| 
72029
 | 
     1  | 
(*  Title:      HOL/Examples/Groebner_Examples.thy
  | 
| 
 | 
     2  | 
    Author:     Amine Chaieb, TU Muenchen
  | 
| 
 | 
     3  | 
*)
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
section \<open>Groebner Basis Examples\<close>
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
theory Groebner_Examples
  | 
| 
 | 
     8  | 
imports Main
  | 
| 
 | 
     9  | 
begin
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
subsection \<open>Basic examples\<close>
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
lemma
  | 
| 
 | 
    14  | 
  fixes x :: int
  | 
| 
 | 
    15  | 
  shows "x ^ 3 = x ^ 3"
  | 
| 
 | 
    16  | 
  apply (tactic \<open>ALLGOALS (CONVERSION
  | 
| 
 | 
    17  | 
    (Conv.arg_conv (Conv.arg1_conv (Semiring_Normalizer.semiring_normalize_conv \<^context>))))\<close>)
  | 
| 
 | 
    18  | 
  by (rule refl)
  | 
| 
 | 
    19  | 
  | 
| 
 | 
    20  | 
lemma
  | 
| 
 | 
    21  | 
  fixes x :: int
  | 
| 
 | 
    22  | 
  shows "(x - (-2))^5 = x ^ 5 + (10 * x ^ 4 + (40 * x ^ 3 + (80 * x\<^sup>2 + (80 * x + 32))))" 
  | 
| 
 | 
    23  | 
  apply (tactic \<open>ALLGOALS (CONVERSION
  | 
| 
 | 
    24  | 
    (Conv.arg_conv (Conv.arg1_conv (Semiring_Normalizer.semiring_normalize_conv \<^context>))))\<close>)
  | 
| 
 | 
    25  | 
  by (rule refl)
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
schematic_goal
  | 
| 
 | 
    28  | 
  fixes x :: int
  | 
| 
 | 
    29  | 
  shows "(x - (-2))^5  * (y - 78) ^ 8 = ?X" 
  | 
| 
 | 
    30  | 
  apply (tactic \<open>ALLGOALS (CONVERSION
  | 
| 
 | 
    31  | 
    (Conv.arg_conv (Conv.arg1_conv (Semiring_Normalizer.semiring_normalize_conv \<^context>))))\<close>)
  | 
| 
 | 
    32  | 
  by (rule refl)
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
lemma "((-3) ^ (Suc (Suc (Suc 0)))) == (X::'a::{comm_ring_1})"
 | 
| 
 | 
    35  | 
  apply (simp only: power_Suc power_0)
  | 
| 
 | 
    36  | 
  apply (simp only: semiring_norm)
  | 
| 
 | 
    37  | 
  oops
  | 
| 
 | 
    38  | 
  | 
| 
 | 
    39  | 
lemma "((x::int) + y)^3 - 1 = (x - z)^2 - 10 \<Longrightarrow> x = z + 3 \<Longrightarrow> x = - y"
  | 
| 
 | 
    40  | 
  by algebra
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
lemma "(4::nat) + 4 = 3 + 5"
  | 
| 
 | 
    43  | 
  by algebra
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
lemma "(4::int) + 0 = 4"
  | 
| 
 | 
    46  | 
  apply algebra?
  | 
| 
 | 
    47  | 
  by simp
  | 
| 
 | 
    48  | 
  | 
| 
 | 
    49  | 
lemma
  | 
| 
 | 
    50  | 
  assumes "a * x\<^sup>2 + b * x + c = (0::int)" and "d * x\<^sup>2 + e * x + f = 0"
  | 
| 
 | 
    51  | 
  shows "d\<^sup>2 * c\<^sup>2 - 2 * d * c * a * f + a\<^sup>2 * f\<^sup>2 - e * d * b * c - e * b * a * f +
  | 
| 
 | 
    52  | 
    a * e\<^sup>2 * c + f * d * b\<^sup>2 = 0"
  | 
| 
 | 
    53  | 
  using assms by algebra
  | 
| 
 | 
    54  | 
  | 
| 
 | 
    55  | 
lemma "(x::int)^3  - x^2  - 5*x - 3 = 0 \<longleftrightarrow> (x = 3 \<or> x = -1)"
  | 
| 
 | 
    56  | 
  by algebra
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
theorem "x* (x\<^sup>2 - x  - 5) - 3 = (0::int) \<longleftrightarrow> (x = 3 \<or> x = -1)"
  | 
| 
 | 
    59  | 
  by algebra
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
lemma
  | 
| 
 | 
    62  | 
  fixes x::"'a::idom"
  | 
| 
 | 
    63  | 
  shows "x\<^sup>2*y = x\<^sup>2 & x*y\<^sup>2 = y\<^sup>2 \<longleftrightarrow>  x = 1 & y = 1 | x = 0 & y = 0"
  | 
| 
 | 
    64  | 
  by algebra
  | 
| 
 | 
    65  | 
  | 
| 
 | 
    66  | 
subsection \<open>Lemmas for Lagrange's theorem\<close>
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
definition
  | 
| 
 | 
    69  | 
  sq :: "'a::times => 'a" where
  | 
| 
 | 
    70  | 
  "sq x == x*x"
  | 
| 
 | 
    71  | 
  | 
| 
 | 
    72  | 
lemma
  | 
| 
 | 
    73  | 
  fixes x1 :: "'a::{idom}"
 | 
| 
 | 
    74  | 
  shows
  | 
| 
 | 
    75  | 
  "(sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) =
  | 
| 
 | 
    76  | 
    sq (x1*y1 - x2*y2 - x3*y3 - x4*y4)  +
  | 
| 
 | 
    77  | 
    sq (x1*y2 + x2*y1 + x3*y4 - x4*y3)  +
  | 
| 
 | 
    78  | 
    sq (x1*y3 - x2*y4 + x3*y1 + x4*y2)  +
  | 
| 
 | 
    79  | 
    sq (x1*y4 + x2*y3 - x3*y2 + x4*y1)"
  | 
| 
 | 
    80  | 
  by (algebra add: sq_def)
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
lemma
  | 
| 
 | 
    83  | 
  fixes p1 :: "'a::{idom}"
 | 
| 
 | 
    84  | 
  shows
  | 
| 
 | 
    85  | 
  "(sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) *
  | 
| 
 | 
    86  | 
   (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2)
  | 
| 
 | 
    87  | 
    = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) +
  | 
| 
 | 
    88  | 
      sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) +
  | 
| 
 | 
    89  | 
      sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) +
  | 
| 
 | 
    90  | 
      sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) +
  | 
| 
 | 
    91  | 
      sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) +
  | 
| 
 | 
    92  | 
      sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) +
  | 
| 
 | 
    93  | 
      sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) +
  | 
| 
 | 
    94  | 
      sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)"
  | 
| 
 | 
    95  | 
  by (algebra add: sq_def)
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
subsection \<open>Colinearity is invariant by rotation\<close>
  | 
| 
 | 
    99  | 
  | 
| 
 | 
   100  | 
type_synonym point = "int \<times> int"
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
definition collinear ::"point \<Rightarrow> point \<Rightarrow> point \<Rightarrow> bool" where
  | 
| 
 | 
   103  | 
  "collinear \<equiv> \<lambda>(Ax,Ay) (Bx,By) (Cx,Cy).
  | 
| 
 | 
   104  | 
    ((Ax - Bx) * (By - Cy) = (Ay - By) * (Bx - Cx))"
  | 
| 
 | 
   105  | 
  | 
| 
 | 
   106  | 
lemma collinear_inv_rotation:
  | 
| 
 | 
   107  | 
  assumes "collinear (Ax, Ay) (Bx, By) (Cx, Cy)" and "c\<^sup>2 + s\<^sup>2 = 1"
  | 
| 
 | 
   108  | 
  shows "collinear (Ax * c - Ay * s, Ay * c + Ax * s)
  | 
| 
 | 
   109  | 
    (Bx * c - By * s, By * c + Bx * s) (Cx * c - Cy * s, Cy * c + Cx * s)"
  | 
| 
 | 
   110  | 
  using assms 
  | 
| 
 | 
   111  | 
  by (algebra add: collinear_def split_def fst_conv snd_conv)
  | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
lemma "\<exists>(d::int). a*y - a*x = n*d \<Longrightarrow> \<exists>u v. a*u + n*v = 1 \<Longrightarrow> \<exists>e. y - x = n*e"
  | 
| 
 | 
   114  | 
  by algebra
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
end
  |