
|
66793
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
636 |
lemma nat_approx_posE: |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
637 |
fixes e:: "'a::{archimedean_field,floor_ceiling}" |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
638 |
assumes "0 < e" |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
639 |
obtains n :: nat where "1 / of_nat(Suc n) < e" |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
640 |
proof |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
641 |
have "(1::'a) / of_nat (Suc (nat \<lceil>1/e\<rceil>)) < 1 / of_int (\<lceil>1/e\<rceil>)" |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
642 |
proof (rule divide_strict_left_mono) |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
643 |
show "(of_int \<lceil>1 / e\<rceil>::'a) < of_nat (Suc (nat \<lceil>1 / e\<rceil>))" |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
644 |
using assms by (simp add: field_simps) |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
645 |
show "(0::'a) < of_nat (Suc (nat \<lceil>1 / e\<rceil>)) * of_int \<lceil>1 / e\<rceil>" |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
646 |
using assms by (auto simp: zero_less_mult_iff pos_add_strict) |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
647 |
qed auto |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
648 |
also have "1 / of_int (\<lceil>1/e\<rceil>) \<le> 1 / (1/e)" |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
649 |
by (rule divide_left_mono) (auto simp: \<open>0 < e\<close> ceiling_correct) |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
650 |
also have "\<dots> = e" by simp |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
651 |
finally show "1 / of_nat (Suc (nat \<lceil>1 / e\<rceil>)) < e" |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
652 |
by metis |
deabce3ccf1f
new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents:
66515
diff
changeset
|
653 |
qed |
63489 | 654 |
|
68499
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
655 |
lemma ceiling_divide_upper: |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
656 |
fixes q :: "'a::floor_ceiling" |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
657 |
shows "q > 0 \<Longrightarrow> p \<le> of_int (ceiling (p / q)) * q" |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
658 |
by (meson divide_le_eq le_of_int_ceiling) |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
659 |
|
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
660 |
lemma ceiling_divide_lower: |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
661 |
fixes q :: "'a::floor_ceiling" |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
662 |
shows "q > 0 \<Longrightarrow> (of_int \<lceil>p / q\<rceil> - 1) * q < p" |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
663 |
by (meson ceiling_eq_iff pos_less_divide_eq) |
d4312962161a
Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents:
66793
diff
changeset
|
664 |
|
60758 | 665 |
subsection \<open>Negation\<close> |
30096 | 666 |
|
61942 | 667 |
lemma floor_minus: "\<lfloor>- x\<rfloor> = - \<lceil>x\<rceil>" |
30096 | 668 |
unfolding ceiling_def by simp |
669 |
||
61942 | 670 |
lemma ceiling_minus: "\<lceil>- x\<rceil> = - \<lfloor>x\<rfloor>" |
30096 | 671 |
unfolding ceiling_def by simp |
672 |
||
63945
444eafb6e864
a few new theorems and a renaming
paulson <lp15@cam.ac.uk>
parents:
63879
diff
changeset
|
673 |
subsection \<open>Natural numbers\<close> |
444eafb6e864
a few new theorems and a renaming
paulson <lp15@cam.ac.uk>
parents:
63879
diff
changeset
|
674 |
|
444eafb6e864
a few new theorems and a renaming
paulson <lp15@cam.ac.uk>
parents:
63879
diff
changeset
|
675 |
lemma of_nat_floor: "r\<ge>0 \<Longrightarrow> of_nat (nat \<lfloor>r\<rfloor>) \<le> r" |
444eafb6e864
a few new theorems and a renaming
paulson <lp15@cam.ac.uk>
parents:
63879
diff
changeset
|
676 |
by simp |
444eafb6e864
a few new theorems and a renaming
paulson <lp15@cam.ac.uk>
parents:
63879
diff
changeset
|
677 |
|
444eafb6e864
a few new theorems and a renaming
paulson <lp15@cam.ac.uk>
parents:
63879
diff
changeset
|
678 |
lemma of_nat_ceiling: "of_nat (nat \<lceil>r\<rceil>) \<ge> r" |
444eafb6e864
a few new theorems and a renaming
paulson <lp15@cam.ac.uk>
parents:
63879
diff
changeset
|
679 |
by (cases "r\<ge>0") auto |
444eafb6e864
a few new theorems and a renaming
paulson <lp15@cam.ac.uk>
parents:
63879
diff
changeset
|
680 |
|
444eafb6e864
a few new theorems and a renaming
paulson <lp15@cam.ac.uk>
parents:
63879
diff
changeset
|
681 |
|
60758 | 682 |
subsection \<open>Frac Function\<close> |
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
683 |
|
63489 | 684 |
definition frac :: "'a \<Rightarrow> 'a::floor_ceiling" |
685 |
where "frac x \<equiv> x - of_int \<lfloor>x\<rfloor>" |
|
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
686 |
|
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
687 |
lemma frac_lt_1: "frac x < 1" |
63489 | 688 |
by (simp add: frac_def) linarith |
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
689 |
|
61070 | 690 |
lemma frac_eq_0_iff [simp]: "frac x = 0 \<longleftrightarrow> x \<in> \<int>" |
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
691 |
by (simp add: frac_def) (metis Ints_cases Ints_of_int floor_of_int ) |
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
692 |
|
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
693 |
lemma frac_ge_0 [simp]: "frac x \<ge> 0" |
63489 | 694 |
unfolding frac_def by linarith |
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
695 |
|
61070 | 696 |
lemma frac_gt_0_iff [simp]: "frac x > 0 \<longleftrightarrow> x \<notin> \<int>" |
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
697 |
by (metis frac_eq_0_iff frac_ge_0 le_less less_irrefl) |
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
698 |
|
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
699 |
lemma frac_of_int [simp]: "frac (of_int z) = 0" |
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
700 |
by (simp add: frac_def) |
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
701 |
|
68721 | 702 |
lemma frac_frac [simp]: "frac (frac x) = frac x" |
703 |
by (simp add: frac_def) |
|
704 |
||
63331 | 705 |
lemma floor_add: "\<lfloor>x + y\<rfloor> = (if frac x + frac y < 1 then \<lfloor>x\<rfloor> + \<lfloor>y\<rfloor> else (\<lfloor>x\<rfloor> + \<lfloor>y\<rfloor>) + 1)" |
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
706 |
proof - |
63599 | 707 |
have "x + y < 1 + (of_int \<lfloor>x\<rfloor> + of_int \<lfloor>y\<rfloor>) \<Longrightarrow> \<lfloor>x + y\<rfloor> = \<lfloor>x\<rfloor> + \<lfloor>y\<rfloor>" |
708 |
by (metis add.commute floor_unique le_floor_add le_floor_iff of_int_add) |
|
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
709 |
moreover |
63599 | 710 |
have "\<not> x + y < 1 + (of_int \<lfloor>x\<rfloor> + of_int \<lfloor>y\<rfloor>) \<Longrightarrow> \<lfloor>x + y\<rfloor> = 1 + (\<lfloor>x\<rfloor> + \<lfloor>y\<rfloor>)" |
66515 | 711 |
apply (simp add: floor_eq_iff) |
63489 | 712 |
apply (auto simp add: algebra_simps) |
713 |
apply linarith |
|
714 |
done |
|
63599 | 715 |
ultimately show ?thesis by (auto simp add: frac_def algebra_simps) |
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
716 |
qed |
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
717 |
|
63621 | 718 |
lemma floor_add2[simp]: "x \<in> \<int> \<or> y \<in> \<int> \<Longrightarrow> \<lfloor>x + y\<rfloor> = \<lfloor>x\<rfloor> + \<lfloor>y\<rfloor>" |
719 |
by (metis add.commute add.left_neutral frac_lt_1 floor_add frac_eq_0_iff) |
|
63597 | 720 |
|
63489 | 721 |
lemma frac_add: |
722 |
"frac (x + y) = (if frac x + frac y < 1 then frac x + frac y else (frac x + frac y) - 1)" |
|
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
723 |
by (simp add: frac_def floor_add) |
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
724 |
|
63489 | 725 |
lemma frac_unique_iff: "frac x = a \<longleftrightarrow> x - a \<in> \<int> \<and> 0 \<le> a \<and> a < 1" |
726 |
for x :: "'a::floor_ceiling" |
|
62348 | 727 |
apply (auto simp: Ints_def frac_def algebra_simps floor_unique) |
63489 | 728 |
apply linarith+ |
62348 | 729 |
done |
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
730 |
|
63489 | 731 |
lemma frac_eq: "frac x = x \<longleftrightarrow> 0 \<le> x \<and> x < 1" |
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
732 |
by (simp add: frac_unique_iff) |
63331 | 733 |
|
63489 | 734 |
lemma frac_neg: "frac (- x) = (if x \<in> \<int> then 0 else 1 - frac x)" |
735 |
for x :: "'a::floor_ceiling" |
|
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
736 |
apply (auto simp add: frac_unique_iff) |
63489 | 737 |
apply (simp add: frac_def) |
738 |
apply (meson frac_lt_1 less_iff_diff_less_0 not_le not_less_iff_gr_or_eq) |
|
739 |
done |
|
59613
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents:
58889
diff
changeset
|
740 |
|
68721 | 741 |
lemma frac_in_Ints_iff [simp]: "frac x \<in> \<int> \<longleftrightarrow> x \<in> \<int>" |
742 |
proof safe |
|
743 |
assume "frac x \<in> \<int>" |
|
744 |
hence "of_int \<lfloor>x\<rfloor> + frac x \<in> \<int>" by auto |
|
745 |
also have "of_int \<lfloor>x\<rfloor> + frac x = x" by (simp add: frac_def) |
|
746 |
finally show "x \<in> \<int>" . |
|
747 |
qed (auto simp: frac_def) |
|
748 |
||
70365
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
68721
diff
changeset
|
749 |
lemma frac_1_eq: "frac (x+1) = frac x" |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
68721
diff
changeset
|
750 |
by (simp add: frac_def) |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
68721
diff
changeset
|
751 |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
752 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
753 |
subsection \<open>Rounding to the nearest integer\<close> |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
754 |
|
63489 | 755 |
definition round :: "'a::floor_ceiling \<Rightarrow> int" |
756 |
where "round x = \<lfloor>x + 1/2\<rfloor>" |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
757 |
|
63489 | 758 |
lemma of_int_round_ge: "of_int (round x) \<ge> x - 1/2" |
759 |
and of_int_round_le: "of_int (round x) \<le> x + 1/2" |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
760 |
and of_int_round_abs_le: "\<bar>of_int (round x) - x\<bar> \<le> 1/2" |
63489 | 761 |
and of_int_round_gt: "of_int (round x) > x - 1/2" |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
762 |
proof - |
63489 | 763 |
from floor_correct[of "x + 1/2"] have "x + 1/2 < of_int (round x) + 1" |
764 |
by (simp add: round_def) |
|
765 |
from add_strict_right_mono[OF this, of "-1"] show A: "of_int (round x) > x - 1/2" |
|
766 |
by simp |
|
767 |
then show "of_int (round x) \<ge> x - 1/2" |
|
768 |
by simp |
|
769 |
from floor_correct[of "x + 1/2"] show "of_int (round x) \<le> x + 1/2" |
|
770 |
by (simp add: round_def) |
|
771 |
with A show "\<bar>of_int (round x) - x\<bar> \<le> 1/2" |
|
772 |
by linarith |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
773 |
qed |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
774 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
775 |
lemma round_of_int [simp]: "round (of_int n) = n" |
66515 | 776 |
unfolding round_def by (subst floor_eq_iff) force |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
777 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
778 |
lemma round_0 [simp]: "round 0 = 0" |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
779 |
using round_of_int[of 0] by simp |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
780 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
781 |
lemma round_1 [simp]: "round 1 = 1" |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
782 |
using round_of_int[of 1] by simp |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
783 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
784 |
lemma round_numeral [simp]: "round (numeral n) = numeral n" |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
785 |
using round_of_int[of "numeral n"] by simp |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
786 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
787 |
lemma round_neg_numeral [simp]: "round (-numeral n) = -numeral n" |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
788 |
using round_of_int[of "-numeral n"] by simp |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
789 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
790 |
lemma round_of_nat [simp]: "round (of_nat n) = of_nat n" |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
791 |
using round_of_int[of "int n"] by simp |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
792 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
793 |
lemma round_mono: "x \<le> y \<Longrightarrow> round x \<le> round y" |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
794 |
unfolding round_def by (intro floor_mono) simp |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
795 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
796 |
lemma round_unique: "of_int y > x - 1/2 \<Longrightarrow> of_int y \<le> x + 1/2 \<Longrightarrow> round x = y" |
63489 | 797 |
unfolding round_def |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
798 |
proof (rule floor_unique) |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
799 |
assume "x - 1 / 2 < of_int y" |
63489 | 800 |
from add_strict_left_mono[OF this, of 1] show "x + 1 / 2 < of_int y + 1" |
801 |
by simp |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
802 |
qed |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
803 |
|
64317 | 804 |
lemma round_unique': "\<bar>x - of_int n\<bar> < 1/2 \<Longrightarrow> round x = n" |
805 |
by (subst (asm) abs_less_iff, rule round_unique) (simp_all add: field_simps) |
|
806 |
||
61942 | 807 |
lemma round_altdef: "round x = (if frac x \<ge> 1/2 then \<lceil>x\<rceil> else \<lfloor>x\<rfloor>)" |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
808 |
by (cases "frac x \<ge> 1/2") |
63489 | 809 |
(rule round_unique, ((simp add: frac_def field_simps ceiling_altdef; linarith)+)[2])+ |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
810 |
|
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
811 |
lemma floor_le_round: "\<lfloor>x\<rfloor> \<le> round x" |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
812 |
unfolding round_def by (intro floor_mono) simp |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
813 |
|
63489 | 814 |
lemma ceiling_ge_round: "\<lceil>x\<rceil> \<ge> round x" |
815 |
unfolding round_altdef by simp |
|
63331 | 816 |
|
63489 | 817 |
lemma round_diff_minimal: "\<bar>z - of_int (round z)\<bar> \<le> \<bar>z - of_int m\<bar>" |
818 |
for z :: "'a::floor_ceiling" |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
819 |
proof (cases "of_int m \<ge> z") |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
820 |
case True |
63489 | 821 |
then have "\<bar>z - of_int (round z)\<bar> \<le> \<bar>of_int \<lceil>z\<rceil> - z\<bar>" |
822 |
unfolding round_altdef by (simp add: field_simps ceiling_altdef frac_def) linarith |
|
823 |
also have "of_int \<lceil>z\<rceil> - z \<ge> 0" |
|
824 |
by linarith |
|
61942 | 825 |
with True have "\<bar>of_int \<lceil>z\<rceil> - z\<bar> \<le> \<bar>z - of_int m\<bar>" |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
826 |
by (simp add: ceiling_le_iff) |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
827 |
finally show ?thesis . |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
828 |
next |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
829 |
case False |
63489 | 830 |
then have "\<bar>z - of_int (round z)\<bar> \<le> \<bar>of_int \<lfloor>z\<rfloor> - z\<bar>" |
831 |
unfolding round_altdef by (simp add: field_simps ceiling_altdef frac_def) linarith |
|
832 |
also have "z - of_int \<lfloor>z\<rfloor> \<ge> 0" |
|
833 |
by linarith |
|
61942 | 834 |
with False have "\<bar>of_int \<lfloor>z\<rfloor> - z\<bar> \<le> \<bar>z - of_int m\<bar>" |
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
835 |
by (simp add: le_floor_iff) |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
836 |
finally show ?thesis . |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
837 |
qed |
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
61378
diff
changeset
|
838 |
|
30096 | 839 |
end |