| author | haftmann | 
| Mon, 02 Mar 2009 16:58:39 +0100 | |
| changeset 30202 | 2775062fd3a9 | 
| parent 29915 | 2146e512cec9 | 
| child 30273 | ecd6f0ca62ea | 
| permissions | -rw-r--r-- | 
| 29687 | 1 | (* Title: Formal_Power_Series.thy | 
| 2 | ID: | |
| 3 | Author: Amine Chaieb, University of Cambridge | |
| 4 | *) | |
| 5 | ||
| 6 | header{* A formalization of formal power series *}
 | |
| 7 | ||
| 8 | theory Formal_Power_Series | |
| 9 | imports Main Fact Parity | |
| 10 | begin | |
| 11 | ||
| 29906 | 12 | subsection {* The type of formal power series*}
 | 
| 29687 | 13 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 14 | typedef (open) 'a fps = "{f :: nat \<Rightarrow> 'a. True}"
 | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 15 | morphisms fps_nth Abs_fps | 
| 29687 | 16 | by simp | 
| 17 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 18 | notation fps_nth (infixl "$" 75) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 19 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 20 | lemma expand_fps_eq: "p = q \<longleftrightarrow> (\<forall>n. p $ n = q $ n)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 21 | by (simp add: fps_nth_inject [symmetric] expand_fun_eq) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 22 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 23 | lemma fps_ext: "(\<And>n. p $ n = q $ n) \<Longrightarrow> p = q" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 24 | by (simp add: expand_fps_eq) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 25 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 26 | lemma fps_nth_Abs_fps [simp]: "Abs_fps f $ n = f n" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 27 | by (simp add: Abs_fps_inverse) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 28 | |
| 29687 | 29 | text{* Definition of the basic elements 0 and 1 and the basic operations of addition, negation and multiplication *}
 | 
| 30 | ||
| 31 | instantiation fps :: (zero) zero | |
| 32 | begin | |
| 33 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 34 | definition fps_zero_def: | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 35 | "0 = Abs_fps (\<lambda>n. 0)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 36 | |
| 29687 | 37 | instance .. | 
| 38 | end | |
| 39 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 40 | lemma fps_zero_nth [simp]: "0 $ n = 0" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 41 | unfolding fps_zero_def by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 42 | |
| 29687 | 43 | instantiation fps :: ("{one,zero}")  one
 | 
| 44 | begin | |
| 45 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 46 | definition fps_one_def: | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 47 | "1 = Abs_fps (\<lambda>n. if n = 0 then 1 else 0)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 48 | |
| 29687 | 49 | instance .. | 
| 50 | end | |
| 51 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 52 | lemma fps_one_nth [simp]: "1 $ n = (if n = 0 then 1 else 0)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 53 | unfolding fps_one_def by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 54 | |
| 29687 | 55 | instantiation fps :: (plus) plus | 
| 56 | begin | |
| 57 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 58 | definition fps_plus_def: | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 59 | "op + = (\<lambda>f g. Abs_fps (\<lambda>n. f $ n + g $ n))" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 60 | |
| 29687 | 61 | instance .. | 
| 62 | end | |
| 63 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 64 | lemma fps_add_nth [simp]: "(f + g) $ n = f $ n + g $ n" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 65 | unfolding fps_plus_def by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 66 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 67 | instantiation fps :: (minus) minus | 
| 29687 | 68 | begin | 
| 69 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 70 | definition fps_minus_def: | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 71 | "op - = (\<lambda>f g. Abs_fps (\<lambda>n. f $ n - g $ n))" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 72 | |
| 29687 | 73 | instance .. | 
| 74 | end | |
| 75 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 76 | lemma fps_sub_nth [simp]: "(f - g) $ n = f $ n - g $ n" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 77 | unfolding fps_minus_def by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 78 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 79 | instantiation fps :: (uminus) uminus | 
| 29687 | 80 | begin | 
| 81 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 82 | definition fps_uminus_def: | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 83 | "uminus = (\<lambda>f. Abs_fps (\<lambda>n. - (f $ n)))" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 84 | |
| 29687 | 85 | instance .. | 
| 86 | end | |
| 87 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 88 | lemma fps_neg_nth [simp]: "(- f) $ n = - (f $ n)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 89 | unfolding fps_uminus_def by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 90 | |
| 29687 | 91 | instantiation fps :: ("{comm_monoid_add, times}")  times
 | 
| 92 | begin | |
| 93 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 94 | definition fps_times_def: | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 95 | "op * = (\<lambda>f g. Abs_fps (\<lambda>n. \<Sum>i=0..n. f $ i * g $ (n - i)))" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 96 | |
| 29687 | 97 | instance .. | 
| 98 | end | |
| 99 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 100 | lemma fps_mult_nth: "(f * g) $ n = (\<Sum>i=0..n. f$i * g$(n - i))" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 101 | unfolding fps_times_def by simp | 
| 29687 | 102 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 103 | declare atLeastAtMost_iff[presburger] | 
| 29687 | 104 | declare Bex_def[presburger] | 
| 105 | declare Ball_def[presburger] | |
| 106 | ||
| 29913 | 107 | lemma mult_delta_left: | 
| 108 | fixes x y :: "'a::mult_zero" | |
| 109 | shows "(if b then x else 0) * y = (if b then x * y else 0)" | |
| 110 | by simp | |
| 111 | ||
| 112 | lemma mult_delta_right: | |
| 113 | fixes x y :: "'a::mult_zero" | |
| 114 | shows "x * (if b then y else 0) = (if b then x * y else 0)" | |
| 115 | by simp | |
| 116 | ||
| 29687 | 117 | lemma cond_value_iff: "f (if b then x else y) = (if b then f x else f y)" | 
| 118 | by auto | |
| 119 | lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)" | |
| 120 | by auto | |
| 121 | ||
| 29906 | 122 | subsection{* Formal power series form a commutative ring with unity, if the range of sequences 
 | 
| 29687 | 123 | they represent is a commutative ring with unity*} | 
| 124 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 125 | instance fps :: (semigroup_add) semigroup_add | 
| 29687 | 126 | proof | 
| 127 | fix a b c :: "'a fps" show "a + b + c = a + (b + c)" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 128 | by (simp add: fps_ext add_assoc) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 129 | qed | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 130 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 131 | instance fps :: (ab_semigroup_add) ab_semigroup_add | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 132 | proof | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 133 | fix a b :: "'a fps" show "a + b = b + a" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 134 | by (simp add: fps_ext add_commute) | 
| 29687 | 135 | qed | 
| 136 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 137 | lemma fps_mult_assoc_lemma: | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 138 | fixes k :: nat and f :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 139 | shows "(\<Sum>j=0..k. \<Sum>i=0..j. f i (j - i) (n - j)) = | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 140 | (\<Sum>j=0..k. \<Sum>i=0..k - j. f j i (n - j - i))" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 141 | proof (induct k) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 142 | case 0 show ?case by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 143 | next | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 144 | case (Suc k) thus ?case | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 145 | by (simp add: Suc_diff_le setsum_addf add_assoc | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 146 | cong: strong_setsum_cong) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 147 | qed | 
| 29687 | 148 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 149 | instance fps :: (semiring_0) semigroup_mult | 
| 29687 | 150 | proof | 
| 151 | fix a b c :: "'a fps" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 152 | show "(a * b) * c = a * (b * c)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 153 | proof (rule fps_ext) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 154 | fix n :: nat | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 155 | have "(\<Sum>j=0..n. \<Sum>i=0..j. a$i * b$(j - i) * c$(n - j)) = | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 156 | (\<Sum>j=0..n. \<Sum>i=0..n - j. a$j * b$i * c$(n - j - i))" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 157 | by (rule fps_mult_assoc_lemma) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 158 | thus "((a * b) * c) $ n = (a * (b * c)) $ n" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 159 | by (simp add: fps_mult_nth setsum_right_distrib | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 160 | setsum_left_distrib mult_assoc) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 161 | qed | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 162 | qed | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 163 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 164 | lemma fps_mult_commute_lemma: | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 165 | fixes n :: nat and f :: "nat \<Rightarrow> nat \<Rightarrow> 'a::comm_monoid_add" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 166 | shows "(\<Sum>i=0..n. f i (n - i)) = (\<Sum>i=0..n. f (n - i) i)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 167 | proof (rule setsum_reindex_cong) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 168 |   show "inj_on (\<lambda>i. n - i) {0..n}"
 | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 169 | by (rule inj_onI) simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 170 |   show "{0..n} = (\<lambda>i. n - i) ` {0..n}"
 | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 171 | by (auto, rule_tac x="n - x" in image_eqI, simp_all) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 172 | next | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 173 |   fix i assume "i \<in> {0..n}"
 | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 174 | hence "n - (n - i) = i" by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 175 | thus "f (n - i) i = f (n - i) (n - (n - i))" by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 176 | qed | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 177 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 178 | instance fps :: (comm_semiring_0) ab_semigroup_mult | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 179 | proof | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 180 | fix a b :: "'a fps" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 181 | show "a * b = b * a" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 182 | proof (rule fps_ext) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 183 | fix n :: nat | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 184 | have "(\<Sum>i=0..n. a$i * b$(n - i)) = (\<Sum>i=0..n. a$(n - i) * b$i)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 185 | by (rule fps_mult_commute_lemma) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 186 | thus "(a * b) $ n = (b * a) $ n" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 187 | by (simp add: fps_mult_nth mult_commute) | 
| 29687 | 188 | qed | 
| 189 | qed | |
| 190 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 191 | instance fps :: (monoid_add) monoid_add | 
| 29687 | 192 | proof | 
| 193 | fix a :: "'a fps" show "0 + a = a " | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 194 | by (simp add: fps_ext) | 
| 29687 | 195 | next | 
| 196 | fix a :: "'a fps" show "a + 0 = a " | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 197 | by (simp add: fps_ext) | 
| 29687 | 198 | qed | 
| 199 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 200 | instance fps :: (comm_monoid_add) comm_monoid_add | 
| 29687 | 201 | proof | 
| 202 | fix a :: "'a fps" show "0 + a = a " | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 203 | by (simp add: fps_ext) | 
| 29687 | 204 | qed | 
| 205 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 206 | instance fps :: (semiring_1) monoid_mult | 
| 29687 | 207 | proof | 
| 208 | fix a :: "'a fps" show "1 * a = a" | |
| 29913 | 209 | by (simp add: fps_ext fps_mult_nth mult_delta_left setsum_delta) | 
| 29687 | 210 | next | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 211 | fix a :: "'a fps" show "a * 1 = a" | 
| 29913 | 212 | by (simp add: fps_ext fps_mult_nth mult_delta_right setsum_delta') | 
| 29687 | 213 | qed | 
| 214 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 215 | instance fps :: (cancel_semigroup_add) cancel_semigroup_add | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 216 | proof | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 217 | fix a b c :: "'a fps" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 218 | assume "a + b = a + c" then show "b = c" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 219 | by (simp add: expand_fps_eq) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 220 | next | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 221 | fix a b c :: "'a fps" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 222 | assume "b + a = c + a" then show "b = c" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 223 | by (simp add: expand_fps_eq) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 224 | qed | 
| 29687 | 225 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 226 | instance fps :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 227 | proof | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 228 | fix a b c :: "'a fps" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 229 | assume "a + b = a + c" then show "b = c" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 230 | by (simp add: expand_fps_eq) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 231 | qed | 
| 29687 | 232 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 233 | instance fps :: (cancel_comm_monoid_add) cancel_comm_monoid_add .. | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 234 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 235 | instance fps :: (group_add) group_add | 
| 29687 | 236 | proof | 
| 237 | fix a :: "'a fps" show "- a + a = 0" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 238 | by (simp add: fps_ext) | 
| 29687 | 239 | next | 
| 240 | fix a b :: "'a fps" show "a - b = a + - b" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 241 | by (simp add: fps_ext diff_minus) | 
| 29687 | 242 | qed | 
| 243 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 244 | instance fps :: (ab_group_add) ab_group_add | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 245 | proof | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 246 | fix a :: "'a fps" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 247 | show "- a + a = 0" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 248 | by (simp add: fps_ext) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 249 | next | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 250 | fix a b :: "'a fps" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 251 | show "a - b = a + - b" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 252 | by (simp add: fps_ext) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 253 | qed | 
| 29687 | 254 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 255 | instance fps :: (zero_neq_one) zero_neq_one | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 256 | by default (simp add: expand_fps_eq) | 
| 29687 | 257 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 258 | instance fps :: (semiring_0) semiring | 
| 29687 | 259 | proof | 
| 260 | fix a b c :: "'a fps" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 261 | show "(a + b) * c = a * c + b * c" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 262 | by (simp add: expand_fps_eq fps_mult_nth left_distrib setsum_addf) | 
| 29687 | 263 | next | 
| 264 | fix a b c :: "'a fps" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 265 | show "a * (b + c) = a * b + a * c" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 266 | by (simp add: expand_fps_eq fps_mult_nth right_distrib setsum_addf) | 
| 29687 | 267 | qed | 
| 268 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 269 | instance fps :: (semiring_0) semiring_0 | 
| 29687 | 270 | proof | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 271 | fix a:: "'a fps" show "0 * a = 0" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 272 | by (simp add: fps_ext fps_mult_nth) | 
| 29687 | 273 | next | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 274 | fix a:: "'a fps" show "a * 0 = 0" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 275 | by (simp add: fps_ext fps_mult_nth) | 
| 29687 | 276 | qed | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 277 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 278 | instance fps :: (semiring_0_cancel) semiring_0_cancel .. | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 279 | |
| 29906 | 280 | subsection {* Selection of the nth power of the implicit variable in the infinite sum*}
 | 
| 29687 | 281 | |
| 282 | lemma fps_nonzero_nth: "f \<noteq> 0 \<longleftrightarrow> (\<exists> n. f $n \<noteq> 0)" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 283 | by (simp add: expand_fps_eq) | 
| 29687 | 284 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 285 | lemma fps_nonzero_nth_minimal: | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 286 | "f \<noteq> 0 \<longleftrightarrow> (\<exists>n. f $ n \<noteq> 0 \<and> (\<forall>m<n. f $ m = 0))" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 287 | proof | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 288 | let ?n = "LEAST n. f $ n \<noteq> 0" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 289 | assume "f \<noteq> 0" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 290 | then have "\<exists>n. f $ n \<noteq> 0" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 291 | by (simp add: fps_nonzero_nth) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 292 | then have "f $ ?n \<noteq> 0" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 293 | by (rule LeastI_ex) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 294 | moreover have "\<forall>m<?n. f $ m = 0" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 295 | by (auto dest: not_less_Least) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 296 | ultimately have "f $ ?n \<noteq> 0 \<and> (\<forall>m<?n. f $ m = 0)" .. | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 297 | then show "\<exists>n. f $ n \<noteq> 0 \<and> (\<forall>m<n. f $ m = 0)" .. | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 298 | next | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 299 | assume "\<exists>n. f $ n \<noteq> 0 \<and> (\<forall>m<n. f $ m = 0)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 300 | then show "f \<noteq> 0" by (auto simp add: expand_fps_eq) | 
| 29687 | 301 | qed | 
| 302 | ||
| 303 | lemma fps_eq_iff: "f = g \<longleftrightarrow> (\<forall>n. f $ n = g $n)" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 304 | by (rule expand_fps_eq) | 
| 29687 | 305 | |
| 306 | lemma fps_setsum_nth: "(setsum f S) $ n = setsum (\<lambda>k. (f k) $ n) S" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 307 | proof (cases "finite S") | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 308 | assume "\<not> finite S" then show ?thesis by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 309 | next | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 310 | assume "finite S" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 311 | then show ?thesis by (induct set: finite) auto | 
| 29687 | 312 | qed | 
| 313 | ||
| 29906 | 314 | subsection{* Injection of the basic ring elements and multiplication by scalars *}
 | 
| 29687 | 315 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 316 | definition | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 317 | "fps_const c = Abs_fps (\<lambda>n. if n = 0 then c else 0)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 318 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 319 | lemma fps_nth_fps_const [simp]: "fps_const c $ n = (if n = 0 then c else 0)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 320 | unfolding fps_const_def by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 321 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 322 | lemma fps_const_0_eq_0 [simp]: "fps_const 0 = 0" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 323 | by (simp add: fps_ext) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 324 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 325 | lemma fps_const_1_eq_1 [simp]: "fps_const 1 = 1" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 326 | by (simp add: fps_ext) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 327 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 328 | lemma fps_const_neg [simp]: "- (fps_const (c::'a::ring)) = fps_const (- c)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 329 | by (simp add: fps_ext) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 330 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 331 | lemma fps_const_add [simp]: "fps_const (c::'a\<Colon>monoid_add) + fps_const d = fps_const (c + d)" | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 332 | by (simp add: fps_ext) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 333 | |
| 29687 | 334 | lemma fps_const_mult[simp]: "fps_const (c::'a\<Colon>ring) * fps_const d = fps_const (c * d)" | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 335 | by (simp add: fps_eq_iff fps_mult_nth setsum_0') | 
| 29687 | 336 | |
| 337 | lemma fps_const_add_left: "fps_const (c::'a\<Colon>monoid_add) + f = Abs_fps (\<lambda>n. if n = 0 then c + f$0 else f$n)" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 338 | by (simp add: fps_ext) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 339 | |
| 29687 | 340 | lemma fps_const_add_right: "f + fps_const (c::'a\<Colon>monoid_add) = Abs_fps (\<lambda>n. if n = 0 then f$0 + c else f$n)" | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 341 | by (simp add: fps_ext) | 
| 29687 | 342 | |
| 343 | lemma fps_const_mult_left: "fps_const (c::'a\<Colon>semiring_0) * f = Abs_fps (\<lambda>n. c * f$n)" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 344 | unfolding fps_eq_iff fps_mult_nth | 
| 29913 | 345 | by (simp add: fps_const_def mult_delta_left setsum_delta) | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 346 | |
| 29687 | 347 | lemma fps_const_mult_right: "f * fps_const (c::'a\<Colon>semiring_0) = Abs_fps (\<lambda>n. f$n * c)" | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 348 | unfolding fps_eq_iff fps_mult_nth | 
| 29913 | 349 | by (simp add: fps_const_def mult_delta_right setsum_delta') | 
| 29687 | 350 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 351 | lemma fps_mult_left_const_nth [simp]: "(fps_const (c::'a::semiring_1) * f)$n = c* f$n" | 
| 29913 | 352 | by (simp add: fps_mult_nth mult_delta_left setsum_delta) | 
| 29687 | 353 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 354 | lemma fps_mult_right_const_nth [simp]: "(f * fps_const (c::'a::semiring_1))$n = f$n * c" | 
| 29913 | 355 | by (simp add: fps_mult_nth mult_delta_right setsum_delta') | 
| 29687 | 356 | |
| 29906 | 357 | subsection {* Formal power series form an integral domain*}
 | 
| 29687 | 358 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 359 | instance fps :: (ring) ring .. | 
| 29687 | 360 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 361 | instance fps :: (ring_1) ring_1 | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 362 | by (intro_classes, auto simp add: diff_minus left_distrib) | 
| 29687 | 363 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 364 | instance fps :: (comm_ring_1) comm_ring_1 | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 365 | by (intro_classes, auto simp add: diff_minus left_distrib) | 
| 29687 | 366 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 367 | instance fps :: (ring_no_zero_divisors) ring_no_zero_divisors | 
| 29687 | 368 | proof | 
| 369 | fix a b :: "'a fps" | |
| 370 | assume a0: "a \<noteq> 0" and b0: "b \<noteq> 0" | |
| 371 | then obtain i j where i: "a$i\<noteq>0" "\<forall>k<i. a$k=0" | |
| 372 | and j: "b$j \<noteq>0" "\<forall>k<j. b$k =0" unfolding fps_nonzero_nth_minimal | |
| 373 | by blast+ | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 374 | have "(a * b) $ (i+j) = (\<Sum>k=0..i+j. a$k * b$(i+j-k))" | 
| 29687 | 375 | by (rule fps_mult_nth) | 
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 376 |   also have "\<dots> = (a$i * b$(i+j-i)) + (\<Sum>k\<in>{0..i+j}-{i}. a$k * b$(i+j-k))"
 | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 377 | by (rule setsum_diff1') simp_all | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 378 |   also have "(\<Sum>k\<in>{0..i+j}-{i}. a$k * b$(i+j-k)) = 0"
 | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 379 | proof (rule setsum_0' [rule_format]) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 380 |       fix k assume "k \<in> {0..i+j} - {i}"
 | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 381 | then have "k < i \<or> i+j-k < j" by auto | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 382 | then show "a$k * b$(i+j-k) = 0" using i j by auto | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 383 | qed | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 384 | also have "a$i * b$(i+j-i) + 0 = a$i * b$j" by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 385 | also have "a$i * b$j \<noteq> 0" using i j by simp | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 386 | finally have "(a*b) $ (i+j) \<noteq> 0" . | 
| 29687 | 387 | then show "a*b \<noteq> 0" unfolding fps_nonzero_nth by blast | 
| 388 | qed | |
| 389 | ||
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 390 | instance fps :: (idom) idom .. | 
| 29687 | 391 | |
| 29906 | 392 | subsection{* Inverses of formal power series *}
 | 
| 29687 | 393 | |
| 394 | declare setsum_cong[fundef_cong] | |
| 395 | ||
| 396 | ||
| 397 | instantiation fps :: ("{comm_monoid_add,inverse, times, uminus}") inverse
 | |
| 398 | begin | |
| 399 | ||
| 400 | fun natfun_inverse:: "'a fps \<Rightarrow> nat \<Rightarrow> 'a" where | |
| 401 | "natfun_inverse f 0 = inverse (f$0)" | |
| 402 | | "natfun_inverse f n = - inverse (f$0) * setsum (\<lambda>i. f$i * natfun_inverse f (n - i)) {1..n}" 
 | |
| 403 | ||
| 404 | definition fps_inverse_def: | |
| 405 | "inverse f = (if f$0 = 0 then 0 else Abs_fps (natfun_inverse f))" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 406 | definition fps_divide_def: "divide = (\<lambda>(f::'a fps) g. f * inverse g)" | 
| 29687 | 407 | instance .. | 
| 408 | end | |
| 409 | ||
| 410 | lemma fps_inverse_zero[simp]: | |
| 411 |   "inverse (0 :: 'a::{comm_monoid_add,inverse, times, uminus} fps) = 0"
 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 412 | by (simp add: fps_ext fps_inverse_def) | 
| 29687 | 413 | |
| 414 | lemma fps_inverse_one[simp]: "inverse (1 :: 'a::{division_ring,zero_neq_one} fps) = 1"
 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 415 | apply (auto simp add: expand_fps_eq fps_inverse_def) | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 416 | by (case_tac n, auto) | 
| 29687 | 417 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 418 | instance fps :: ("{comm_monoid_add,inverse, times, uminus}")  division_by_zero
 | 
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 419 | by default (rule fps_inverse_zero) | 
| 29687 | 420 | |
| 421 | lemma inverse_mult_eq_1[intro]: assumes f0: "f$0 \<noteq> (0::'a::field)" | |
| 422 | shows "inverse f * f = 1" | |
| 423 | proof- | |
| 424 | have c: "inverse f * f = f * inverse f" by (simp add: mult_commute) | |
| 425 | from f0 have ifn: "\<And>n. inverse f $ n = natfun_inverse f n" | |
| 426 | by (simp add: fps_inverse_def) | |
| 427 | from f0 have th0: "(inverse f * f) $ 0 = 1" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 428 | by (simp add: fps_mult_nth fps_inverse_def) | 
| 29687 | 429 |   {fix n::nat assume np: "n >0 "
 | 
| 430 |     from np have eq: "{0..n} = {0} \<union> {1 .. n}" by auto
 | |
| 431 |     have d: "{0} \<inter> {1 .. n} = {}" by auto
 | |
| 432 |     have f: "finite {0::nat}" "finite {1..n}" by auto
 | |
| 433 | from f0 np have th0: "- (inverse f$n) = | |
| 434 |       (setsum (\<lambda>i. f$i * natfun_inverse f (n - i)) {1..n}) / (f$0)"
 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 435 | by (cases n, simp, simp add: divide_inverse fps_inverse_def) | 
| 29687 | 436 | from th0[symmetric, unfolded nonzero_divide_eq_eq[OF f0]] | 
| 437 |     have th1: "setsum (\<lambda>i. f$i * natfun_inverse f (n - i)) {1..n} = 
 | |
| 438 | - (f$0) * (inverse f)$n" | |
| 439 | by (simp add: ring_simps) | |
| 440 | have "(f * inverse f) $ n = (\<Sum>i = 0..n. f $i * natfun_inverse f (n - i))" | |
| 441 | unfolding fps_mult_nth ifn .. | |
| 442 | also have "\<dots> = f$0 * natfun_inverse f n | |
| 443 | + (\<Sum>i = 1..n. f$i * natfun_inverse f (n-i))" | |
| 444 | unfolding setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] | |
| 445 | by simp | |
| 446 | also have "\<dots> = 0" unfolding th1 ifn by simp | |
| 447 | finally have "(inverse f * f)$n = 0" unfolding c . } | |
| 448 | with th0 show ?thesis by (simp add: fps_eq_iff) | |
| 449 | qed | |
| 450 | ||
| 451 | lemma fps_inverse_0_iff[simp]: "(inverse f)$0 = (0::'a::division_ring) \<longleftrightarrow> f$0 = 0" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 452 | by (simp add: fps_inverse_def nonzero_imp_inverse_nonzero) | 
| 29687 | 453 | |
| 454 | lemma fps_inverse_eq_0_iff[simp]: "inverse f = (0:: ('a::field) fps) \<longleftrightarrow> f $0 = 0"
 | |
| 455 | proof- | |
| 456 |   {assume "f$0 = 0" hence "inverse f = 0" by (simp add: fps_inverse_def)}
 | |
| 457 | moreover | |
| 458 |   {assume h: "inverse f = 0" and c: "f $0 \<noteq> 0"
 | |
| 459 | from inverse_mult_eq_1[OF c] h have False by simp} | |
| 460 | ultimately show ?thesis by blast | |
| 461 | qed | |
| 462 | ||
| 463 | lemma fps_inverse_idempotent[intro]: assumes f0: "f$0 \<noteq> (0::'a::field)" | |
| 464 | shows "inverse (inverse f) = f" | |
| 465 | proof- | |
| 466 | from f0 have if0: "inverse f $ 0 \<noteq> 0" by simp | |
| 467 | from inverse_mult_eq_1[OF f0] inverse_mult_eq_1[OF if0] | |
| 468 | have th0: "inverse f * f = inverse f * inverse (inverse f)" by (simp add: mult_ac) | |
| 469 | then show ?thesis using f0 unfolding mult_cancel_left by simp | |
| 470 | qed | |
| 471 | ||
| 472 | lemma fps_inverse_unique: assumes f0: "f$0 \<noteq> (0::'a::field)" and fg: "f*g = 1" | |
| 473 | shows "inverse f = g" | |
| 474 | proof- | |
| 475 | from inverse_mult_eq_1[OF f0] fg | |
| 476 | have th0: "inverse f * f = g * f" by (simp add: mult_ac) | |
| 477 | then show ?thesis using f0 unfolding mult_cancel_right | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 478 | by (auto simp add: expand_fps_eq) | 
| 29687 | 479 | qed | 
| 480 | ||
| 481 | lemma fps_inverse_gp: "inverse (Abs_fps(\<lambda>n. (1::'a::field))) | |
| 482 | = Abs_fps (\<lambda>n. if n= 0 then 1 else if n=1 then - 1 else 0)" | |
| 483 | apply (rule fps_inverse_unique) | |
| 484 | apply simp | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 485 | apply (simp add: fps_eq_iff fps_mult_nth) | 
| 29687 | 486 | proof(clarsimp) | 
| 487 | fix n::nat assume n: "n > 0" | |
| 488 | let ?f = "\<lambda>i. if n = i then (1\<Colon>'a) else if n - i = 1 then - 1 else 0" | |
| 489 | let ?g = "\<lambda>i. if i = n then 1 else if i=n - 1 then - 1 else 0" | |
| 490 | let ?h = "\<lambda>i. if i=n - 1 then - 1 else 0" | |
| 491 |   have th1: "setsum ?f {0..n} = setsum ?g {0..n}"  
 | |
| 492 | by (rule setsum_cong2) auto | |
| 493 |   have th2: "setsum ?g {0..n - 1} = setsum ?h {0..n - 1}"  
 | |
| 494 | using n apply - by (rule setsum_cong2) auto | |
| 495 |   have eq: "{0 .. n} = {0.. n - 1} \<union> {n}" by auto
 | |
| 496 |   from n have d: "{0.. n - 1} \<inter> {n} = {}" by auto 
 | |
| 497 |   have f: "finite {0.. n - 1}" "finite {n}" by auto
 | |
| 498 |   show "setsum ?f {0..n} = 0"
 | |
| 499 | unfolding th1 | |
| 500 | apply (simp add: setsum_Un_disjoint[OF f d, unfolded eq[symmetric]] del: One_nat_def) | |
| 501 | unfolding th2 | |
| 502 | by(simp add: setsum_delta) | |
| 503 | qed | |
| 504 | ||
| 29912 | 505 | subsection{* Formal Derivatives, and the MacLaurin theorem around 0*}
 | 
| 29687 | 506 | |
| 507 | definition "fps_deriv f = Abs_fps (\<lambda>n. of_nat (n + 1) * f $ (n + 1))" | |
| 508 | ||
| 509 | lemma fps_deriv_nth[simp]: "fps_deriv f $ n = of_nat (n +1) * f $ (n+1)" by (simp add: fps_deriv_def) | |
| 510 | ||
| 511 | lemma fps_deriv_linear[simp]: "fps_deriv (fps_const (a::'a::comm_semiring_1) * f + fps_const b * g) = fps_const a * fps_deriv f + fps_const b * fps_deriv g" | |
| 512 | unfolding fps_eq_iff fps_add_nth fps_const_mult_left fps_deriv_nth by (simp add: ring_simps) | |
| 513 | ||
| 514 | lemma fps_deriv_mult[simp]: | |
| 515 |   fixes f :: "('a :: comm_ring_1) fps"
 | |
| 516 | shows "fps_deriv (f * g) = f * fps_deriv g + fps_deriv f * g" | |
| 517 | proof- | |
| 518 | let ?D = "fps_deriv" | |
| 519 |   {fix n::nat
 | |
| 520 |     let ?Zn = "{0 ..n}"
 | |
| 521 |     let ?Zn1 = "{0 .. n + 1}"
 | |
| 522 | let ?f = "\<lambda>i. i + 1" | |
| 523 |     have fi: "inj_on ?f {0..n}" by (simp add: inj_on_def)
 | |
| 524 |     have eq: "{1.. n+1} = ?f ` {0..n}" by auto
 | |
| 525 | let ?g = "\<lambda>i. of_nat (i+1) * g $ (i+1) * f $ (n - i) + | |
| 526 | of_nat (i+1)* f $ (i+1) * g $ (n - i)" | |
| 527 | let ?h = "\<lambda>i. of_nat i * g $ i * f $ ((n+1) - i) + | |
| 528 | of_nat i* f $ i * g $ ((n + 1) - i)" | |
| 529 |     {fix k assume k: "k \<in> {0..n}"
 | |
| 530 | have "?h (k + 1) = ?g k" using k by auto} | |
| 531 | note th0 = this | |
| 532 |     have eq': "{0..n +1}- {1 .. n+1} = {0}" by auto
 | |
| 533 | have s0: "setsum (\<lambda>i. of_nat i * f $ i * g $ (n + 1 - i)) ?Zn1 = setsum (\<lambda>i. of_nat (n + 1 - i) * f $ (n + 1 - i) * g $ i) ?Zn1" | |
| 534 | apply (rule setsum_reindex_cong[where f="\<lambda>i. n + 1 - i"]) | |
| 535 | apply (simp add: inj_on_def Ball_def) | |
| 536 | apply presburger | |
| 537 | apply (rule set_ext) | |
| 538 | apply (presburger add: image_iff) | |
| 539 | by simp | |
| 540 | have s1: "setsum (\<lambda>i. f $ i * g $ (n + 1 - i)) ?Zn1 = setsum (\<lambda>i. f $ (n + 1 - i) * g $ i) ?Zn1" | |
| 541 | apply (rule setsum_reindex_cong[where f="\<lambda>i. n + 1 - i"]) | |
| 542 | apply (simp add: inj_on_def Ball_def) | |
| 543 | apply presburger | |
| 544 | apply (rule set_ext) | |
| 545 | apply (presburger add: image_iff) | |
| 546 | by simp | |
| 547 | have "(f * ?D g + ?D f * g)$n = (?D g * f + ?D f * g)$n" by (simp only: mult_commute) | |
| 548 | also have "\<dots> = (\<Sum>i = 0..n. ?g i)" | |
| 549 | by (simp add: fps_mult_nth setsum_addf[symmetric]) | |
| 550 |     also have "\<dots> = setsum ?h {1..n+1}"
 | |
| 551 | using th0 setsum_reindex_cong[OF fi eq, of "?g" "?h"] by auto | |
| 552 |     also have "\<dots> = setsum ?h {0..n+1}"
 | |
| 553 | apply (rule setsum_mono_zero_left) | |
| 554 | apply simp | |
| 555 | apply (simp add: subset_eq) | |
| 556 | unfolding eq' | |
| 557 | by simp | |
| 558 | also have "\<dots> = (fps_deriv (f * g)) $ n" | |
| 559 | apply (simp only: fps_deriv_nth fps_mult_nth setsum_addf) | |
| 560 | unfolding s0 s1 | |
| 561 | unfolding setsum_addf[symmetric] setsum_right_distrib | |
| 562 | apply (rule setsum_cong2) | |
| 563 | by (auto simp add: of_nat_diff ring_simps) | |
| 564 | finally have "(f * ?D g + ?D f * g) $ n = ?D (f*g) $ n" .} | |
| 565 | then show ?thesis unfolding fps_eq_iff by auto | |
| 566 | qed | |
| 567 | ||
| 568 | lemma fps_deriv_neg[simp]: "fps_deriv (- (f:: ('a:: comm_ring_1) fps)) = - (fps_deriv f)"
 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 569 | by (simp add: fps_eq_iff fps_deriv_def) | 
| 29687 | 570 | lemma fps_deriv_add[simp]: "fps_deriv ((f:: ('a::comm_ring_1) fps) + g) = fps_deriv f + fps_deriv g"
 | 
| 571 | using fps_deriv_linear[of 1 f 1 g] by simp | |
| 572 | ||
| 573 | lemma fps_deriv_sub[simp]: "fps_deriv ((f:: ('a::comm_ring_1) fps) - g) = fps_deriv f - fps_deriv g"
 | |
| 574 | unfolding diff_minus by simp | |
| 575 | ||
| 576 | lemma fps_deriv_const[simp]: "fps_deriv (fps_const c) = 0" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 577 | by (simp add: fps_ext fps_deriv_def fps_const_def) | 
| 29687 | 578 | |
| 579 | lemma fps_deriv_mult_const_left[simp]: "fps_deriv (fps_const (c::'a::comm_ring_1) * f) = fps_const c * fps_deriv f" | |
| 580 | by simp | |
| 581 | ||
| 582 | lemma fps_deriv_0[simp]: "fps_deriv 0 = 0" | |
| 583 | by (simp add: fps_deriv_def fps_eq_iff) | |
| 584 | ||
| 585 | lemma fps_deriv_1[simp]: "fps_deriv 1 = 0" | |
| 586 | by (simp add: fps_deriv_def fps_eq_iff ) | |
| 587 | ||
| 588 | lemma fps_deriv_mult_const_right[simp]: "fps_deriv (f * fps_const (c::'a::comm_ring_1)) = fps_deriv f * fps_const c" | |
| 589 | by simp | |
| 590 | ||
| 591 | lemma fps_deriv_setsum: "fps_deriv (setsum f S) = setsum (\<lambda>i. fps_deriv (f i :: ('a::comm_ring_1) fps)) S"
 | |
| 592 | proof- | |
| 593 |   {assume "\<not> finite S" hence ?thesis by simp}
 | |
| 594 | moreover | |
| 595 |   {assume fS: "finite S"
 | |
| 596 | have ?thesis by (induct rule: finite_induct[OF fS], simp_all)} | |
| 597 | ultimately show ?thesis by blast | |
| 598 | qed | |
| 599 | ||
| 600 | lemma fps_deriv_eq_0_iff[simp]: "fps_deriv f = 0 \<longleftrightarrow> (f = fps_const (f$0 :: 'a::{idom,semiring_char_0}))"
 | |
| 601 | proof- | |
| 602 |   {assume "f= fps_const (f$0)" hence "fps_deriv f = fps_deriv (fps_const (f$0))" by simp
 | |
| 603 | hence "fps_deriv f = 0" by simp } | |
| 604 | moreover | |
| 605 |   {assume z: "fps_deriv f = 0"
 | |
| 606 | hence "\<forall>n. (fps_deriv f)$n = 0" by simp | |
| 607 | hence "\<forall>n. f$(n+1) = 0" by (simp del: of_nat_Suc of_nat_add One_nat_def) | |
| 608 | hence "f = fps_const (f$0)" | |
| 609 | apply (clarsimp simp add: fps_eq_iff fps_const_def) | |
| 610 | apply (erule_tac x="n - 1" in allE) | |
| 611 | by simp} | |
| 612 | ultimately show ?thesis by blast | |
| 613 | qed | |
| 614 | ||
| 615 | lemma fps_deriv_eq_iff: | |
| 616 |   fixes f:: "('a::{idom,semiring_char_0}) fps"
 | |
| 617 | shows "fps_deriv f = fps_deriv g \<longleftrightarrow> (f = fps_const(f$0 - g$0) + g)" | |
| 618 | proof- | |
| 619 | have "fps_deriv f = fps_deriv g \<longleftrightarrow> fps_deriv (f - g) = 0" by simp | |
| 620 | also have "\<dots> \<longleftrightarrow> f - g = fps_const ((f-g)$0)" unfolding fps_deriv_eq_0_iff .. | |
| 621 | finally show ?thesis by (simp add: ring_simps) | |
| 622 | qed | |
| 623 | ||
| 624 | lemma fps_deriv_eq_iff_ex: "(fps_deriv f = fps_deriv g) \<longleftrightarrow> (\<exists>(c::'a::{idom,semiring_char_0}). f = fps_const c + g)"
 | |
| 625 | apply auto unfolding fps_deriv_eq_iff by blast | |
| 626 | ||
| 627 | ||
| 628 | fun fps_nth_deriv :: "nat \<Rightarrow> ('a::semiring_1) fps \<Rightarrow> 'a fps" where
 | |
| 629 | "fps_nth_deriv 0 f = f" | |
| 630 | | "fps_nth_deriv (Suc n) f = fps_nth_deriv n (fps_deriv f)" | |
| 631 | ||
| 632 | lemma fps_nth_deriv_commute: "fps_nth_deriv (Suc n) f = fps_deriv (fps_nth_deriv n f)" | |
| 633 | by (induct n arbitrary: f, auto) | |
| 634 | ||
| 635 | lemma fps_nth_deriv_linear[simp]: "fps_nth_deriv n (fps_const (a::'a::comm_semiring_1) * f + fps_const b * g) = fps_const a * fps_nth_deriv n f + fps_const b * fps_nth_deriv n g" | |
| 636 | by (induct n arbitrary: f g, auto simp add: fps_nth_deriv_commute) | |
| 637 | ||
| 638 | lemma fps_nth_deriv_neg[simp]: "fps_nth_deriv n (- (f:: ('a:: comm_ring_1) fps)) = - (fps_nth_deriv n f)"
 | |
| 639 | by (induct n arbitrary: f, simp_all) | |
| 640 | ||
| 641 | lemma fps_nth_deriv_add[simp]: "fps_nth_deriv n ((f:: ('a::comm_ring_1) fps) + g) = fps_nth_deriv n f + fps_nth_deriv n g"
 | |
| 642 | using fps_nth_deriv_linear[of n 1 f 1 g] by simp | |
| 643 | ||
| 644 | lemma fps_nth_deriv_sub[simp]: "fps_nth_deriv n ((f:: ('a::comm_ring_1) fps) - g) = fps_nth_deriv n f - fps_nth_deriv n g"
 | |
| 645 | unfolding diff_minus fps_nth_deriv_add by simp | |
| 646 | ||
| 647 | lemma fps_nth_deriv_0[simp]: "fps_nth_deriv n 0 = 0" | |
| 648 | by (induct n, simp_all ) | |
| 649 | ||
| 650 | lemma fps_nth_deriv_1[simp]: "fps_nth_deriv n 1 = (if n = 0 then 1 else 0)" | |
| 651 | by (induct n, simp_all ) | |
| 652 | ||
| 653 | lemma fps_nth_deriv_const[simp]: "fps_nth_deriv n (fps_const c) = (if n = 0 then fps_const c else 0)" | |
| 654 | by (cases n, simp_all) | |
| 655 | ||
| 656 | lemma fps_nth_deriv_mult_const_left[simp]: "fps_nth_deriv n (fps_const (c::'a::comm_ring_1) * f) = fps_const c * fps_nth_deriv n f" | |
| 657 | using fps_nth_deriv_linear[of n "c" f 0 0 ] by simp | |
| 658 | ||
| 659 | lemma fps_nth_deriv_mult_const_right[simp]: "fps_nth_deriv n (f * fps_const (c::'a::comm_ring_1)) = fps_nth_deriv n f * fps_const c" | |
| 660 | using fps_nth_deriv_linear[of n "c" f 0 0] by (simp add: mult_commute) | |
| 661 | ||
| 662 | lemma fps_nth_deriv_setsum: "fps_nth_deriv n (setsum f S) = setsum (\<lambda>i. fps_nth_deriv n (f i :: ('a::comm_ring_1) fps)) S"
 | |
| 663 | proof- | |
| 664 |   {assume "\<not> finite S" hence ?thesis by simp}
 | |
| 665 | moreover | |
| 666 |   {assume fS: "finite S"
 | |
| 667 | have ?thesis by (induct rule: finite_induct[OF fS], simp_all)} | |
| 668 | ultimately show ?thesis by blast | |
| 669 | qed | |
| 670 | ||
| 671 | lemma fps_deriv_maclauren_0: "(fps_nth_deriv k (f:: ('a::comm_semiring_1) fps)) $ 0 = of_nat (fact k) * f$(k)"
 | |
| 672 | by (induct k arbitrary: f) (auto simp add: ring_simps of_nat_mult) | |
| 673 | ||
| 29906 | 674 | subsection {* Powers*}
 | 
| 29687 | 675 | |
| 676 | instantiation fps :: (semiring_1) power | |
| 677 | begin | |
| 678 | ||
| 679 | fun fps_pow :: "nat \<Rightarrow> 'a fps \<Rightarrow> 'a fps" where | |
| 680 | "fps_pow 0 f = 1" | |
| 681 | | "fps_pow (Suc n) f = f * fps_pow n f" | |
| 682 | ||
| 683 | definition fps_power_def: "power (f::'a fps) n = fps_pow n f" | |
| 684 | instance .. | |
| 685 | end | |
| 686 | ||
| 687 | instantiation fps :: (comm_ring_1) recpower | |
| 688 | begin | |
| 689 | instance | |
| 690 | apply (intro_classes) | |
| 691 | by (simp_all add: fps_power_def) | |
| 692 | end | |
| 693 | ||
| 694 | lemma fps_power_zeroth_eq_one: "a$0 =1 \<Longrightarrow> a^n $ 0 = (1::'a::semiring_1)" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 695 | by (induct n, auto simp add: fps_power_def expand_fps_eq fps_mult_nth) | 
| 29687 | 696 | |
| 697 | lemma fps_power_first_eq: "(a:: 'a::comm_ring_1 fps)$0 =1 \<Longrightarrow> a^n $ 1 = of_nat n * a$1" | |
| 698 | proof(induct n) | |
| 699 | case 0 thus ?case by (simp add: fps_power_def) | |
| 700 | next | |
| 701 | case (Suc n) | |
| 702 | note h = Suc.hyps[OF `a$0 = 1`] | |
| 703 | show ?case unfolding power_Suc fps_mult_nth | |
| 704 | using h `a$0 = 1` fps_power_zeroth_eq_one[OF `a$0=1`] by (simp add: ring_simps) | |
| 705 | qed | |
| 706 | ||
| 707 | lemma startsby_one_power:"a $ 0 = (1::'a::comm_ring_1) \<Longrightarrow> a^n $ 0 = 1" | |
| 708 | by (induct n, auto simp add: fps_power_def fps_mult_nth) | |
| 709 | ||
| 710 | lemma startsby_zero_power:"a $0 = (0::'a::comm_ring_1) \<Longrightarrow> n > 0 \<Longrightarrow> a^n $0 = 0" | |
| 711 | by (induct n, auto simp add: fps_power_def fps_mult_nth) | |
| 712 | ||
| 713 | lemma startsby_power:"a $0 = (v::'a::{comm_ring_1, recpower}) \<Longrightarrow> a^n $0 = v^n"
 | |
| 714 | by (induct n, auto simp add: fps_power_def fps_mult_nth power_Suc) | |
| 715 | ||
| 716 | lemma startsby_zero_power_iff[simp]: | |
| 717 |   "a^n $0 = (0::'a::{idom, recpower}) \<longleftrightarrow> (n \<noteq> 0 \<and> a$0 = 0)"
 | |
| 718 | apply (rule iffI) | |
| 719 | apply (induct n, auto simp add: power_Suc fps_mult_nth) | |
| 720 | by (rule startsby_zero_power, simp_all) | |
| 721 | ||
| 722 | lemma startsby_zero_power_prefix: | |
| 723 | assumes a0: "a $0 = (0::'a::idom)" | |
| 724 | shows "\<forall>n < k. a ^ k $ n = 0" | |
| 725 | using a0 | |
| 726 | proof(induct k rule: nat_less_induct) | |
| 727 | fix k assume H: "\<forall>m<k. a $0 = 0 \<longrightarrow> (\<forall>n<m. a ^ m $ n = 0)" and a0: "a $0 = (0\<Colon>'a)" | |
| 728 | let ?ths = "\<forall>m<k. a ^ k $ m = 0" | |
| 729 |   {assume "k = 0" then have ?ths by simp}
 | |
| 730 | moreover | |
| 731 |   {fix l assume k: "k = Suc l"
 | |
| 732 |     {fix m assume mk: "m < k"
 | |
| 733 |       {assume "m=0" hence "a^k $ m = 0" using startsby_zero_power[of a k] k a0 
 | |
| 734 | by simp} | |
| 735 | moreover | |
| 736 |       {assume m0: "m \<noteq> 0"
 | |
| 737 | have "a ^k $ m = (a^l * a) $m" by (simp add: k power_Suc mult_commute) | |
| 738 | also have "\<dots> = (\<Sum>i = 0..m. a ^ l $ i * a $ (m - i))" by (simp add: fps_mult_nth) | |
| 739 | also have "\<dots> = 0" apply (rule setsum_0') | |
| 740 | apply auto | |
| 741 | apply (case_tac "aa = m") | |
| 742 | using a0 | |
| 743 | apply simp | |
| 744 | apply (rule H[rule_format]) | |
| 745 | using a0 k mk by auto | |
| 746 | finally have "a^k $ m = 0" .} | |
| 747 | ultimately have "a^k $ m = 0" by blast} | |
| 748 | hence ?ths by blast} | |
| 749 | ultimately show ?ths by (cases k, auto) | |
| 750 | qed | |
| 751 | ||
| 752 | lemma startsby_zero_setsum_depends: | |
| 753 | assumes a0: "a $0 = (0::'a::idom)" and kn: "n \<ge> k" | |
| 754 |   shows "setsum (\<lambda>i. (a ^ i)$k) {0 .. n} = setsum (\<lambda>i. (a ^ i)$k) {0 .. k}"
 | |
| 755 | apply (rule setsum_mono_zero_right) | |
| 756 | using kn apply auto | |
| 757 | apply (rule startsby_zero_power_prefix[rule_format, OF a0]) | |
| 758 | by arith | |
| 759 | ||
| 760 | lemma startsby_zero_power_nth_same: assumes a0: "a$0 = (0::'a::{recpower, idom})"
 | |
| 761 | shows "a^n $ n = (a$1) ^ n" | |
| 762 | proof(induct n) | |
| 763 | case 0 thus ?case by (simp add: power_0) | |
| 764 | next | |
| 765 | case (Suc n) | |
| 766 | have "a ^ Suc n $ (Suc n) = (a^n * a)$(Suc n)" by (simp add: ring_simps power_Suc) | |
| 767 |   also have "\<dots> = setsum (\<lambda>i. a^n$i * a $ (Suc n - i)) {0.. Suc n}" by (simp add: fps_mult_nth)
 | |
| 768 |   also have "\<dots> = setsum (\<lambda>i. a^n$i * a $ (Suc n - i)) {n .. Suc n}"
 | |
| 769 | apply (rule setsum_mono_zero_right) | |
| 770 | apply simp | |
| 771 | apply clarsimp | |
| 772 | apply clarsimp | |
| 773 | apply (rule startsby_zero_power_prefix[rule_format, OF a0]) | |
| 774 | apply arith | |
| 775 | done | |
| 776 | also have "\<dots> = a^n $ n * a$1" using a0 by simp | |
| 777 | finally show ?case using Suc.hyps by (simp add: power_Suc) | |
| 778 | qed | |
| 779 | ||
| 780 | lemma fps_inverse_power: | |
| 781 |   fixes a :: "('a::{field, recpower}) fps"
 | |
| 782 | shows "inverse (a^n) = inverse a ^ n" | |
| 783 | proof- | |
| 784 |   {assume a0: "a$0 = 0"
 | |
| 785 | hence eq: "inverse a = 0" by (simp add: fps_inverse_def) | |
| 786 |     {assume "n = 0" hence ?thesis by simp}
 | |
| 787 | moreover | |
| 788 |     {assume n: "n > 0"
 | |
| 789 | from startsby_zero_power[OF a0 n] eq a0 n have ?thesis | |
| 790 | by (simp add: fps_inverse_def)} | |
| 791 | ultimately have ?thesis by blast} | |
| 792 | moreover | |
| 793 |   {assume a0: "a$0 \<noteq> 0"
 | |
| 794 | have ?thesis | |
| 795 | apply (rule fps_inverse_unique) | |
| 796 | apply (simp add: a0) | |
| 797 | unfolding power_mult_distrib[symmetric] | |
| 798 | apply (rule ssubst[where t = "a * inverse a" and s= 1]) | |
| 799 | apply simp_all | |
| 800 | apply (subst mult_commute) | |
| 801 | by (rule inverse_mult_eq_1[OF a0])} | |
| 802 | ultimately show ?thesis by blast | |
| 803 | qed | |
| 804 | ||
| 805 | lemma fps_deriv_power: "fps_deriv (a ^ n) = fps_const (of_nat n :: 'a:: comm_ring_1) * fps_deriv a * a ^ (n - 1)" | |
| 806 | apply (induct n, auto simp add: power_Suc ring_simps fps_const_add[symmetric] simp del: fps_const_add) | |
| 807 | by (case_tac n, auto simp add: power_Suc ring_simps) | |
| 808 | ||
| 809 | lemma fps_inverse_deriv: | |
| 810 |   fixes a:: "('a :: field) fps"
 | |
| 811 | assumes a0: "a$0 \<noteq> 0" | |
| 812 | shows "fps_deriv (inverse a) = - fps_deriv a * inverse a ^ 2" | |
| 813 | proof- | |
| 814 | from inverse_mult_eq_1[OF a0] | |
| 815 | have "fps_deriv (inverse a * a) = 0" by simp | |
| 816 | hence "inverse a * fps_deriv a + fps_deriv (inverse a) * a = 0" by simp | |
| 817 | hence "inverse a * (inverse a * fps_deriv a + fps_deriv (inverse a) * a) = 0" by simp | |
| 818 | with inverse_mult_eq_1[OF a0] | |
| 819 | have "inverse a ^ 2 * fps_deriv a + fps_deriv (inverse a) = 0" | |
| 820 | unfolding power2_eq_square | |
| 821 | apply (simp add: ring_simps) | |
| 822 | by (simp add: mult_assoc[symmetric]) | |
| 823 | hence "inverse a ^ 2 * fps_deriv a + fps_deriv (inverse a) - fps_deriv a * inverse a ^ 2 = 0 - fps_deriv a * inverse a ^ 2" | |
| 824 | by simp | |
| 825 | then show "fps_deriv (inverse a) = - fps_deriv a * inverse a ^ 2" by (simp add: ring_simps) | |
| 826 | qed | |
| 827 | ||
| 828 | lemma fps_inverse_mult: | |
| 829 |   fixes a::"('a :: field) fps"
 | |
| 830 | shows "inverse (a * b) = inverse a * inverse b" | |
| 831 | proof- | |
| 832 |   {assume a0: "a$0 = 0" hence ab0: "(a*b)$0 = 0" by (simp add: fps_mult_nth)
 | |
| 833 | from a0 ab0 have th: "inverse a = 0" "inverse (a*b) = 0" by simp_all | |
| 834 | have ?thesis unfolding th by simp} | |
| 835 | moreover | |
| 836 |   {assume b0: "b$0 = 0" hence ab0: "(a*b)$0 = 0" by (simp add: fps_mult_nth)
 | |
| 837 | from b0 ab0 have th: "inverse b = 0" "inverse (a*b) = 0" by simp_all | |
| 838 | have ?thesis unfolding th by simp} | |
| 839 | moreover | |
| 840 |   {assume a0: "a$0 \<noteq> 0" and b0: "b$0 \<noteq> 0"
 | |
| 841 | from a0 b0 have ab0:"(a*b) $ 0 \<noteq> 0" by (simp add: fps_mult_nth) | |
| 842 | from inverse_mult_eq_1[OF ab0] | |
| 843 | have "inverse (a*b) * (a*b) * inverse a * inverse b = 1 * inverse a * inverse b" by simp | |
| 844 | then have "inverse (a*b) * (inverse a * a) * (inverse b * b) = inverse a * inverse b" | |
| 845 | by (simp add: ring_simps) | |
| 846 | then have ?thesis using inverse_mult_eq_1[OF a0] inverse_mult_eq_1[OF b0] by simp} | |
| 847 | ultimately show ?thesis by blast | |
| 848 | qed | |
| 849 | ||
| 850 | lemma fps_inverse_deriv': | |
| 851 |   fixes a:: "('a :: field) fps"
 | |
| 852 | assumes a0: "a$0 \<noteq> 0" | |
| 853 | shows "fps_deriv (inverse a) = - fps_deriv a / a ^ 2" | |
| 854 | using fps_inverse_deriv[OF a0] | |
| 855 | unfolding power2_eq_square fps_divide_def | |
| 856 | fps_inverse_mult by simp | |
| 857 | ||
| 858 | lemma inverse_mult_eq_1': assumes f0: "f$0 \<noteq> (0::'a::field)" | |
| 859 | shows "f * inverse f= 1" | |
| 860 | by (metis mult_commute inverse_mult_eq_1 f0) | |
| 861 | ||
| 862 | lemma fps_divide_deriv:   fixes a:: "('a :: field) fps"
 | |
| 863 | assumes a0: "b$0 \<noteq> 0" | |
| 864 | shows "fps_deriv (a / b) = (fps_deriv a * b - a * fps_deriv b) / b ^ 2" | |
| 865 | using fps_inverse_deriv[OF a0] | |
| 866 | by (simp add: fps_divide_def ring_simps power2_eq_square fps_inverse_mult inverse_mult_eq_1'[OF a0]) | |
| 867 | ||
| 29906 | 868 | subsection{* The eXtractor series X*}
 | 
| 29687 | 869 | |
| 870 | lemma minus_one_power_iff: "(- (1::'a :: {recpower, comm_ring_1})) ^ n = (if even n then 1 else - 1)"
 | |
| 871 | by (induct n, auto) | |
| 872 | ||
| 873 | definition "X = Abs_fps (\<lambda>n. if n = 1 then 1 else 0)" | |
| 874 | ||
| 875 | lemma fps_inverse_gp': "inverse (Abs_fps(\<lambda>n. (1::'a::field))) | |
| 876 | = 1 - X" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 877 | by (simp add: fps_inverse_gp fps_eq_iff X_def) | 
| 29687 | 878 | |
| 879 | lemma X_mult_nth[simp]: "(X * (f :: ('a::semiring_1) fps)) $n = (if n = 0 then 0 else f $ (n - 1))"
 | |
| 880 | proof- | |
| 881 |   {assume n: "n \<noteq> 0"
 | |
| 882 |     have fN: "finite {0 .. n}" by simp
 | |
| 883 | have "(X * f) $n = (\<Sum>i = 0..n. X $ i * f $ (n - i))" by (simp add: fps_mult_nth) | |
| 29913 | 884 | also have "\<dots> = f $ (n - 1)" | 
| 885 | using n by (simp add: X_def mult_delta_left setsum_delta [OF fN]) | |
| 29687 | 886 | finally have ?thesis using n by simp } | 
| 887 | moreover | |
| 888 |   {assume n: "n=0" hence ?thesis by (simp add: fps_mult_nth X_def)}
 | |
| 889 | ultimately show ?thesis by blast | |
| 890 | qed | |
| 891 | ||
| 892 | lemma X_mult_right_nth[simp]: "((f :: ('a::comm_semiring_1) fps) * X) $n = (if n = 0 then 0 else f $ (n - 1))"
 | |
| 893 | by (metis X_mult_nth mult_commute) | |
| 894 | ||
| 895 | lemma X_power_iff: "X^k = Abs_fps (\<lambda>n. if n = k then (1::'a::comm_ring_1) else 0)" | |
| 896 | proof(induct k) | |
| 897 | case 0 thus ?case by (simp add: X_def fps_power_def fps_eq_iff) | |
| 898 | next | |
| 899 | case (Suc k) | |
| 900 |   {fix m 
 | |
| 901 | have "(X^Suc k) $ m = (if m = 0 then (0::'a) else (X^k) $ (m - 1))" | |
| 902 | by (simp add: power_Suc del: One_nat_def) | |
| 903 | then have "(X^Suc k) $ m = (if m = Suc k then (1::'a) else 0)" | |
| 904 | using Suc.hyps by (auto cong del: if_weak_cong)} | |
| 905 | then show ?case by (simp add: fps_eq_iff) | |
| 906 | qed | |
| 907 | ||
| 908 | lemma X_power_mult_nth: "(X^k * (f :: ('a::comm_ring_1) fps)) $n = (if n < k then 0 else f $ (n - k))"
 | |
| 909 | apply (induct k arbitrary: n) | |
| 910 | apply (simp) | |
| 911 | unfolding power_Suc mult_assoc | |
| 912 | by (case_tac n, auto) | |
| 913 | ||
| 914 | lemma X_power_mult_right_nth: "((f :: ('a::comm_ring_1) fps) * X^k) $n = (if n < k then 0 else f $ (n - k))"
 | |
| 915 | by (metis X_power_mult_nth mult_commute) | |
| 916 | lemma fps_deriv_X[simp]: "fps_deriv X = 1" | |
| 917 | by (simp add: fps_deriv_def X_def fps_eq_iff) | |
| 918 | ||
| 919 | lemma fps_nth_deriv_X[simp]: "fps_nth_deriv n X = (if n = 0 then X else if n=1 then 1 else 0)" | |
| 920 | by (cases "n", simp_all) | |
| 921 | ||
| 922 | lemma X_nth[simp]: "X$n = (if n = 1 then 1 else 0)" by (simp add: X_def) | |
| 923 | lemma X_power_nth[simp]: "(X^k) $n = (if n = k then 1 else (0::'a::comm_ring_1))" | |
| 924 | by (simp add: X_power_iff) | |
| 925 | ||
| 926 | lemma fps_inverse_X_plus1: | |
| 927 |   "inverse (1 + X) = Abs_fps (\<lambda>n. (- (1::'a::{recpower, field})) ^ n)" (is "_ = ?r")
 | |
| 928 | proof- | |
| 929 | have eq: "(1 + X) * ?r = 1" | |
| 930 | unfolding minus_one_power_iff | |
| 931 | apply (auto simp add: ring_simps fps_eq_iff) | |
| 932 | by presburger+ | |
| 933 | show ?thesis by (auto simp add: eq intro: fps_inverse_unique) | |
| 934 | qed | |
| 935 | ||
| 936 | ||
| 29906 | 937 | subsection{* Integration *}
 | 
| 29687 | 938 | definition "fps_integral a a0 = Abs_fps (\<lambda>n. if n = 0 then a0 else (a$(n - 1) / of_nat n))" | 
| 939 | ||
| 940 | lemma fps_deriv_fps_integral: "fps_deriv (fps_integral a (a0 :: 'a :: {field, ring_char_0})) = a"
 | |
| 941 | by (simp add: fps_integral_def fps_deriv_def fps_eq_iff field_simps del: of_nat_Suc) | |
| 942 | ||
| 943 | lemma fps_integral_linear: "fps_integral (fps_const (a::'a::{field, ring_char_0}) * f + fps_const b * g) (a*a0 + b*b0) = fps_const a * fps_integral f a0 + fps_const b * fps_integral g b0" (is "?l = ?r")
 | |
| 944 | proof- | |
| 945 | have "fps_deriv ?l = fps_deriv ?r" by (simp add: fps_deriv_fps_integral) | |
| 946 | moreover have "?l$0 = ?r$0" by (simp add: fps_integral_def) | |
| 947 | ultimately show ?thesis | |
| 948 | unfolding fps_deriv_eq_iff by auto | |
| 949 | qed | |
| 950 | ||
| 29906 | 951 | subsection {* Composition of FPSs *}
 | 
| 29687 | 952 | definition fps_compose :: "('a::semiring_1) fps \<Rightarrow> 'a fps \<Rightarrow> 'a fps" (infixl "oo" 55) where
 | 
| 953 |   fps_compose_def: "a oo b = Abs_fps (\<lambda>n. setsum (\<lambda>i. a$i * (b^i$n)) {0..n})"
 | |
| 954 | ||
| 955 | lemma fps_compose_nth: "(a oo b)$n = setsum (\<lambda>i. a$i * (b^i$n)) {0..n}" by (simp add: fps_compose_def)
 | |
| 956 | ||
| 957 | lemma fps_compose_X[simp]: "a oo X = (a :: ('a :: comm_ring_1) fps)"
 | |
| 29913 | 958 | by (simp add: fps_ext fps_compose_def mult_delta_right setsum_delta') | 
| 29687 | 959 | |
| 960 | lemma fps_const_compose[simp]: | |
| 961 |   "fps_const (a::'a::{comm_ring_1}) oo b = fps_const (a)"
 | |
| 29913 | 962 | by (simp add: fps_eq_iff fps_compose_nth mult_delta_left setsum_delta) | 
| 29687 | 963 | |
| 964 | lemma X_fps_compose_startby0[simp]: "a$0 = 0 \<Longrightarrow> X oo a = (a :: ('a :: comm_ring_1) fps)"
 | |
| 29913 | 965 | by (simp add: fps_eq_iff fps_compose_def mult_delta_left setsum_delta | 
| 966 | power_Suc not_le) | |
| 29687 | 967 | |
| 968 | ||
| 29906 | 969 | subsection {* Rules from Herbert Wilf's Generatingfunctionology*}
 | 
| 29687 | 970 | |
| 29906 | 971 | subsubsection {* Rule 1 *}
 | 
| 29687 | 972 |   (* {a_{n+k}}_0^infty Corresponds to (f - setsum (\<lambda>i. a_i * x^i))/x^h, for h>0*)
 | 
| 973 | ||
| 974 | lemma fps_power_mult_eq_shift: | |
| 975 |   "X^Suc k * Abs_fps (\<lambda>n. a (n + Suc k)) = Abs_fps a - setsum (\<lambda>i. fps_const (a i :: 'a:: field) * X^i) {0 .. k}" (is "?lhs = ?rhs")
 | |
| 976 | proof- | |
| 977 |   {fix n:: nat
 | |
| 978 | have "?lhs $ n = (if n < Suc k then 0 else a n)" | |
| 979 | unfolding X_power_mult_nth by auto | |
| 980 | also have "\<dots> = ?rhs $ n" | |
| 981 | proof(induct k) | |
| 982 | case 0 thus ?case by (simp add: fps_setsum_nth power_Suc) | |
| 983 | next | |
| 984 | case (Suc k) | |
| 985 | note th = Suc.hyps[symmetric] | |
| 986 |       have "(Abs_fps a - setsum (\<lambda>i. fps_const (a i :: 'a:: field) * X^i) {0 .. Suc k})$n = (Abs_fps a - setsum (\<lambda>i. fps_const (a i :: 'a:: field) * X^i) {0 .. k} - fps_const (a (Suc k)) * X^ Suc k) $ n" by (simp add: ring_simps)
 | |
| 987 | also have "\<dots> = (if n < Suc k then 0 else a n) - (fps_const (a (Suc k)) * X^ Suc k)$n" | |
| 988 | using th | |
| 989 | unfolding fps_sub_nth by simp | |
| 990 | also have "\<dots> = (if n < Suc (Suc k) then 0 else a n)" | |
| 991 | unfolding X_power_mult_right_nth | |
| 992 | apply (auto simp add: not_less fps_const_def) | |
| 993 | apply (rule cong[of a a, OF refl]) | |
| 994 | by arith | |
| 995 | finally show ?case by simp | |
| 996 | qed | |
| 997 | finally have "?lhs $ n = ?rhs $ n" .} | |
| 998 | then show ?thesis by (simp add: fps_eq_iff) | |
| 999 | qed | |
| 1000 | ||
| 29906 | 1001 | subsubsection{* Rule 2*}
 | 
| 29687 | 1002 | |
| 1003 | (* We can not reach the form of Wilf, but still near to it using rewrite rules*) | |
| 1004 |   (* If f reprents {a_n} and P is a polynomial, then 
 | |
| 1005 |         P(xD) f represents {P(n) a_n}*)
 | |
| 1006 | ||
| 1007 | definition "XD = op * X o fps_deriv" | |
| 1008 | ||
| 1009 | lemma XD_add[simp]:"XD (a + b) = XD a + XD (b :: ('a::comm_ring_1) fps)"
 | |
| 1010 | by (simp add: XD_def ring_simps) | |
| 1011 | ||
| 1012 | lemma XD_mult_const[simp]:"XD (fps_const (c::'a::comm_ring_1) * a) = fps_const c * XD a" | |
| 1013 | by (simp add: XD_def ring_simps) | |
| 1014 | ||
| 1015 | lemma XD_linear[simp]: "XD (fps_const c * a + fps_const d * b) = fps_const c * XD a + fps_const d * XD (b :: ('a::comm_ring_1) fps)"
 | |
| 1016 | by simp | |
| 1017 | ||
| 29689 
dd086f26ee4f
removed definition of funpow , reusing that of Relation_Power
 chaieb parents: 
29687diff
changeset | 1018 | lemma XDN_linear: "(XD^n) (fps_const c * a + fps_const d * b) = fps_const c * (XD^n) a + fps_const d * (XD^n) (b :: ('a::comm_ring_1) fps)"
 | 
| 29687 | 1019 | by (induct n, simp_all) | 
| 1020 | ||
| 1021 | lemma fps_mult_X_deriv_shift: "X* fps_deriv a = Abs_fps (\<lambda>n. of_nat n* a$n)" by (simp add: fps_eq_iff) | |
| 1022 | ||
| 29689 
dd086f26ee4f
removed definition of funpow , reusing that of Relation_Power
 chaieb parents: 
29687diff
changeset | 1023 | lemma fps_mult_XD_shift: "(XD ^k) (a:: ('a::{comm_ring_1, recpower, ring_char_0}) fps) = Abs_fps (\<lambda>n. (of_nat n ^ k) * a$n)"
 | 
| 29687 | 1024 | by (induct k arbitrary: a) (simp_all add: power_Suc XD_def fps_eq_iff ring_simps del: One_nat_def) | 
| 1025 | ||
| 29906 | 1026 | subsubsection{* Rule 3 is trivial and is given by @{text fps_times_def}*}
 | 
| 1027 | subsubsection{* Rule 5 --- summation and "division" by (1 - X)*}
 | |
| 29687 | 1028 | |
| 1029 | lemma fps_divide_X_minus1_setsum_lemma: | |
| 1030 |   "a = ((1::('a::comm_ring_1) fps) - X) * Abs_fps (\<lambda>n. setsum (\<lambda>i. a $ i) {0..n})"
 | |
| 1031 | proof- | |
| 1032 |   let ?X = "X::('a::comm_ring_1) fps"
 | |
| 1033 |   let ?sa = "Abs_fps (\<lambda>n. setsum (\<lambda>i. a $ i) {0..n})"
 | |
| 1034 | have th0: "\<And>i. (1 - (X::'a fps)) $ i = (if i = 0 then 1 else if i = 1 then - 1 else 0)" by simp | |
| 1035 |   {fix n:: nat
 | |
| 1036 |     {assume "n=0" hence "a$n = ((1 - ?X) * ?sa) $ n" 
 | |
| 1037 | by (simp add: fps_mult_nth)} | |
| 1038 | moreover | |
| 1039 |     {assume n0: "n \<noteq> 0"
 | |
| 1040 |       then have u: "{0} \<union> ({1} \<union> {2..n}) = {0..n}" "{1}\<union>{2..n} = {1..n}"
 | |
| 1041 | 	"{0..n - 1}\<union>{n} = {0..n}"
 | |
| 1042 | apply (simp_all add: expand_set_eq) by presburger+ | |
| 1043 |       have d: "{0} \<inter> ({1} \<union> {2..n}) = {}" "{1} \<inter> {2..n} = {}" 
 | |
| 1044 | 	"{0..n - 1}\<inter>{n} ={}" using n0
 | |
| 1045 | by (simp_all add: expand_set_eq, presburger+) | |
| 1046 |       have f: "finite {0}" "finite {1}" "finite {2 .. n}" 
 | |
| 1047 | 	"finite {0 .. n - 1}" "finite {n}" by simp_all 
 | |
| 1048 |     have "((1 - ?X) * ?sa) $ n = setsum (\<lambda>i. (1 - ?X)$ i * ?sa $ (n - i)) {0 .. n}"
 | |
| 1049 | by (simp add: fps_mult_nth) | |
| 1050 | also have "\<dots> = a$n" unfolding th0 | |
| 1051 | unfolding setsum_Un_disjoint[OF f(1) finite_UnI[OF f(2,3)] d(1), unfolded u(1)] | |
| 1052 | unfolding setsum_Un_disjoint[OF f(2) f(3) d(2)] | |
| 1053 | apply (simp) | |
| 1054 | unfolding setsum_Un_disjoint[OF f(4,5) d(3), unfolded u(3)] | |
| 1055 | by simp | |
| 1056 | finally have "a$n = ((1 - ?X) * ?sa) $ n" by simp} | |
| 1057 | ultimately have "a$n = ((1 - ?X) * ?sa) $ n" by blast} | |
| 1058 | then show ?thesis | |
| 1059 | unfolding fps_eq_iff by blast | |
| 1060 | qed | |
| 1061 | ||
| 1062 | lemma fps_divide_X_minus1_setsum: | |
| 1063 |   "a /((1::('a::field) fps) - X)  = Abs_fps (\<lambda>n. setsum (\<lambda>i. a $ i) {0..n})"
 | |
| 1064 | proof- | |
| 1065 |   let ?X = "1 - (X::('a::field) fps)"
 | |
| 1066 | have th0: "?X $ 0 \<noteq> 0" by simp | |
| 1067 |   have "a /?X = ?X *  Abs_fps (\<lambda>n\<Colon>nat. setsum (op $ a) {0..n}) * inverse ?X"
 | |
| 1068 | using fps_divide_X_minus1_setsum_lemma[of a, symmetric] th0 | |
| 1069 | by (simp add: fps_divide_def mult_assoc) | |
| 1070 |   also have "\<dots> = (inverse ?X * ?X) * Abs_fps (\<lambda>n\<Colon>nat. setsum (op $ a) {0..n}) "
 | |
| 1071 | by (simp add: mult_ac) | |
| 1072 | finally show ?thesis by (simp add: inverse_mult_eq_1[OF th0]) | |
| 1073 | qed | |
| 1074 | ||
| 29906 | 1075 | subsubsection{* Rule 4 in its more general form: generalizes Rule 3 for an arbitrary 
 | 
| 29687 | 1076 | finite product of FPS, also the relvant instance of powers of a FPS*} | 
| 1077 | ||
| 1078 | definition "natpermute n k = {l:: nat list. length l = k \<and> foldl op + 0 l = n}"
 | |
| 1079 | ||
| 1080 | lemma natlist_trivial_1: "natpermute n 1 = {[n]}"
 | |
| 1081 | apply (auto simp add: natpermute_def) | |
| 1082 | apply (case_tac x, auto) | |
| 1083 | done | |
| 1084 | ||
| 1085 | lemma foldl_add_start0: | |
| 1086 | "foldl op + x xs = x + foldl op + (0::nat) xs" | |
| 1087 | apply (induct xs arbitrary: x) | |
| 1088 | apply simp | |
| 1089 | unfolding foldl.simps | |
| 1090 | apply atomize | |
| 1091 | apply (subgoal_tac "\<forall>x\<Colon>nat. foldl op + x xs = x + foldl op + (0\<Colon>nat) xs") | |
| 1092 | apply (erule_tac x="x + a" in allE) | |
| 1093 | apply (erule_tac x="a" in allE) | |
| 1094 | apply simp | |
| 1095 | apply assumption | |
| 1096 | done | |
| 1097 | ||
| 1098 | lemma foldl_add_append: "foldl op + (x::nat) (xs@ys) = foldl op + x xs + foldl op + 0 ys" | |
| 1099 | apply (induct ys arbitrary: x xs) | |
| 1100 | apply auto | |
| 1101 | apply (subst (2) foldl_add_start0) | |
| 1102 | apply simp | |
| 1103 | apply (subst (2) foldl_add_start0) | |
| 1104 | by simp | |
| 1105 | ||
| 1106 | lemma foldl_add_setsum: "foldl op + (x::nat) xs = x + setsum (nth xs) {0..<length xs}"
 | |
| 1107 | proof(induct xs arbitrary: x) | |
| 1108 | case Nil thus ?case by simp | |
| 1109 | next | |
| 1110 | case (Cons a as x) | |
| 1111 |   have eq: "setsum (op ! (a#as)) {1..<length (a#as)} = setsum (op ! as) {0..<length as}"
 | |
| 1112 | apply (rule setsum_reindex_cong [where f=Suc]) | |
| 1113 | by (simp_all add: inj_on_def) | |
| 1114 |   have f: "finite {0}" "finite {1 ..< length (a#as)}" by simp_all
 | |
| 1115 |   have d: "{0} \<inter> {1..<length (a#as)} = {}" by simp
 | |
| 1116 |   have seq: "{0} \<union> {1..<length(a#as)} = {0 ..<length (a#as)}" by auto
 | |
| 1117 | have "foldl op + x (a#as) = x + foldl op + a as " | |
| 1118 | apply (subst foldl_add_start0) by simp | |
| 1119 |   also have "\<dots> = x + a + setsum (op ! as) {0..<length as}" unfolding Cons.hyps by simp
 | |
| 1120 |   also have "\<dots> = x + setsum (op ! (a#as)) {0..<length (a#as)}"
 | |
| 1121 | unfolding eq[symmetric] | |
| 1122 | unfolding setsum_Un_disjoint[OF f d, unfolded seq] | |
| 1123 | by simp | |
| 1124 | finally show ?case . | |
| 1125 | qed | |
| 1126 | ||
| 1127 | ||
| 1128 | lemma append_natpermute_less_eq: | |
| 1129 | assumes h: "xs@ys \<in> natpermute n k" shows "foldl op + 0 xs \<le> n" and "foldl op + 0 ys \<le> n" | |
| 1130 | proof- | |
| 1131 |   {from h have "foldl op + 0 (xs@ ys) = n" by (simp add: natpermute_def)
 | |
| 1132 | hence "foldl op + 0 xs + foldl op + 0 ys = n" unfolding foldl_add_append .} | |
| 1133 | note th = this | |
| 1134 |   {from th show "foldl op + 0 xs \<le> n" by simp}
 | |
| 1135 |   {from th show "foldl op + 0 ys \<le> n" by simp}
 | |
| 1136 | qed | |
| 1137 | ||
| 1138 | lemma natpermute_split: | |
| 1139 | assumes mn: "h \<le> k" | |
| 1140 |   shows "natpermute n k = (\<Union>m \<in>{0..n}. {l1 @ l2 |l1 l2. l1 \<in> natpermute m h \<and> l2 \<in> natpermute (n - m) (k - h)})" (is "?L = ?R" is "?L = (\<Union>m \<in>{0..n}. ?S m)")
 | |
| 1141 | proof- | |
| 1142 |   {fix l assume l: "l \<in> ?R" 
 | |
| 1143 |     from l obtain m xs ys where h: "m \<in> {0..n}" and xs: "xs \<in> natpermute m h" and ys: "ys \<in> natpermute (n - m) (k - h)"  and leq: "l = xs@ys" by blast
 | |
| 1144 | from xs have xs': "foldl op + 0 xs = m" by (simp add: natpermute_def) | |
| 1145 | from ys have ys': "foldl op + 0 ys = n - m" by (simp add: natpermute_def) | |
| 1146 | have "l \<in> ?L" using leq xs ys h | |
| 1147 | apply simp | |
| 1148 | apply (clarsimp simp add: natpermute_def simp del: foldl_append) | |
| 1149 | apply (simp add: foldl_add_append[unfolded foldl_append]) | |
| 1150 | unfolding xs' ys' | |
| 1151 | using mn xs ys | |
| 1152 | unfolding natpermute_def by simp} | |
| 1153 | moreover | |
| 1154 |   {fix l assume l: "l \<in> natpermute n k"
 | |
| 1155 | let ?xs = "take h l" | |
| 1156 | let ?ys = "drop h l" | |
| 1157 | let ?m = "foldl op + 0 ?xs" | |
| 1158 | from l have ls: "foldl op + 0 (?xs @ ?ys) = n" by (simp add: natpermute_def) | |
| 1159 | have xs: "?xs \<in> natpermute ?m h" using l mn by (simp add: natpermute_def) | |
| 1160 | have ys: "?ys \<in> natpermute (n - ?m) (k - h)" using l mn ls[unfolded foldl_add_append] | |
| 1161 | by (simp add: natpermute_def) | |
| 1162 |     from ls have m: "?m \<in> {0..n}"  unfolding foldl_add_append by simp
 | |
| 1163 | from xs ys ls have "l \<in> ?R" | |
| 1164 | apply auto | |
| 1165 | apply (rule bexI[where x = "?m"]) | |
| 1166 | apply (rule exI[where x = "?xs"]) | |
| 1167 | apply (rule exI[where x = "?ys"]) | |
| 1168 | using ls l unfolding foldl_add_append | |
| 1169 | by (auto simp add: natpermute_def)} | |
| 1170 | ultimately show ?thesis by blast | |
| 1171 | qed | |
| 1172 | ||
| 1173 | lemma natpermute_0: "natpermute n 0 = (if n = 0 then {[]} else {})"
 | |
| 1174 | by (auto simp add: natpermute_def) | |
| 1175 | lemma natpermute_0'[simp]: "natpermute 0 k = (if k = 0 then {[]} else {replicate k 0})"
 | |
| 1176 | apply (auto simp add: set_replicate_conv_if natpermute_def) | |
| 1177 | apply (rule nth_equalityI) | |
| 1178 | by simp_all | |
| 1179 | ||
| 1180 | lemma natpermute_finite: "finite (natpermute n k)" | |
| 1181 | proof(induct k arbitrary: n) | |
| 1182 | case 0 thus ?case | |
| 1183 | apply (subst natpermute_split[of 0 0, simplified]) | |
| 1184 | by (simp add: natpermute_0) | |
| 1185 | next | |
| 1186 | case (Suc k) | |
| 1187 | then show ?case unfolding natpermute_split[of k "Suc k", simplified] | |
| 1188 | apply - | |
| 1189 | apply (rule finite_UN_I) | |
| 1190 | apply simp | |
| 1191 | unfolding One_nat_def[symmetric] natlist_trivial_1 | |
| 1192 | apply simp | |
| 1193 | unfolding image_Collect[symmetric] | |
| 1194 | unfolding Collect_def mem_def | |
| 1195 | apply (rule finite_imageI) | |
| 1196 | apply blast | |
| 1197 | done | |
| 1198 | qed | |
| 1199 | ||
| 1200 | lemma natpermute_contain_maximal: | |
| 1201 |   "{xs \<in> natpermute n (k+1). n \<in> set xs} = UNION {0 .. k} (\<lambda>i. {(replicate (k+1) 0) [i:=n]})"
 | |
| 1202 | (is "?A = ?B") | |
| 1203 | proof- | |
| 1204 |   {fix xs assume H: "xs \<in> natpermute n (k+1)" and n: "n \<in> set xs"
 | |
| 1205 |     from n obtain i where i: "i \<in> {0.. k}" "xs!i = n" using H
 | |
| 1206 | unfolding in_set_conv_nth by (auto simp add: less_Suc_eq_le natpermute_def) | |
| 1207 |     have eqs: "({0..k} - {i}) \<union> {i} = {0..k}" using i by auto
 | |
| 1208 |     have f: "finite({0..k} - {i})" "finite {i}" by auto
 | |
| 1209 |     have d: "({0..k} - {i}) \<inter> {i} = {}" using i by auto
 | |
| 1210 |     from H have "n = setsum (nth xs) {0..k}" apply (simp add: natpermute_def)
 | |
| 1211 | unfolding foldl_add_setsum by (auto simp add: atLeastLessThanSuc_atLeastAtMost) | |
| 1212 |     also have "\<dots> = n + setsum (nth xs) ({0..k} - {i})"
 | |
| 1213 | unfolding setsum_Un_disjoint[OF f d, unfolded eqs] using i by simp | |
| 1214 |     finally have zxs: "\<forall> j\<in> {0..k} - {i}. xs!j = 0" by auto
 | |
| 1215 | from H have xsl: "length xs = k+1" by (simp add: natpermute_def) | |
| 1216 | from i have i': "i < length (replicate (k+1) 0)" "i < k+1" | |
| 1217 | unfolding length_replicate by arith+ | |
| 1218 | have "xs = replicate (k+1) 0 [i := n]" | |
| 1219 | apply (rule nth_equalityI) | |
| 1220 | unfolding xsl length_list_update length_replicate | |
| 1221 | apply simp | |
| 1222 | apply clarify | |
| 1223 | unfolding nth_list_update[OF i'(1)] | |
| 1224 | using i zxs | |
| 1225 | by (case_tac "ia=i", auto simp del: replicate.simps) | |
| 1226 | then have "xs \<in> ?B" using i by blast} | |
| 1227 | moreover | |
| 1228 |   {fix i assume i: "i \<in> {0..k}"
 | |
| 1229 | let ?xs = "replicate (k+1) 0 [i:=n]" | |
| 1230 | have nxs: "n \<in> set ?xs" | |
| 1231 | apply (rule set_update_memI) using i by simp | |
| 1232 | have xsl: "length ?xs = k+1" by (simp only: length_replicate length_list_update) | |
| 1233 |     have "foldl op + 0 ?xs = setsum (nth ?xs) {0..<k+1}"
 | |
| 1234 | unfolding foldl_add_setsum add_0 length_replicate length_list_update .. | |
| 1235 |     also have "\<dots> = setsum (\<lambda>j. if j = i then n else 0) {0..< k+1}"
 | |
| 1236 | apply (rule setsum_cong2) by (simp del: replicate.simps) | |
| 1237 | also have "\<dots> = n" using i by (simp add: setsum_delta) | |
| 1238 | finally | |
| 1239 | have "?xs \<in> natpermute n (k+1)" using xsl unfolding natpermute_def Collect_def mem_def | |
| 1240 | by blast | |
| 1241 | then have "?xs \<in> ?A" using nxs by blast} | |
| 1242 | ultimately show ?thesis by auto | |
| 1243 | qed | |
| 1244 | ||
| 1245 | (* The general form *) | |
| 1246 | lemma fps_setprod_nth: | |
| 1247 |   fixes m :: nat and a :: "nat \<Rightarrow> ('a::comm_ring_1) fps"
 | |
| 1248 |   shows "(setprod a {0 .. m})$n = setsum (\<lambda>v. setprod (\<lambda>j. (a j) $ (v!j)) {0..m}) (natpermute n (m+1))"
 | |
| 1249 | (is "?P m n") | |
| 1250 | proof(induct m arbitrary: n rule: nat_less_induct) | |
| 1251 | fix m n assume H: "\<forall>m' < m. \<forall>n. ?P m' n" | |
| 1252 |   {assume m0: "m = 0"
 | |
| 1253 | hence "?P m n" apply simp | |
| 1254 | unfolding natlist_trivial_1[where n = n, unfolded One_nat_def] by simp} | |
| 1255 | moreover | |
| 1256 |   {fix k assume k: "m = Suc k"
 | |
| 1257 | have km: "k < m" using k by arith | |
| 1258 |     have u0: "{0 .. k} \<union> {m} = {0..m}" using k apply (simp add: expand_set_eq) by presburger
 | |
| 1259 |     have f0: "finite {0 .. k}" "finite {m}" by auto
 | |
| 1260 |     have d0: "{0 .. k} \<inter> {m} = {}" using k by auto
 | |
| 1261 |     have "(setprod a {0 .. m}) $ n = (setprod a {0 .. k} * a m) $ n"
 | |
| 1262 | unfolding setprod_Un_disjoint[OF f0 d0, unfolded u0] by simp | |
| 1263 |     also have "\<dots> = (\<Sum>i = 0..n. (\<Sum>v\<in>natpermute i (k + 1). \<Prod>j\<in>{0..k}. a j $ v ! j) * a m $ (n - i))"
 | |
| 1264 | unfolding fps_mult_nth H[rule_format, OF km] .. | |
| 1265 |     also have "\<dots> = (\<Sum>v\<in>natpermute n (m + 1). \<Prod>j\<in>{0..m}. a j $ v ! j)"
 | |
| 1266 | apply (simp add: k) | |
| 1267 | unfolding natpermute_split[of m "m + 1", simplified, of n, unfolded natlist_trivial_1[unfolded One_nat_def] k] | |
| 1268 | apply (subst setsum_UN_disjoint) | |
| 1269 | apply simp | |
| 1270 | apply simp | |
| 1271 | unfolding image_Collect[symmetric] | |
| 1272 | apply clarsimp | |
| 1273 | apply (rule finite_imageI) | |
| 1274 | apply (rule natpermute_finite) | |
| 1275 | apply (clarsimp simp add: expand_set_eq) | |
| 1276 | apply auto | |
| 1277 | apply (rule setsum_cong2) | |
| 1278 | unfolding setsum_left_distrib | |
| 1279 | apply (rule sym) | |
| 1280 | apply (rule_tac f="\<lambda>xs. xs @[n - x]" in setsum_reindex_cong) | |
| 1281 | apply (simp add: inj_on_def) | |
| 1282 | apply auto | |
| 1283 | unfolding setprod_Un_disjoint[OF f0 d0, unfolded u0, unfolded k] | |
| 1284 | apply (clarsimp simp add: natpermute_def nth_append) | |
| 1285 | apply (rule_tac f="\<lambda>x. x * a (Suc k) $ (n - foldl op + 0 aa)" in cong[OF refl]) | |
| 1286 | apply (rule setprod_cong) | |
| 1287 | apply simp | |
| 1288 | apply simp | |
| 1289 | done | |
| 1290 | finally have "?P m n" .} | |
| 1291 | ultimately show "?P m n " by (cases m, auto) | |
| 1292 | qed | |
| 1293 | ||
| 1294 | text{* The special form for powers *}
 | |
| 1295 | lemma fps_power_nth_Suc: | |
| 1296 |   fixes m :: nat and a :: "('a::comm_ring_1) fps"
 | |
| 1297 |   shows "(a ^ Suc m)$n = setsum (\<lambda>v. setprod (\<lambda>j. a $ (v!j)) {0..m}) (natpermute n (m+1))"
 | |
| 1298 | proof- | |
| 1299 |   have f: "finite {0 ..m}" by simp
 | |
| 1300 |   have th0: "a^Suc m = setprod (\<lambda>i. a) {0..m}" unfolding setprod_constant[OF f, of a] by simp
 | |
| 1301 | show ?thesis unfolding th0 fps_setprod_nth .. | |
| 1302 | qed | |
| 1303 | lemma fps_power_nth: | |
| 1304 |   fixes m :: nat and a :: "('a::comm_ring_1) fps"
 | |
| 1305 |   shows "(a ^m)$n = (if m=0 then 1$n else setsum (\<lambda>v. setprod (\<lambda>j. a $ (v!j)) {0..m - 1}) (natpermute n m))"
 | |
| 1306 | by (cases m, simp_all add: fps_power_nth_Suc) | |
| 1307 | ||
| 1308 | lemma fps_nth_power_0: | |
| 1309 |   fixes m :: nat and a :: "('a::{comm_ring_1, recpower}) fps"
 | |
| 1310 | shows "(a ^m)$0 = (a$0) ^ m" | |
| 1311 | proof- | |
| 1312 |   {assume "m=0" hence ?thesis by simp}
 | |
| 1313 | moreover | |
| 1314 |   {fix n assume m: "m = Suc n"
 | |
| 1315 |     have c: "m = card {0..n}" using m by simp
 | |
| 1316 |    have "(a ^m)$0 = setprod (\<lambda>i. a$0) {0..n}"
 | |
| 1317 | apply (simp add: m fps_power_nth del: replicate.simps) | |
| 1318 | apply (rule setprod_cong) | |
| 1319 | by (simp_all del: replicate.simps) | |
| 1320 | also have "\<dots> = (a$0) ^ m" | |
| 1321 | unfolding c by (rule setprod_constant, simp) | |
| 1322 | finally have ?thesis .} | |
| 1323 | ultimately show ?thesis by (cases m, auto) | |
| 1324 | qed | |
| 1325 | ||
| 1326 | lemma fps_compose_inj_right: | |
| 1327 |   assumes a0: "a$0 = (0::'a::{recpower,idom})"
 | |
| 1328 | and a1: "a$1 \<noteq> 0" | |
| 1329 | shows "(b oo a = c oo a) \<longleftrightarrow> b = c" (is "?lhs \<longleftrightarrow>?rhs") | |
| 1330 | proof- | |
| 1331 |   {assume ?rhs then have "?lhs" by simp}
 | |
| 1332 | moreover | |
| 1333 |   {assume h: ?lhs
 | |
| 1334 |     {fix n have "b$n = c$n" 
 | |
| 1335 | proof(induct n rule: nat_less_induct) | |
| 1336 | fix n assume H: "\<forall>m<n. b$m = c$m" | |
| 1337 | 	{assume n0: "n=0"
 | |
| 1338 | from h have "(b oo a)$n = (c oo a)$n" by simp | |
| 1339 | hence "b$n = c$n" using n0 by (simp add: fps_compose_nth)} | |
| 1340 | moreover | |
| 1341 | 	{fix n1 assume n1: "n = Suc n1"
 | |
| 1342 | 	  have f: "finite {0 .. n1}" "finite {n}" by simp_all
 | |
| 1343 | 	  have eq: "{0 .. n1} \<union> {n} = {0 .. n}" using n1 by auto
 | |
| 1344 | 	  have d: "{0 .. n1} \<inter> {n} = {}" using n1 by auto
 | |
| 1345 | have seq: "(\<Sum>i = 0..n1. b $ i * a ^ i $ n) = (\<Sum>i = 0..n1. c $ i * a ^ i $ n)" | |
| 1346 | apply (rule setsum_cong2) | |
| 1347 | using H n1 by auto | |
| 1348 | have th0: "(b oo a) $n = (\<Sum>i = 0..n1. c $ i * a ^ i $ n) + b$n * (a$1)^n" | |
| 1349 | unfolding fps_compose_nth setsum_Un_disjoint[OF f d, unfolded eq] seq | |
| 1350 | using startsby_zero_power_nth_same[OF a0] | |
| 1351 | by simp | |
| 1352 | have th1: "(c oo a) $n = (\<Sum>i = 0..n1. c $ i * a ^ i $ n) + c$n * (a$1)^n" | |
| 1353 | unfolding fps_compose_nth setsum_Un_disjoint[OF f d, unfolded eq] | |
| 1354 | using startsby_zero_power_nth_same[OF a0] | |
| 1355 | by simp | |
| 1356 | from h[unfolded fps_eq_iff, rule_format, of n] th0 th1 a1 | |
| 1357 | have "b$n = c$n" by auto} | |
| 1358 | ultimately show "b$n = c$n" by (cases n, auto) | |
| 1359 | qed} | |
| 1360 | then have ?rhs by (simp add: fps_eq_iff)} | |
| 1361 | ultimately show ?thesis by blast | |
| 1362 | qed | |
| 1363 | ||
| 1364 | ||
| 29906 | 1365 | subsection {* Radicals *}
 | 
| 29687 | 1366 | |
| 1367 | declare setprod_cong[fundef_cong] | |
| 1368 | function radical :: "(nat \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> ('a::{field, recpower}) fps \<Rightarrow> nat \<Rightarrow> 'a" where
 | |
| 1369 | "radical r 0 a 0 = 1" | |
| 1370 | | "radical r 0 a (Suc n) = 0" | |
| 1371 | | "radical r (Suc k) a 0 = r (Suc k) (a$0)" | |
| 1372 | | "radical r (Suc k) a (Suc n) = (a$ Suc n - setsum (\<lambda>xs. setprod (\<lambda>j. radical r (Suc k) a (xs ! j)) {0..k}) {xs. xs \<in> natpermute (Suc n) (Suc k) \<and> Suc n \<notin> set xs}) / (of_nat (Suc k) * (radical r (Suc k) a 0)^k)"
 | |
| 1373 | by pat_completeness auto | |
| 1374 | ||
| 1375 | termination radical | |
| 1376 | proof | |
| 1377 | let ?R = "measure (\<lambda>(r, k, a, n). n)" | |
| 1378 |   {
 | |
| 1379 | show "wf ?R" by auto} | |
| 1380 |   {fix r k a n xs i
 | |
| 1381 |     assume xs: "xs \<in> {xs \<in> natpermute (Suc n) (Suc k). Suc n \<notin> set xs}" and i: "i \<in> {0..k}"
 | |
| 1382 |     {assume c: "Suc n \<le> xs ! i"
 | |
| 1383 | from xs i have "xs !i \<noteq> Suc n" by (auto simp add: in_set_conv_nth natpermute_def) | |
| 1384 | with c have c': "Suc n < xs!i" by arith | |
| 1385 |       have fths: "finite {0 ..< i}" "finite {i}" "finite {i+1..<Suc k}" by simp_all
 | |
| 1386 |       have d: "{0 ..< i} \<inter> ({i} \<union> {i+1 ..< Suc k}) = {}" "{i} \<inter> {i+1..< Suc k} = {}" by auto
 | |
| 1387 |       have eqs: "{0..<Suc k} = {0 ..< i} \<union> ({i} \<union> {i+1 ..< Suc k})" using i by auto
 | |
| 1388 | from xs have "Suc n = foldl op + 0 xs" by (simp add: natpermute_def) | |
| 1389 |       also have "\<dots> = setsum (nth xs) {0..<Suc k}" unfolding foldl_add_setsum using xs
 | |
| 1390 | by (simp add: natpermute_def) | |
| 1391 |       also have "\<dots> = xs!i + setsum (nth xs) {0..<i} + setsum (nth xs) {i+1..<Suc k}"
 | |
| 1392 | unfolding eqs setsum_Un_disjoint[OF fths(1) finite_UnI[OF fths(2,3)] d(1)] | |
| 1393 | unfolding setsum_Un_disjoint[OF fths(2) fths(3) d(2)] | |
| 1394 | by simp | |
| 1395 | finally have False using c' by simp} | |
| 1396 | then show "((r,Suc k,a,xs!i), r, Suc k, a, Suc n) \<in> ?R" | |
| 1397 | apply auto by (metis not_less)} | |
| 1398 |   {fix r k a n 
 | |
| 1399 | show "((r,Suc k, a, 0),r, Suc k, a, Suc n) \<in> ?R" by simp} | |
| 1400 | qed | |
| 1401 | ||
| 1402 | definition "fps_radical r n a = Abs_fps (radical r n a)" | |
| 1403 | ||
| 1404 | lemma fps_radical0[simp]: "fps_radical r 0 a = 1" | |
| 1405 | apply (auto simp add: fps_eq_iff fps_radical_def) by (case_tac n, auto) | |
| 1406 | ||
| 1407 | lemma fps_radical_nth_0[simp]: "fps_radical r n a $ 0 = (if n=0 then 1 else r n (a$0))" | |
| 1408 | by (cases n, simp_all add: fps_radical_def) | |
| 1409 | ||
| 1410 | lemma fps_radical_power_nth[simp]: | |
| 1411 | assumes r: "(r k (a$0)) ^ k = a$0" | |
| 1412 | shows "fps_radical r k a ^ k $ 0 = (if k = 0 then 1 else a$0)" | |
| 1413 | proof- | |
| 1414 |   {assume "k=0" hence ?thesis by simp }
 | |
| 1415 | moreover | |
| 1416 |   {fix h assume h: "k = Suc h" 
 | |
| 1417 |     have fh: "finite {0..h}" by simp
 | |
| 1418 |     have eq1: "fps_radical r k a ^ k $ 0 = (\<Prod>j\<in>{0..h}. fps_radical r k a $ (replicate k 0) ! j)"
 | |
| 1419 | unfolding fps_power_nth h by simp | |
| 1420 |     also have "\<dots> = (\<Prod>j\<in>{0..h}. r k (a$0))"
 | |
| 1421 | apply (rule setprod_cong) | |
| 1422 | apply simp | |
| 1423 | using h | |
| 1424 | apply (subgoal_tac "replicate k (0::nat) ! x = 0") | |
| 1425 | by (auto intro: nth_replicate simp del: replicate.simps) | |
| 1426 | also have "\<dots> = a$0" | |
| 1427 | unfolding setprod_constant[OF fh] using r by (simp add: h) | |
| 1428 | finally have ?thesis using h by simp} | |
| 1429 | ultimately show ?thesis by (cases k, auto) | |
| 1430 | qed | |
| 1431 | ||
| 1432 | lemma natpermute_max_card: assumes n0: "n\<noteq>0" | |
| 1433 |   shows "card {xs \<in> natpermute n (k+1). n \<in> set xs} = k+1"
 | |
| 1434 | unfolding natpermute_contain_maximal | |
| 1435 | proof- | |
| 1436 |   let ?A= "\<lambda>i. {replicate (k + 1) 0[i := n]}"
 | |
| 1437 |   let ?K = "{0 ..k}"
 | |
| 1438 | have fK: "finite ?K" by simp | |
| 1439 | have fAK: "\<forall>i\<in>?K. finite (?A i)" by auto | |
| 1440 |   have d: "\<forall>i\<in> ?K. \<forall>j\<in> ?K. i \<noteq> j \<longrightarrow> {replicate (k + 1) 0[i := n]} \<inter> {replicate (k + 1) 0[j := n]} = {}"
 | |
| 1441 | proof(clarify) | |
| 1442 | fix i j assume i: "i \<in> ?K" and j: "j\<in> ?K" and ij: "i\<noteq>j" | |
| 1443 |     {assume eq: "replicate (k+1) 0 [i:=n] = replicate (k+1) 0 [j:= n]"
 | |
| 1444 | have "(replicate (k+1) 0 [i:=n] ! i) = n" using i by (simp del: replicate.simps) | |
| 1445 | moreover | |
| 1446 | have "(replicate (k+1) 0 [j:=n] ! i) = 0" using i ij by (simp del: replicate.simps) | |
| 1447 | ultimately have False using eq n0 by (simp del: replicate.simps)} | |
| 1448 |     then show "{replicate (k + 1) 0[i := n]} \<inter> {replicate (k + 1) 0[j := n]} = {}"
 | |
| 1449 | by auto | |
| 1450 | qed | |
| 1451 | from card_UN_disjoint[OF fK fAK d] | |
| 1452 |   show "card (\<Union>i\<in>{0..k}. {replicate (k + 1) 0[i := n]}) = k+1" by simp
 | |
| 1453 | qed | |
| 1454 | ||
| 1455 | lemma power_radical: | |
| 1456 |   fixes a:: "'a ::{field, ring_char_0, recpower} fps"
 | |
| 1457 | assumes r0: "(r (Suc k) (a$0)) ^ Suc k = a$0" and a0: "a$0 \<noteq> 0" | |
| 1458 | shows "(fps_radical r (Suc k) a) ^ (Suc k) = a" | |
| 1459 | proof- | |
| 1460 | let ?r = "fps_radical r (Suc k) a" | |
| 1461 | from a0 r0 have r00: "r (Suc k) (a$0) \<noteq> 0" by auto | |
| 1462 |   {fix z have "?r ^ Suc k $ z = a$z"
 | |
| 1463 | proof(induct z rule: nat_less_induct) | |
| 1464 | fix n assume H: "\<forall>m<n. ?r ^ Suc k $ m = a$m" | |
| 1465 |       {assume "n = 0" hence "?r ^ Suc k $ n = a $n"
 | |
| 1466 | using fps_radical_power_nth[of r "Suc k" a, OF r0] by simp} | |
| 1467 | moreover | |
| 1468 |       {fix n1 assume n1: "n = Suc n1"
 | |
| 1469 | 	have fK: "finite {0..k}" by simp
 | |
| 1470 | have nz: "n \<noteq> 0" using n1 by arith | |
| 1471 | let ?Pnk = "natpermute n (k + 1)" | |
| 1472 | 	let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
 | |
| 1473 | 	let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
 | |
| 1474 | have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast | |
| 1475 | 	have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
 | |
| 1476 | have f: "finite ?Pnkn" "finite ?Pnknn" | |
| 1477 | using finite_Un[of ?Pnkn ?Pnknn, unfolded eq] | |
| 1478 | by (metis natpermute_finite)+ | |
| 1479 | 	let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r $ v ! j"
 | |
| 1480 | have "setsum ?f ?Pnkn = setsum (\<lambda>v. ?r $ n * r (Suc k) (a $ 0) ^ k) ?Pnkn" | |
| 1481 | proof(rule setsum_cong2) | |
| 1482 | 	  fix v assume v: "v \<in> {xs \<in> natpermute n (k + 1). n \<in> set xs}"
 | |
| 1483 | 	  let ?ths = "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) = fps_radical r (Suc k) a $ n * r (Suc k) (a $ 0) ^ k"
 | |
| 1484 | 	  from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
 | |
| 1485 | unfolding natpermute_contain_maximal by auto | |
| 1486 | 	  have "(\<Prod>j\<in>{0..k}. fps_radical r (Suc k) a $ v ! j) = (\<Prod>j\<in>{0..k}. if j = i then fps_radical r (Suc k) a $ n else r (Suc k) (a$0))"
 | |
| 1487 | apply (rule setprod_cong, simp) | |
| 1488 | using i r0 by (simp del: replicate.simps) | |
| 1489 | also have "\<dots> = (fps_radical r (Suc k) a $ n) * r (Suc k) (a$0) ^ k" | |
| 1490 | unfolding setprod_gen_delta[OF fK] using i r0 by simp | |
| 1491 | finally show ?ths . | |
| 1492 | qed | |
| 1493 | then have "setsum ?f ?Pnkn = of_nat (k+1) * ?r $ n * r (Suc k) (a $ 0) ^ k" | |
| 1494 | by (simp add: natpermute_max_card[OF nz, simplified]) | |
| 1495 | also have "\<dots> = a$n - setsum ?f ?Pnknn" | |
| 1496 | unfolding n1 using r00 a0 by (simp add: field_simps fps_radical_def del: of_nat_Suc ) | |
| 1497 | finally have fn: "setsum ?f ?Pnkn = a$n - setsum ?f ?Pnknn" . | |
| 1498 | have "(?r ^ Suc k)$n = setsum ?f ?Pnkn + setsum ?f ?Pnknn" | |
| 1499 | unfolding fps_power_nth_Suc setsum_Un_disjoint[OF f d, unfolded eq] .. | |
| 1500 | also have "\<dots> = a$n" unfolding fn by simp | |
| 1501 | finally have "?r ^ Suc k $ n = a $n" .} | |
| 1502 | ultimately show "?r ^ Suc k $ n = a $n" by (cases n, auto) | |
| 1503 | qed } | |
| 1504 | then show ?thesis by (simp add: fps_eq_iff) | |
| 1505 | qed | |
| 1506 | ||
| 1507 | lemma eq_divide_imp': assumes c0: "(c::'a::field) ~= 0" and eq: "a * c = b" | |
| 1508 | shows "a = b / c" | |
| 1509 | proof- | |
| 1510 | from eq have "a * c * inverse c = b * inverse c" by simp | |
| 1511 | hence "a * (inverse c * c) = b/c" by (simp only: field_simps divide_inverse) | |
| 1512 | then show "a = b/c" unfolding field_inverse[OF c0] by simp | |
| 1513 | qed | |
| 1514 | ||
| 1515 | lemma radical_unique: | |
| 1516 | assumes r0: "(r (Suc k) (b$0)) ^ Suc k = b$0" | |
| 1517 |   and a0: "r (Suc k) (b$0 ::'a::{field, ring_char_0, recpower}) = a$0" and b0: "b$0 \<noteq> 0"
 | |
| 1518 | shows "a^(Suc k) = b \<longleftrightarrow> a = fps_radical r (Suc k) b" | |
| 1519 | proof- | |
| 1520 | let ?r = "fps_radical r (Suc k) b" | |
| 1521 | have r00: "r (Suc k) (b$0) \<noteq> 0" using b0 r0 by auto | |
| 1522 |   {assume H: "a = ?r"
 | |
| 1523 | from H have "a^Suc k = b" using power_radical[of r k, OF r0 b0] by simp} | |
| 1524 | moreover | |
| 1525 |   {assume H: "a^Suc k = b"
 | |
| 1526 | (* Generally a$0 would need to be the k+1 st root of b$0 *) | |
| 1527 |     have ceq: "card {0..k} = Suc k" by simp
 | |
| 1528 |     have fk: "finite {0..k}" by simp
 | |
| 1529 | from a0 have a0r0: "a$0 = ?r$0" by simp | |
| 1530 |     {fix n have "a $ n = ?r $ n"
 | |
| 1531 | proof(induct n rule: nat_less_induct) | |
| 1532 | fix n assume h: "\<forall>m<n. a$m = ?r $m" | |
| 1533 | 	{assume "n = 0" hence "a$n = ?r $n" using a0 by simp }
 | |
| 1534 | moreover | |
| 1535 | 	{fix n1 assume n1: "n = Suc n1"
 | |
| 1536 | 	  have fK: "finite {0..k}" by simp
 | |
| 1537 | have nz: "n \<noteq> 0" using n1 by arith | |
| 1538 | let ?Pnk = "natpermute n (Suc k)" | |
| 1539 | 	let ?Pnkn = "{xs \<in> ?Pnk. n \<in> set xs}"
 | |
| 1540 | 	let ?Pnknn = "{xs \<in> ?Pnk. n \<notin> set xs}"
 | |
| 1541 | have eq: "?Pnkn \<union> ?Pnknn = ?Pnk" by blast | |
| 1542 | 	have d: "?Pnkn \<inter> ?Pnknn = {}" by blast
 | |
| 1543 | have f: "finite ?Pnkn" "finite ?Pnknn" | |
| 1544 | using finite_Un[of ?Pnkn ?Pnknn, unfolded eq] | |
| 1545 | by (metis natpermute_finite)+ | |
| 1546 | 	let ?f = "\<lambda>v. \<Prod>j\<in>{0..k}. ?r $ v ! j"
 | |
| 1547 | 	let ?g = "\<lambda>v. \<Prod>j\<in>{0..k}. a $ v ! j"
 | |
| 1548 | have "setsum ?g ?Pnkn = setsum (\<lambda>v. a $ n * (?r$0)^k) ?Pnkn" | |
| 1549 | proof(rule setsum_cong2) | |
| 1550 | 	  fix v assume v: "v \<in> {xs \<in> natpermute n (Suc k). n \<in> set xs}"
 | |
| 1551 | 	  let ?ths = "(\<Prod>j\<in>{0..k}. a $ v ! j) = a $ n * (?r$0)^k"
 | |
| 1552 | 	  from v obtain i where i: "i \<in> {0..k}" "v = replicate (k+1) 0 [i:= n]"
 | |
| 1553 | unfolding Suc_plus1 natpermute_contain_maximal by (auto simp del: replicate.simps) | |
| 1554 | 	  have "(\<Prod>j\<in>{0..k}. a $ v ! j) = (\<Prod>j\<in>{0..k}. if j = i then a $ n else r (Suc k) (b$0))"
 | |
| 1555 | apply (rule setprod_cong, simp) | |
| 1556 | using i a0 by (simp del: replicate.simps) | |
| 1557 | also have "\<dots> = a $ n * (?r $ 0)^k" | |
| 1558 | unfolding setprod_gen_delta[OF fK] using i by simp | |
| 1559 | finally show ?ths . | |
| 1560 | qed | |
| 1561 | then have th0: "setsum ?g ?Pnkn = of_nat (k+1) * a $ n * (?r $ 0)^k" | |
| 1562 | by (simp add: natpermute_max_card[OF nz, simplified]) | |
| 1563 | have th1: "setsum ?g ?Pnknn = setsum ?f ?Pnknn" | |
| 1564 | proof (rule setsum_cong2, rule setprod_cong, simp) | |
| 1565 | 	  fix xs i assume xs: "xs \<in> ?Pnknn" and i: "i \<in> {0..k}"
 | |
| 1566 | 	  {assume c: "n \<le> xs ! i"
 | |
| 1567 | from xs i have "xs !i \<noteq> n" by (auto simp add: in_set_conv_nth natpermute_def) | |
| 1568 | with c have c': "n < xs!i" by arith | |
| 1569 | 	    have fths: "finite {0 ..< i}" "finite {i}" "finite {i+1..<Suc k}" by simp_all
 | |
| 1570 | 	    have d: "{0 ..< i} \<inter> ({i} \<union> {i+1 ..< Suc k}) = {}" "{i} \<inter> {i+1..< Suc k} = {}" by auto
 | |
| 1571 | 	    have eqs: "{0..<Suc k} = {0 ..< i} \<union> ({i} \<union> {i+1 ..< Suc k})" using i by auto
 | |
| 1572 | from xs have "n = foldl op + 0 xs" by (simp add: natpermute_def) | |
| 1573 | 	    also have "\<dots> = setsum (nth xs) {0..<Suc k}" unfolding foldl_add_setsum using xs
 | |
| 1574 | by (simp add: natpermute_def) | |
| 1575 | 	    also have "\<dots> = xs!i + setsum (nth xs) {0..<i} + setsum (nth xs) {i+1..<Suc k}"
 | |
| 1576 | unfolding eqs setsum_Un_disjoint[OF fths(1) finite_UnI[OF fths(2,3)] d(1)] | |
| 1577 | unfolding setsum_Un_disjoint[OF fths(2) fths(3) d(2)] | |
| 1578 | by simp | |
| 1579 | finally have False using c' by simp} | |
| 1580 | then have thn: "xs!i < n" by arith | |
| 1581 | from h[rule_format, OF thn] | |
| 1582 | show "a$(xs !i) = ?r$(xs!i)" . | |
| 1583 | qed | |
| 1584 | have th00: "\<And>(x::'a). of_nat (Suc k) * (x * inverse (of_nat (Suc k))) = x" | |
| 1585 | by (simp add: field_simps del: of_nat_Suc) | |
| 1586 | from H have "b$n = a^Suc k $ n" by (simp add: fps_eq_iff) | |
| 1587 | also have "a ^ Suc k$n = setsum ?g ?Pnkn + setsum ?g ?Pnknn" | |
| 1588 | unfolding fps_power_nth_Suc | |
| 1589 | using setsum_Un_disjoint[OF f d, unfolded Suc_plus1[symmetric], | |
| 1590 | unfolded eq, of ?g] by simp | |
| 1591 | also have "\<dots> = of_nat (k+1) * a $ n * (?r $ 0)^k + setsum ?f ?Pnknn" unfolding th0 th1 .. | |
| 1592 | finally have "of_nat (k+1) * a $ n * (?r $ 0)^k = b$n - setsum ?f ?Pnknn" by simp | |
| 1593 | then have "a$n = (b$n - setsum ?f ?Pnknn) / (of_nat (k+1) * (?r $ 0)^k)" | |
| 1594 | apply - | |
| 1595 | apply (rule eq_divide_imp') | |
| 1596 | using r00 | |
| 1597 | apply (simp del: of_nat_Suc) | |
| 1598 | by (simp add: mult_ac) | |
| 1599 | then have "a$n = ?r $n" | |
| 1600 | apply (simp del: of_nat_Suc) | |
| 1601 | unfolding fps_radical_def n1 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 1602 | by (simp add: field_simps n1 th00 del: of_nat_Suc)} | 
| 29687 | 1603 | ultimately show "a$n = ?r $ n" by (cases n, auto) | 
| 1604 | qed} | |
| 1605 | then have "a = ?r" by (simp add: fps_eq_iff)} | |
| 1606 | ultimately show ?thesis by blast | |
| 1607 | qed | |
| 1608 | ||
| 1609 | ||
| 1610 | lemma radical_power: | |
| 1611 | assumes r0: "r (Suc k) ((a$0) ^ Suc k) = a$0" | |
| 1612 |   and a0: "(a$0 ::'a::{field, ring_char_0, recpower}) \<noteq> 0"
 | |
| 1613 | shows "(fps_radical r (Suc k) (a ^ Suc k)) = a" | |
| 1614 | proof- | |
| 1615 | let ?ak = "a^ Suc k" | |
| 1616 | have ak0: "?ak $ 0 = (a$0) ^ Suc k" by (simp add: fps_nth_power_0) | |
| 1617 | from r0 have th0: "r (Suc k) (a ^ Suc k $ 0) ^ Suc k = a ^ Suc k $ 0" using ak0 by auto | |
| 1618 | from r0 ak0 have th1: "r (Suc k) (a ^ Suc k $ 0) = a $ 0" by auto | |
| 1619 | from ak0 a0 have ak00: "?ak $ 0 \<noteq>0 " by auto | |
| 1620 | from radical_unique[of r k ?ak a, OF th0 th1 ak00] show ?thesis by metis | |
| 1621 | qed | |
| 1622 | ||
| 1623 | lemma fps_deriv_radical: | |
| 1624 |   fixes a:: "'a ::{field, ring_char_0, recpower} fps"
 | |
| 1625 | assumes r0: "(r (Suc k) (a$0)) ^ Suc k = a$0" and a0: "a$0 \<noteq> 0" | |
| 1626 | shows "fps_deriv (fps_radical r (Suc k) a) = fps_deriv a / (fps_const (of_nat (Suc k)) * (fps_radical r (Suc k) a) ^ k)" | |
| 1627 | proof- | |
| 1628 | let ?r= "fps_radical r (Suc k) a" | |
| 1629 | let ?w = "(fps_const (of_nat (Suc k)) * ?r ^ k)" | |
| 1630 | from a0 r0 have r0': "r (Suc k) (a$0) \<noteq> 0" by auto | |
| 1631 | from r0' have w0: "?w $ 0 \<noteq> 0" by (simp del: of_nat_Suc) | |
| 1632 | note th0 = inverse_mult_eq_1[OF w0] | |
| 1633 | let ?iw = "inverse ?w" | |
| 1634 | from power_radical[of r, OF r0 a0] | |
| 1635 | have "fps_deriv (?r ^ Suc k) = fps_deriv a" by simp | |
| 1636 | hence "fps_deriv ?r * ?w = fps_deriv a" | |
| 1637 | by (simp add: fps_deriv_power mult_ac) | |
| 1638 | hence "?iw * fps_deriv ?r * ?w = ?iw * fps_deriv a" by simp | |
| 1639 | hence "fps_deriv ?r * (?iw * ?w) = fps_deriv a / ?w" | |
| 1640 | by (simp add: fps_divide_def) | |
| 1641 | then show ?thesis unfolding th0 by simp | |
| 1642 | qed | |
| 1643 | ||
| 1644 | lemma radical_mult_distrib: | |
| 1645 |   fixes a:: "'a ::{field, ring_char_0, recpower} fps"
 | |
| 1646 | assumes | |
| 1647 | ra0: "r (k) (a $ 0) ^ k = a $ 0" | |
| 1648 | and rb0: "r (k) (b $ 0) ^ k = b $ 0" | |
| 1649 | and r0': "r (k) ((a * b) $ 0) = r (k) (a $ 0) * r (k) (b $ 0)" | |
| 1650 | and a0: "a$0 \<noteq> 0" | |
| 1651 | and b0: "b$0 \<noteq> 0" | |
| 1652 | shows "fps_radical r (k) (a*b) = fps_radical r (k) a * fps_radical r (k) (b)" | |
| 1653 | proof- | |
| 1654 | from r0' have r0: "(r (k) ((a*b)$0)) ^ k = (a*b)$0" | |
| 1655 | by (simp add: fps_mult_nth ra0 rb0 power_mult_distrib) | |
| 1656 |   {assume "k=0" hence ?thesis by simp}
 | |
| 1657 | moreover | |
| 1658 |   {fix h assume k: "k = Suc h"
 | |
| 1659 | let ?ra = "fps_radical r (Suc h) a" | |
| 1660 | let ?rb = "fps_radical r (Suc h) b" | |
| 1661 | have th0: "r (Suc h) ((a * b) $ 0) = (fps_radical r (Suc h) a * fps_radical r (Suc h) b) $ 0" | |
| 1662 | using r0' k by (simp add: fps_mult_nth) | |
| 1663 | have ab0: "(a*b) $ 0 \<noteq> 0" using a0 b0 by (simp add: fps_mult_nth) | |
| 1664 | from radical_unique[of r h "a*b" "fps_radical r (Suc h) a * fps_radical r (Suc h) b", OF r0[unfolded k] th0 ab0, symmetric] | |
| 1665 | power_radical[of r, OF ra0[unfolded k] a0] power_radical[of r, OF rb0[unfolded k] b0] k | |
| 1666 | have ?thesis by (auto simp add: power_mult_distrib)} | |
| 1667 | ultimately show ?thesis by (cases k, auto) | |
| 1668 | qed | |
| 1669 | ||
| 1670 | lemma radical_inverse: | |
| 1671 |   fixes a:: "'a ::{field, ring_char_0, recpower} fps"
 | |
| 1672 | assumes | |
| 1673 | ra0: "r (k) (a $ 0) ^ k = a $ 0" | |
| 1674 | and ria0: "r (k) (inverse (a $ 0)) = inverse (r (k) (a $ 0))" | |
| 1675 | and r1: "(r (k) 1) = 1" | |
| 1676 | and a0: "a$0 \<noteq> 0" | |
| 1677 | shows "fps_radical r (k) (inverse a) = inverse (fps_radical r (k) a)" | |
| 1678 | proof- | |
| 1679 |   {assume "k=0" then have ?thesis by simp}
 | |
| 1680 | moreover | |
| 1681 |   {fix h assume k[simp]: "k = Suc h"
 | |
| 1682 | let ?ra = "fps_radical r (Suc h) a" | |
| 1683 | let ?ria = "fps_radical r (Suc h) (inverse a)" | |
| 1684 | from ra0 a0 have th00: "r (Suc h) (a$0) \<noteq> 0" by auto | |
| 1685 | have ria0': "r (Suc h) (inverse a $ 0) ^ Suc h = inverse a$0" | |
| 1686 | using ria0 ra0 a0 | |
| 1687 | by (simp add: fps_inverse_def nonzero_power_inverse[OF th00, symmetric]) | |
| 1688 | from inverse_mult_eq_1[OF a0] have th0: "a * inverse a = 1" | |
| 1689 | by (simp add: mult_commute) | |
| 1690 | from radical_unique[where a=1 and b=1 and r=r and k=h, simplified, OF r1[unfolded k]] | |
| 1691 | have th01: "fps_radical r (Suc h) 1 = 1" . | |
| 1692 | have th1: "r (Suc h) ((a * inverse a) $ 0) ^ Suc h = (a * inverse a) $ 0" | |
| 1693 | "r (Suc h) ((a * inverse a) $ 0) = | |
| 1694 | r (Suc h) (a $ 0) * r (Suc h) (inverse a $ 0)" | |
| 1695 | using r1 unfolding th0 apply (simp_all add: ria0[symmetric]) | |
| 1696 | apply (simp add: fps_inverse_def a0) | |
| 1697 | unfolding ria0[unfolded k] | |
| 1698 | using th00 by simp | |
| 1699 | from nonzero_imp_inverse_nonzero[OF a0] a0 | |
| 1700 | have th2: "inverse a $ 0 \<noteq> 0" by (simp add: fps_inverse_def) | |
| 1701 | from radical_mult_distrib[of r "Suc h" a "inverse a", OF ra0[unfolded k] ria0' th1(2) a0 th2] | |
| 1702 | have th3: "?ra * ?ria = 1" unfolding th0 th01 by simp | |
| 1703 | from th00 have ra0: "?ra $ 0 \<noteq> 0" by simp | |
| 1704 | from fps_inverse_unique[OF ra0 th3] have ?thesis by simp} | |
| 1705 | ultimately show ?thesis by (cases k, auto) | |
| 1706 | qed | |
| 1707 | ||
| 1708 | lemma fps_divide_inverse: "(a::('a::field) fps) / b = a * inverse b"
 | |
| 1709 | by (simp add: fps_divide_def) | |
| 1710 | ||
| 1711 | lemma radical_divide: | |
| 1712 |   fixes a:: "'a ::{field, ring_char_0, recpower} fps"
 | |
| 1713 | assumes | |
| 1714 | ra0: "r k (a $ 0) ^ k = a $ 0" | |
| 1715 | and rb0: "r k (b $ 0) ^ k = b $ 0" | |
| 1716 | and r1: "r k 1 = 1" | |
| 1717 | and rb0': "r k (inverse (b $ 0)) = inverse (r k (b $ 0))" | |
| 1718 | and raib': "r k (a$0 / (b$0)) = r k (a$0) / r k (b$0)" | |
| 1719 | and a0: "a$0 \<noteq> 0" | |
| 1720 | and b0: "b$0 \<noteq> 0" | |
| 1721 | shows "fps_radical r k (a/b) = fps_radical r k a / fps_radical r k b" | |
| 1722 | proof- | |
| 1723 | from raib' | |
| 1724 | have raib: "r k (a$0 / (b$0)) = r k (a$0) * r k (inverse (b$0))" | |
| 1725 | by (simp add: divide_inverse rb0'[symmetric]) | |
| 1726 | ||
| 1727 |   {assume "k=0" hence ?thesis by (simp add: fps_divide_def)}
 | |
| 1728 | moreover | |
| 1729 |   {assume k0: "k\<noteq> 0"
 | |
| 1730 | from b0 k0 rb0 have rbn0: "r k (b $0) \<noteq> 0" | |
| 1731 | by (auto simp add: power_0_left) | |
| 1732 | ||
| 1733 | from rb0 rb0' have rib0: "(r k (inverse (b $ 0)))^k = inverse (b$0)" | |
| 1734 | by (simp add: nonzero_power_inverse[OF rbn0, symmetric]) | |
| 1735 | from rib0 have th0: "r k (inverse b $ 0) ^ k = inverse b $ 0" | |
| 1736 | by (simp add:fps_inverse_def b0) | |
| 1737 | from raib | |
| 1738 | have th1: "r k ((a * inverse b) $ 0) = r k (a $ 0) * r k (inverse b $ 0)" | |
| 1739 | by (simp add: divide_inverse fps_inverse_def b0 fps_mult_nth) | |
| 1740 | from nonzero_imp_inverse_nonzero[OF b0] b0 have th2: "inverse b $ 0 \<noteq> 0" | |
| 1741 | by (simp add: fps_inverse_def) | |
| 1742 | from radical_mult_distrib[of r k a "inverse b", OF ra0 th0 th1 a0 th2] | |
| 1743 | have th: "fps_radical r k (a/b) = fps_radical r k a * fps_radical r k (inverse b)" | |
| 1744 | by (simp add: fps_divide_def) | |
| 1745 | with radical_inverse[of r k b, OF rb0 rb0' r1 b0] | |
| 1746 | have ?thesis by (simp add: fps_divide_def)} | |
| 1747 | ultimately show ?thesis by blast | |
| 1748 | qed | |
| 1749 | ||
| 29906 | 1750 | subsection{* Derivative of composition *}
 | 
| 29687 | 1751 | |
| 1752 | lemma fps_compose_deriv: | |
| 1753 |   fixes a:: "('a::idom) fps"
 | |
| 1754 | assumes b0: "b$0 = 0" | |
| 1755 | shows "fps_deriv (a oo b) = ((fps_deriv a) oo b) * (fps_deriv b)" | |
| 1756 | proof- | |
| 1757 |   {fix n
 | |
| 1758 |     have "(fps_deriv (a oo b))$n = setsum (\<lambda>i. a $ i * (fps_deriv (b^i))$n) {0.. Suc n}"
 | |
| 1759 | by (simp add: fps_compose_def ring_simps setsum_right_distrib del: of_nat_Suc) | |
| 1760 |     also have "\<dots> = setsum (\<lambda>i. a$i * ((fps_const (of_nat i)) * (fps_deriv b * (b^(i - 1))))$n) {0.. Suc n}"
 | |
| 1761 | by (simp add: ring_simps fps_deriv_power del: fps_mult_left_const_nth of_nat_Suc) | |
| 1762 |   also have "\<dots> = setsum (\<lambda>i. of_nat i * a$i * (((b^(i - 1)) * fps_deriv b))$n) {0.. Suc n}"
 | |
| 1763 | unfolding fps_mult_left_const_nth by (simp add: ring_simps) | |
| 1764 |   also have "\<dots> = setsum (\<lambda>i. of_nat i * a$i * (setsum (\<lambda>j. (b^ (i - 1))$j * (fps_deriv b)$(n - j)) {0..n})) {0.. Suc n}"
 | |
| 1765 | unfolding fps_mult_nth .. | |
| 1766 |   also have "\<dots> = setsum (\<lambda>i. of_nat i * a$i * (setsum (\<lambda>j. (b^ (i - 1))$j * (fps_deriv b)$(n - j)) {0..n})) {1.. Suc n}"
 | |
| 1767 | apply (rule setsum_mono_zero_right) | |
| 29913 | 1768 | apply (auto simp add: mult_delta_left setsum_delta not_le) | 
| 1769 | done | |
| 29687 | 1770 |   also have "\<dots> = setsum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (setsum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}"
 | 
| 1771 | unfolding fps_deriv_nth | |
| 1772 | apply (rule setsum_reindex_cong[where f="Suc"]) | |
| 1773 | by (auto simp add: mult_assoc) | |
| 1774 |   finally have th0: "(fps_deriv (a oo b))$n = setsum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (setsum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}" .
 | |
| 1775 | ||
| 1776 |   have "(((fps_deriv a) oo b) * (fps_deriv b))$n = setsum (\<lambda>i. (fps_deriv b)$ (n - i) * ((fps_deriv a) oo b)$i) {0..n}"
 | |
| 1777 | unfolding fps_mult_nth by (simp add: mult_ac) | |
| 1778 |   also have "\<dots> = setsum (\<lambda>i. setsum (\<lambda>j. of_nat (n - i +1) * b$(n - i + 1) * of_nat (j + 1) * a$(j+1) * (b^j)$i) {0..n}) {0..n}"
 | |
| 1779 | unfolding fps_deriv_nth fps_compose_nth setsum_right_distrib mult_assoc | |
| 1780 | apply (rule setsum_cong2) | |
| 1781 | apply (rule setsum_mono_zero_left) | |
| 1782 | apply (simp_all add: subset_eq) | |
| 1783 | apply clarify | |
| 1784 | apply (subgoal_tac "b^i$x = 0") | |
| 1785 | apply simp | |
| 1786 | apply (rule startsby_zero_power_prefix[OF b0, rule_format]) | |
| 1787 | by simp | |
| 1788 |   also have "\<dots> = setsum (\<lambda>i. of_nat (i + 1) * a$(i+1) * (setsum (\<lambda>j. (b^ i)$j * of_nat (n - j + 1) * b$(n - j + 1)) {0..n})) {0.. n}"
 | |
| 1789 | unfolding setsum_right_distrib | |
| 1790 | apply (subst setsum_commute) | |
| 1791 | by ((rule setsum_cong2)+) simp | |
| 1792 | finally have "(fps_deriv (a oo b))$n = (((fps_deriv a) oo b) * (fps_deriv b)) $n" | |
| 1793 | unfolding th0 by simp} | |
| 1794 | then show ?thesis by (simp add: fps_eq_iff) | |
| 1795 | qed | |
| 1796 | ||
| 1797 | lemma fps_mult_X_plus_1_nth: | |
| 1798 | "((1+X)*a) $n = (if n = 0 then (a$n :: 'a::comm_ring_1) else a$n + a$(n - 1))" | |
| 1799 | proof- | |
| 1800 |   {assume "n = 0" hence ?thesis by (simp add: fps_mult_nth )}
 | |
| 1801 | moreover | |
| 1802 |   {fix m assume m: "n = Suc m"
 | |
| 1803 |     have "((1+X)*a) $n = setsum (\<lambda>i. (1+X)$i * a$(n-i)) {0..n}"
 | |
| 1804 | by (simp add: fps_mult_nth) | |
| 1805 |     also have "\<dots> = setsum (\<lambda>i. (1+X)$i * a$(n-i)) {0.. 1}"
 | |
| 1806 | unfolding m | |
| 1807 | apply (rule setsum_mono_zero_right) | |
| 1808 | by (auto simp add: ) | |
| 1809 | also have "\<dots> = (if n = 0 then (a$n :: 'a::comm_ring_1) else a$n + a$(n - 1))" | |
| 1810 | unfolding m | |
| 1811 | by (simp add: ) | |
| 1812 | finally have ?thesis .} | |
| 1813 | ultimately show ?thesis by (cases n, auto) | |
| 1814 | qed | |
| 1815 | ||
| 29906 | 1816 | subsection{* Finite FPS (i.e. polynomials) and X *}
 | 
| 29687 | 1817 | lemma fps_poly_sum_X: | 
| 1818 | assumes z: "\<forall>i > n. a$i = (0::'a::comm_ring_1)" | |
| 1819 |   shows "a = setsum (\<lambda>i. fps_const (a$i) * X^i) {0..n}" (is "a = ?r")
 | |
| 1820 | proof- | |
| 1821 |   {fix i
 | |
| 1822 | have "a$i = ?r$i" | |
| 1823 | unfolding fps_setsum_nth fps_mult_left_const_nth X_power_nth | |
| 29913 | 1824 | by (simp add: mult_delta_right setsum_delta' z) | 
| 1825 | } | |
| 29687 | 1826 | then show ?thesis unfolding fps_eq_iff by blast | 
| 1827 | qed | |
| 1828 | ||
| 29906 | 1829 | subsection{* Compositional inverses *}
 | 
| 29687 | 1830 | |
| 1831 | ||
| 1832 | fun compinv :: "'a fps \<Rightarrow> nat \<Rightarrow> 'a::{recpower,field}" where
 | |
| 1833 | "compinv a 0 = X$0" | |
| 1834 | | "compinv a (Suc n) = (X$ Suc n - setsum (\<lambda>i. (compinv a i) * (a^i)$Suc n) {0 .. n}) / (a$1) ^ Suc n"
 | |
| 1835 | ||
| 1836 | definition "fps_inv a = Abs_fps (compinv a)" | |
| 1837 | ||
| 1838 | lemma fps_inv: assumes a0: "a$0 = 0" and a1: "a$1 \<noteq> 0" | |
| 1839 | shows "fps_inv a oo a = X" | |
| 1840 | proof- | |
| 1841 | let ?i = "fps_inv a oo a" | |
| 1842 |   {fix n
 | |
| 1843 | have "?i $n = X$n" | |
| 1844 | proof(induct n rule: nat_less_induct) | |
| 1845 | fix n assume h: "\<forall>m<n. ?i$m = X$m" | |
| 1846 |       {assume "n=0" hence "?i $n = X$n" using a0 
 | |
| 1847 | by (simp add: fps_compose_nth fps_inv_def)} | |
| 1848 | moreover | |
| 1849 |       {fix n1 assume n1: "n = Suc n1"
 | |
| 1850 | 	have "?i $ n = setsum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1} + fps_inv a $ Suc n1 * (a $ 1)^ Suc n1"
 | |
| 1851 | by (simp add: fps_compose_nth n1 startsby_zero_power_nth_same[OF a0]) | |
| 1852 | 	also have "\<dots> = setsum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1} + (X$ Suc n1 - setsum (\<lambda>i. (fps_inv a $ i) * (a^i)$n) {0 .. n1})"
 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 1853 | using a0 a1 n1 by (simp add: fps_inv_def) | 
| 29687 | 1854 | also have "\<dots> = X$n" using n1 by simp | 
| 1855 | finally have "?i $ n = X$n" .} | |
| 1856 | ultimately show "?i $ n = X$n" by (cases n, auto) | |
| 1857 | qed} | |
| 1858 | then show ?thesis by (simp add: fps_eq_iff) | |
| 1859 | qed | |
| 1860 | ||
| 1861 | ||
| 1862 | fun gcompinv :: "'a fps \<Rightarrow> 'a fps \<Rightarrow> nat \<Rightarrow> 'a::{recpower,field}" where
 | |
| 1863 | "gcompinv b a 0 = b$0" | |
| 1864 | | "gcompinv b a (Suc n) = (b$ Suc n - setsum (\<lambda>i. (gcompinv b a i) * (a^i)$Suc n) {0 .. n}) / (a$1) ^ Suc n"
 | |
| 1865 | ||
| 1866 | definition "fps_ginv b a = Abs_fps (gcompinv b a)" | |
| 1867 | ||
| 1868 | lemma fps_ginv: assumes a0: "a$0 = 0" and a1: "a$1 \<noteq> 0" | |
| 1869 | shows "fps_ginv b a oo a = b" | |
| 1870 | proof- | |
| 1871 | let ?i = "fps_ginv b a oo a" | |
| 1872 |   {fix n
 | |
| 1873 | have "?i $n = b$n" | |
| 1874 | proof(induct n rule: nat_less_induct) | |
| 1875 | fix n assume h: "\<forall>m<n. ?i$m = b$m" | |
| 1876 |       {assume "n=0" hence "?i $n = b$n" using a0 
 | |
| 1877 | by (simp add: fps_compose_nth fps_ginv_def)} | |
| 1878 | moreover | |
| 1879 |       {fix n1 assume n1: "n = Suc n1"
 | |
| 1880 | 	have "?i $ n = setsum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1} + fps_ginv b a $ Suc n1 * (a $ 1)^ Suc n1"
 | |
| 1881 | by (simp add: fps_compose_nth n1 startsby_zero_power_nth_same[OF a0]) | |
| 1882 | 	also have "\<dots> = setsum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1} + (b$ Suc n1 - setsum (\<lambda>i. (fps_ginv b a $ i) * (a^i)$n) {0 .. n1})"
 | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 1883 | using a0 a1 n1 by (simp add: fps_ginv_def) | 
| 29687 | 1884 | also have "\<dots> = b$n" using n1 by simp | 
| 1885 | finally have "?i $ n = b$n" .} | |
| 1886 | ultimately show "?i $ n = b$n" by (cases n, auto) | |
| 1887 | qed} | |
| 1888 | then show ?thesis by (simp add: fps_eq_iff) | |
| 1889 | qed | |
| 1890 | ||
| 1891 | lemma fps_inv_ginv: "fps_inv = fps_ginv X" | |
| 1892 | apply (auto simp add: expand_fun_eq fps_eq_iff fps_inv_def fps_ginv_def) | |
| 1893 | apply (induct_tac n rule: nat_less_induct, auto) | |
| 1894 | apply (case_tac na) | |
| 1895 | apply simp | |
| 1896 | apply simp | |
| 1897 | done | |
| 1898 | ||
| 1899 | lemma fps_compose_1[simp]: "1 oo a = 1" | |
| 29913 | 1900 | by (simp add: fps_eq_iff fps_compose_nth fps_power_def mult_delta_left setsum_delta) | 
| 29687 | 1901 | |
| 1902 | lemma fps_compose_0[simp]: "0 oo a = 0" | |
| 29913 | 1903 | by (simp add: fps_eq_iff fps_compose_nth) | 
| 29687 | 1904 | |
| 1905 | lemma fps_pow_0: "fps_pow n 0 = (if n = 0 then 1 else 0)" | |
| 1906 | by (induct n, simp_all) | |
| 1907 | ||
| 1908 | lemma fps_compose_0_right[simp]: "a oo 0 = fps_const (a$0)" | |
| 29913 | 1909 | by (auto simp add: fps_eq_iff fps_compose_nth fps_power_def fps_pow_0 setsum_0') | 
| 29687 | 1910 | |
| 1911 | lemma fps_compose_add_distrib: "(a + b) oo c = (a oo c) + (b oo c)" | |
| 1912 | by (simp add: fps_eq_iff fps_compose_nth ring_simps setsum_addf) | |
| 1913 | ||
| 1914 | lemma fps_compose_setsum_distrib: "(setsum f S) oo a = setsum (\<lambda>i. f i oo a) S" | |
| 1915 | proof- | |
| 1916 |   {assume "\<not> finite S" hence ?thesis by simp}
 | |
| 1917 | moreover | |
| 1918 |   {assume fS: "finite S"
 | |
| 1919 | have ?thesis | |
| 1920 | proof(rule finite_induct[OF fS]) | |
| 1921 |       show "setsum f {} oo a = (\<Sum>i\<in>{}. f i oo a)" by simp
 | |
| 1922 | next | |
| 1923 | fix x F assume fF: "finite F" and xF: "x \<notin> F" and h: "setsum f F oo a = setsum (\<lambda>i. f i oo a) F" | |
| 1924 | show "setsum f (insert x F) oo a = setsum (\<lambda>i. f i oo a) (insert x F)" | |
| 1925 | using fF xF h by (simp add: fps_compose_add_distrib) | |
| 1926 | qed} | |
| 1927 | ultimately show ?thesis by blast | |
| 1928 | qed | |
| 1929 | ||
| 1930 | lemma convolution_eq: | |
| 1931 |   "setsum (%i. a (i :: nat) * b (n - i)) {0 .. n} = setsum (%(i,j). a i * b j) {(i,j). i <= n \<and> j \<le> n \<and> i + j = n}"
 | |
| 1932 | apply (rule setsum_reindex_cong[where f=fst]) | |
| 1933 | apply (clarsimp simp add: inj_on_def) | |
| 1934 | apply (auto simp add: expand_set_eq image_iff) | |
| 1935 | apply (rule_tac x= "x" in exI) | |
| 1936 | apply clarsimp | |
| 1937 | apply (rule_tac x="n - x" in exI) | |
| 1938 | apply arith | |
| 1939 | done | |
| 1940 | ||
| 1941 | lemma product_composition_lemma: | |
| 1942 | assumes c0: "c$0 = (0::'a::idom)" and d0: "d$0 = 0" | |
| 1943 |   shows "((a oo c) * (b oo d))$n = setsum (%(k,m). a$k * b$m * (c^k * d^m) $ n) {(k,m). k + m \<le> n}" (is "?l = ?r")
 | |
| 1944 | proof- | |
| 1945 |   let ?S = "{(k\<Colon>nat, m\<Colon>nat). k + m \<le> n}"
 | |
| 1946 |   have s: "?S \<subseteq> {0..n} <*> {0..n}" by (auto simp add: subset_eq)  
 | |
| 1947 |   have f: "finite {(k\<Colon>nat, m\<Colon>nat). k + m \<le> n}" 
 | |
| 1948 | apply (rule finite_subset[OF s]) | |
| 1949 | by auto | |
| 1950 |   have "?r =  setsum (%i. setsum (%(k,m). a$k * (c^k)$i * b$m * (d^m) $ (n - i)) {(k,m). k + m \<le> n}) {0..n}"
 | |
| 1951 | apply (simp add: fps_mult_nth setsum_right_distrib) | |
| 1952 | apply (subst setsum_commute) | |
| 1953 | apply (rule setsum_cong2) | |
| 1954 | by (auto simp add: ring_simps) | |
| 1955 | also have "\<dots> = ?l" | |
| 1956 | apply (simp add: fps_mult_nth fps_compose_nth setsum_product) | |
| 1957 | apply (rule setsum_cong2) | |
| 1958 | apply (simp add: setsum_cartesian_product mult_assoc) | |
| 1959 | apply (rule setsum_mono_zero_right[OF f]) | |
| 1960 | apply (simp add: subset_eq) apply presburger | |
| 1961 | apply clarsimp | |
| 1962 | apply (rule ccontr) | |
| 1963 | apply (clarsimp simp add: not_le) | |
| 1964 | apply (case_tac "x < aa") | |
| 1965 | apply simp | |
| 1966 | apply (frule_tac startsby_zero_power_prefix[rule_format, OF c0]) | |
| 1967 | apply blast | |
| 1968 | apply simp | |
| 1969 | apply (frule_tac startsby_zero_power_prefix[rule_format, OF d0]) | |
| 1970 | apply blast | |
| 1971 | done | |
| 1972 | finally show ?thesis by simp | |
| 1973 | qed | |
| 1974 | ||
| 1975 | lemma product_composition_lemma': | |
| 1976 | assumes c0: "c$0 = (0::'a::idom)" and d0: "d$0 = 0" | |
| 1977 |   shows "((a oo c) * (b oo d))$n = setsum (%k. setsum (%m. a$k * b$m * (c^k * d^m) $ n) {0..n}) {0..n}" (is "?l = ?r")
 | |
| 1978 | unfolding product_composition_lemma[OF c0 d0] | |
| 1979 | unfolding setsum_cartesian_product | |
| 1980 | apply (rule setsum_mono_zero_left) | |
| 1981 | apply simp | |
| 1982 | apply (clarsimp simp add: subset_eq) | |
| 1983 | apply clarsimp | |
| 1984 | apply (rule ccontr) | |
| 1985 | apply (subgoal_tac "(c^aa * d^ba) $ n = 0") | |
| 1986 | apply simp | |
| 1987 | unfolding fps_mult_nth | |
| 1988 | apply (rule setsum_0') | |
| 1989 | apply (clarsimp simp add: not_le) | |
| 1990 | apply (case_tac "aaa < aa") | |
| 1991 | apply (rule startsby_zero_power_prefix[OF c0, rule_format]) | |
| 1992 | apply simp | |
| 1993 | apply (subgoal_tac "n - aaa < ba") | |
| 1994 | apply (frule_tac k = "ba" in startsby_zero_power_prefix[OF d0, rule_format]) | |
| 1995 | apply simp | |
| 1996 | apply arith | |
| 1997 | done | |
| 1998 | ||
| 1999 | ||
| 2000 | lemma setsum_pair_less_iff: | |
| 2001 |   "setsum (%((k::nat),m). a k * b m * c (k + m)) {(k,m). k + m \<le> n} = setsum (%s. setsum (%i. a i * b (s - i) * c s) {0..s}) {0..n}" (is "?l = ?r")
 | |
| 2002 | proof- | |
| 2003 |   let ?KM=  "{(k,m). k + m \<le> n}"
 | |
| 2004 |   let ?f = "%s. UNION {(0::nat)..s} (%i. {(i,s - i)})"
 | |
| 2005 |   have th0: "?KM = UNION {0..n} ?f"
 | |
| 2006 | apply (simp add: expand_set_eq) | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 2007 | apply arith (* FIXME: VERY slow! *) | 
| 29687 | 2008 | done | 
| 2009 | show "?l = ?r " | |
| 2010 | unfolding th0 | |
| 2011 | apply (subst setsum_UN_disjoint) | |
| 2012 | apply auto | |
| 2013 | apply (subst setsum_UN_disjoint) | |
| 2014 | apply auto | |
| 2015 | done | |
| 2016 | qed | |
| 2017 | ||
| 2018 | lemma fps_compose_mult_distrib_lemma: | |
| 2019 | assumes c0: "c$0 = (0::'a::idom)" | |
| 2020 |   shows "((a oo c) * (b oo c))$n = setsum (%s. setsum (%i. a$i * b$(s - i) * (c^s) $ n) {0..s}) {0..n}" (is "?l = ?r")
 | |
| 2021 | unfolding product_composition_lemma[OF c0 c0] power_add[symmetric] | |
| 2022 | unfolding setsum_pair_less_iff[where a = "%k. a$k" and b="%m. b$m" and c="%s. (c ^ s)$n" and n = n] .. | |
| 2023 | ||
| 2024 | ||
| 2025 | lemma fps_compose_mult_distrib: | |
| 2026 | assumes c0: "c$0 = (0::'a::idom)" | |
| 2027 | shows "(a * b) oo c = (a oo c) * (b oo c)" (is "?l = ?r") | |
| 2028 | apply (simp add: fps_eq_iff fps_compose_mult_distrib_lemma[OF c0]) | |
| 2029 | by (simp add: fps_compose_nth fps_mult_nth setsum_left_distrib) | |
| 2030 | lemma fps_compose_setprod_distrib: | |
| 2031 | assumes c0: "c$0 = (0::'a::idom)" | |
| 2032 | shows "(setprod a S) oo c = setprod (%k. a k oo c) S" (is "?l = ?r") | |
| 2033 | apply (cases "finite S") | |
| 2034 | apply simp_all | |
| 2035 | apply (induct S rule: finite_induct) | |
| 2036 | apply simp | |
| 2037 | apply (simp add: fps_compose_mult_distrib[OF c0]) | |
| 2038 | done | |
| 2039 | ||
| 2040 | lemma fps_compose_power: assumes c0: "c$0 = (0::'a::idom)" | |
| 2041 | shows "(a oo c)^n = a^n oo c" (is "?l = ?r") | |
| 2042 | proof- | |
| 2043 |   {assume "n=0" then have ?thesis by simp}
 | |
| 2044 | moreover | |
| 2045 |   {fix m assume m: "n = Suc m"
 | |
| 2046 |     have th0: "a^n = setprod (%k. a) {0..m}" "(a oo c) ^ n = setprod (%k. a oo c) {0..m}"
 | |
| 2047 | by (simp_all add: setprod_constant m) | |
| 2048 | then have ?thesis | |
| 2049 | by (simp add: fps_compose_setprod_distrib[OF c0])} | |
| 2050 | ultimately show ?thesis by (cases n, auto) | |
| 2051 | qed | |
| 2052 | ||
| 2053 | lemma fps_const_mult_apply_left: | |
| 2054 | "fps_const c * (a oo b) = (fps_const c * a) oo b" | |
| 2055 | by (simp add: fps_eq_iff fps_compose_nth setsum_right_distrib mult_assoc) | |
| 2056 | ||
| 2057 | lemma fps_const_mult_apply_right: | |
| 2058 | "(a oo b) * fps_const (c::'a::comm_semiring_1) = (fps_const c * a) oo b" | |
| 2059 | by (auto simp add: fps_const_mult_apply_left mult_commute) | |
| 2060 | ||
| 2061 | lemma fps_compose_assoc: | |
| 2062 | assumes c0: "c$0 = (0::'a::idom)" and b0: "b$0 = 0" | |
| 2063 | shows "a oo (b oo c) = a oo b oo c" (is "?l = ?r") | |
| 2064 | proof- | |
| 2065 |   {fix n
 | |
| 2066 |     have "?l$n = (setsum (\<lambda>i. (fps_const (a$i) * b^i) oo c) {0..n})$n"
 | |
| 2067 | by (simp add: fps_compose_nth fps_compose_power[OF c0] fps_const_mult_apply_left setsum_right_distrib mult_assoc fps_setsum_nth) | |
| 2068 |     also have "\<dots> = ((setsum (\<lambda>i. fps_const (a$i) * b^i) {0..n}) oo c)$n"
 | |
| 2069 | by (simp add: fps_compose_setsum_distrib) | |
| 2070 | also have "\<dots> = ?r$n" | |
| 2071 | apply (simp add: fps_compose_nth fps_setsum_nth setsum_left_distrib mult_assoc) | |
| 2072 | apply (rule setsum_cong2) | |
| 2073 | apply (rule setsum_mono_zero_right) | |
| 2074 | apply (auto simp add: not_le) | |
| 2075 | by (erule startsby_zero_power_prefix[OF b0, rule_format]) | |
| 2076 | finally have "?l$n = ?r$n" .} | |
| 2077 | then show ?thesis by (simp add: fps_eq_iff) | |
| 2078 | qed | |
| 2079 | ||
| 2080 | ||
| 2081 | lemma fps_X_power_compose: | |
| 2082 |   assumes a0: "a$0=0" shows "X^k oo a = (a::('a::idom fps))^k" (is "?l = ?r")
 | |
| 2083 | proof- | |
| 2084 |   {assume "k=0" hence ?thesis by simp}
 | |
| 2085 | moreover | |
| 2086 |   {fix h assume h: "k = Suc h"
 | |
| 2087 |     {fix n
 | |
| 2088 |       {assume kn: "k>n" hence "?l $ n = ?r $n" using a0 startsby_zero_power_prefix[OF a0] h 
 | |
| 2089 | by (simp add: fps_compose_nth)} | |
| 2090 | moreover | |
| 2091 |       {assume kn: "k \<le> n"
 | |
| 29913 | 2092 | hence "?l$n = ?r$n" | 
| 2093 | by (simp add: fps_compose_nth mult_delta_left setsum_delta)} | |
| 29687 | 2094 | moreover have "k >n \<or> k\<le> n" by arith | 
| 2095 | ultimately have "?l$n = ?r$n" by blast} | |
| 2096 | then have ?thesis unfolding fps_eq_iff by blast} | |
| 2097 | ultimately show ?thesis by (cases k, auto) | |
| 2098 | qed | |
| 2099 | ||
| 2100 | lemma fps_inv_right: assumes a0: "a$0 = 0" and a1: "a$1 \<noteq> 0" | |
| 2101 | shows "a oo fps_inv a = X" | |
| 2102 | proof- | |
| 2103 | let ?ia = "fps_inv a" | |
| 2104 | let ?iaa = "a oo fps_inv a" | |
| 2105 | have th0: "?ia $ 0 = 0" by (simp add: fps_inv_def) | |
| 2106 | have th1: "?iaa $ 0 = 0" using a0 a1 | |
| 2107 | by (simp add: fps_inv_def fps_compose_nth) | |
| 2108 | have th2: "X$0 = 0" by simp | |
| 2109 | from fps_inv[OF a0 a1] have "a oo (fps_inv a oo a) = a oo X" by simp | |
| 2110 | then have "(a oo fps_inv a) oo a = X oo a" | |
| 2111 | by (simp add: fps_compose_assoc[OF a0 th0] X_fps_compose_startby0[OF a0]) | |
| 2112 | with fps_compose_inj_right[OF a0 a1] | |
| 2113 | show ?thesis by simp | |
| 2114 | qed | |
| 2115 | ||
| 2116 | lemma fps_inv_deriv: | |
| 2117 |   assumes a0:"a$0 = (0::'a::{recpower,field})" and a1: "a$1 \<noteq> 0"
 | |
| 2118 | shows "fps_deriv (fps_inv a) = inverse (fps_deriv a oo fps_inv a)" | |
| 2119 | proof- | |
| 2120 | let ?ia = "fps_inv a" | |
| 2121 | let ?d = "fps_deriv a oo ?ia" | |
| 2122 | let ?dia = "fps_deriv ?ia" | |
| 2123 | have ia0: "?ia$0 = 0" by (simp add: fps_inv_def) | |
| 2124 | have th0: "?d$0 \<noteq> 0" using a1 by (simp add: fps_compose_nth fps_deriv_nth) | |
| 2125 | from fps_inv_right[OF a0 a1] have "?d * ?dia = 1" | |
| 2126 | by (simp add: fps_compose_deriv[OF ia0, of a, symmetric] ) | |
| 2127 | hence "inverse ?d * ?d * ?dia = inverse ?d * 1" by simp | |
| 2128 | with inverse_mult_eq_1[OF th0] | |
| 2129 | show "?dia = inverse ?d" by simp | |
| 2130 | qed | |
| 2131 | ||
| 29906 | 2132 | subsection{* Elementary series *}
 | 
| 29687 | 2133 | |
| 29906 | 2134 | subsubsection{* Exponential series *}
 | 
| 29687 | 2135 | definition "E x = Abs_fps (\<lambda>n. x^n / of_nat (fact n))" | 
| 2136 | ||
| 2137 | lemma E_deriv[simp]: "fps_deriv (E a) = fps_const (a::'a::{field, recpower, ring_char_0}) * E a" (is "?l = ?r")
 | |
| 2138 | proof- | |
| 2139 |   {fix n
 | |
| 2140 | have "?l$n = ?r $ n" | |
| 2141 | apply (auto simp add: E_def field_simps power_Suc[symmetric]simp del: fact_Suc of_nat_Suc) | |
| 2142 | by (simp add: of_nat_mult ring_simps)} | |
| 2143 | then show ?thesis by (simp add: fps_eq_iff) | |
| 2144 | qed | |
| 2145 | ||
| 2146 | lemma E_unique_ODE: | |
| 2147 |   "fps_deriv a = fps_const c * a \<longleftrightarrow> a = fps_const (a$0) * E (c :: 'a::{field, ring_char_0, recpower})"
 | |
| 2148 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 2149 | proof- | |
| 2150 |   {assume d: ?lhs
 | |
| 2151 | from d have th: "\<And>n. a $ Suc n = c * a$n / of_nat (Suc n)" | |
| 2152 | by (simp add: fps_deriv_def fps_eq_iff field_simps del: of_nat_Suc) | |
| 2153 |   {fix n have "a$n = a$0 * c ^ n/ (of_nat (fact n))"
 | |
| 2154 | apply (induct n) | |
| 2155 | apply simp | |
| 2156 | unfolding th | |
| 2157 | using fact_gt_zero | |
| 2158 | apply (simp add: field_simps del: of_nat_Suc fact.simps) | |
| 2159 | apply (drule sym) | |
| 2160 | by (simp add: ring_simps of_nat_mult power_Suc)} | |
| 2161 | note th' = this | |
| 2162 | have ?rhs | |
| 2163 | by (auto simp add: fps_eq_iff fps_const_mult_left E_def intro : th')} | |
| 2164 | moreover | |
| 2165 | {assume h: ?rhs
 | |
| 2166 | have ?lhs | |
| 2167 | apply (subst h) | |
| 2168 | apply simp | |
| 2169 | apply (simp only: h[symmetric]) | |
| 2170 | by simp} | |
| 2171 | ultimately show ?thesis by blast | |
| 2172 | qed | |
| 2173 | ||
| 2174 | lemma E_add_mult: "E (a + b) = E (a::'a::{ring_char_0, field, recpower}) * E b" (is "?l = ?r")
 | |
| 2175 | proof- | |
| 2176 | have "fps_deriv (?r) = fps_const (a+b) * ?r" | |
| 2177 | by (simp add: fps_const_add[symmetric] ring_simps del: fps_const_add) | |
| 2178 | then have "?r = ?l" apply (simp only: E_unique_ODE) | |
| 2179 | by (simp add: fps_mult_nth E_def) | |
| 2180 | then show ?thesis .. | |
| 2181 | qed | |
| 2182 | ||
| 2183 | lemma E_nth[simp]: "E a $ n = a^n / of_nat (fact n)" | |
| 2184 | by (simp add: E_def) | |
| 2185 | ||
| 2186 | lemma E0[simp]: "E (0::'a::{field, recpower}) = 1"
 | |
| 2187 | by (simp add: fps_eq_iff power_0_left) | |
| 2188 | ||
| 2189 | lemma E_neg: "E (- a) = inverse (E (a::'a::{ring_char_0, field, recpower}))"
 | |
| 2190 | proof- | |
| 2191 | from E_add_mult[of a "- a"] have th0: "E a * E (- a) = 1" | |
| 2192 | by (simp ) | |
| 2193 | have th1: "E a $ 0 \<noteq> 0" by simp | |
| 2194 | from fps_inverse_unique[OF th1 th0] show ?thesis by simp | |
| 2195 | qed | |
| 2196 | ||
| 2197 | lemma E_nth_deriv[simp]: "fps_nth_deriv n (E (a::'a::{field, recpower, ring_char_0})) = (fps_const a)^n * (E a)"  
 | |
| 2198 | by (induct n, auto simp add: power_Suc) | |
| 2199 | ||
| 2200 | lemma fps_compose_uminus: "- (a::'a::ring_1 fps) oo c = - (a oo c)" | |
| 2201 | by (simp add: fps_eq_iff fps_compose_nth ring_simps setsum_negf[symmetric]) | |
| 2202 | ||
| 2203 | lemma fps_compose_sub_distrib: | |
| 2204 | shows "(a - b) oo (c::'a::ring_1 fps) = (a oo c) - (b oo c)" | |
| 2205 | unfolding diff_minus fps_compose_uminus fps_compose_add_distrib .. | |
| 2206 | ||
| 2207 | lemma X_fps_compose:"X oo a = Abs_fps (\<lambda>n. if n = 0 then (0::'a::comm_ring_1) else a$n)" | |
| 29913 | 2208 | by (simp add: fps_eq_iff fps_compose_nth mult_delta_left setsum_delta power_Suc) | 
| 29687 | 2209 | |
| 2210 | lemma X_compose_E[simp]: "X oo E (a::'a::{field, recpower}) = E a - 1"
 | |
| 2211 | by (simp add: fps_eq_iff X_fps_compose) | |
| 2212 | ||
| 2213 | lemma LE_compose: | |
| 2214 | assumes a: "a\<noteq>0" | |
| 2215 | shows "fps_inv (E a - 1) oo (E a - 1) = X" | |
| 2216 | and "(E a - 1) oo fps_inv (E a - 1) = X" | |
| 2217 | proof- | |
| 2218 | let ?b = "E a - 1" | |
| 2219 | have b0: "?b $ 0 = 0" by simp | |
| 2220 | have b1: "?b $ 1 \<noteq> 0" by (simp add: a) | |
| 2221 | from fps_inv[OF b0 b1] show "fps_inv (E a - 1) oo (E a - 1) = X" . | |
| 2222 | from fps_inv_right[OF b0 b1] show "(E a - 1) oo fps_inv (E a - 1) = X" . | |
| 2223 | qed | |
| 2224 | ||
| 2225 | ||
| 2226 | lemma fps_const_inverse: | |
| 2227 |   "inverse (fps_const (a::'a::{field, division_by_zero})) = fps_const (inverse a)"
 | |
| 2228 | apply (auto simp add: fps_eq_iff fps_inverse_def) by (case_tac "n", auto) | |
| 2229 | ||
| 2230 | ||
| 2231 | lemma inverse_one_plus_X: | |
| 2232 |   "inverse (1 + X) = Abs_fps (\<lambda>n. (- 1 ::'a::{field, recpower})^n)"
 | |
| 2233 | (is "inverse ?l = ?r") | |
| 2234 | proof- | |
| 2235 | have th: "?l * ?r = 1" | |
| 2236 | apply (auto simp add: ring_simps fps_eq_iff X_mult_nth minus_one_power_iff) | |
| 2237 | apply presburger+ | |
| 2238 | done | |
| 2239 | have th': "?l $ 0 \<noteq> 0" by (simp add: ) | |
| 2240 | from fps_inverse_unique[OF th' th] show ?thesis . | |
| 2241 | qed | |
| 2242 | ||
| 2243 | lemma E_power_mult: "(E (c::'a::{field,recpower,ring_char_0}))^n = E (of_nat n * c)"
 | |
| 2244 | by (induct n, auto simp add: ring_simps E_add_mult power_Suc) | |
| 2245 | ||
| 29906 | 2246 | subsubsection{* Logarithmic series *}  
 | 
| 29687 | 2247 | definition "(L::'a::{field, ring_char_0,recpower} fps) 
 | 
| 2248 | = Abs_fps (\<lambda>n. (- 1) ^ Suc n / of_nat n)" | |
| 2249 | ||
| 2250 | lemma fps_deriv_L: "fps_deriv L = inverse (1 + X)" | |
| 2251 | unfolding inverse_one_plus_X | |
| 2252 | by (simp add: L_def fps_eq_iff power_Suc del: of_nat_Suc) | |
| 2253 | ||
| 2254 | lemma L_nth: "L $ n = (- 1) ^ Suc n / of_nat n" | |
| 2255 | by (simp add: L_def) | |
| 2256 | ||
| 2257 | lemma L_E_inv: | |
| 2258 |   assumes a: "a\<noteq> (0::'a::{field,division_by_zero,ring_char_0,recpower})" 
 | |
| 2259 | shows "L = fps_const a * fps_inv (E a - 1)" (is "?l = ?r") | |
| 2260 | proof- | |
| 2261 | let ?b = "E a - 1" | |
| 2262 | have b0: "?b $ 0 = 0" by simp | |
| 2263 | have b1: "?b $ 1 \<noteq> 0" by (simp add: a) | |
| 2264 | have "fps_deriv (E a - 1) oo fps_inv (E a - 1) = (fps_const a * (E a - 1) + fps_const a) oo fps_inv (E a - 1)" | |
| 2265 | by (simp add: ring_simps) | |
| 2266 | also have "\<dots> = fps_const a * (X + 1)" apply (simp add: fps_compose_add_distrib fps_const_mult_apply_left[symmetric] fps_inv_right[OF b0 b1]) | |
| 2267 | by (simp add: ring_simps) | |
| 2268 | finally have eq: "fps_deriv (E a - 1) oo fps_inv (E a - 1) = fps_const a * (X + 1)" . | |
| 2269 | from fps_inv_deriv[OF b0 b1, unfolded eq] | |
| 2270 | have "fps_deriv (fps_inv ?b) = fps_const (inverse a) / (X + 1)" | |
| 2271 | by (simp add: fps_const_inverse eq fps_divide_def fps_inverse_mult) | |
| 2272 | hence "fps_deriv (fps_const a * fps_inv ?b) = inverse (X + 1)" | |
| 2273 | using a by (simp add: fps_divide_def field_simps) | |
| 2274 | hence "fps_deriv ?l = fps_deriv ?r" | |
| 2275 | by (simp add: fps_deriv_L add_commute) | |
| 2276 | then show ?thesis unfolding fps_deriv_eq_iff | |
| 2277 | by (simp add: L_nth fps_inv_def) | |
| 2278 | qed | |
| 2279 | ||
| 29906 | 2280 | subsubsection{* Formal trigonometric functions  *}
 | 
| 29687 | 2281 | |
| 2282 | definition "fps_sin (c::'a::{field, recpower, ring_char_0}) = 
 | |
| 2283 | Abs_fps (\<lambda>n. if even n then 0 else (- 1) ^((n - 1) div 2) * c^n /(of_nat (fact n)))" | |
| 2284 | ||
| 2285 | definition "fps_cos (c::'a::{field, recpower, ring_char_0}) = Abs_fps (\<lambda>n. if even n then (- 1) ^ (n div 2) * c^n / (of_nat (fact n)) else 0)"
 | |
| 2286 | ||
| 2287 | lemma fps_sin_deriv: | |
| 2288 | "fps_deriv (fps_sin c) = fps_const c * fps_cos c" | |
| 2289 | (is "?lhs = ?rhs") | |
| 2290 | proof- | |
| 2291 |   {fix n::nat
 | |
| 2292 |     {assume en: "even n"
 | |
| 2293 | have "?lhs$n = of_nat (n+1) * (fps_sin c $ (n+1))" by simp | |
| 2294 | also have "\<dots> = of_nat (n+1) * ((- 1)^(n div 2) * c^Suc n / of_nat (fact (Suc n)))" | |
| 2295 | using en by (simp add: fps_sin_def) | |
| 2296 | also have "\<dots> = (- 1)^(n div 2) * c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))" | |
| 2297 | unfolding fact_Suc of_nat_mult | |
| 2298 | by (simp add: field_simps del: of_nat_add of_nat_Suc) | |
| 2299 | also have "\<dots> = (- 1)^(n div 2) *c^Suc n / of_nat (fact n)" | |
| 2300 | by (simp add: field_simps del: of_nat_add of_nat_Suc) | |
| 2301 | finally have "?lhs $n = ?rhs$n" using en | |
| 2302 | by (simp add: fps_cos_def ring_simps power_Suc )} | |
| 2303 | then have "?lhs $ n = ?rhs $ n" | |
| 2304 | by (cases "even n", simp_all add: fps_deriv_def fps_sin_def fps_cos_def) } | |
| 2305 | then show ?thesis by (auto simp add: fps_eq_iff) | |
| 2306 | qed | |
| 2307 | ||
| 2308 | lemma fps_cos_deriv: | |
| 2309 | "fps_deriv (fps_cos c) = fps_const (- c)* (fps_sin c)" | |
| 2310 | (is "?lhs = ?rhs") | |
| 2311 | proof- | |
| 2312 | have th0: "\<And>n. - ((- 1::'a) ^ n) = (- 1)^Suc n" by (simp add: power_Suc) | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 2313 | have th1: "\<And>n. odd n\<Longrightarrow> Suc ((n - 1) div 2) = Suc n div 2" by presburger (* FIXME: VERY slow! *) | 
| 29687 | 2314 |   {fix n::nat
 | 
| 2315 |     {assume en: "odd n"
 | |
| 2316 | from en have n0: "n \<noteq>0 " by presburger | |
| 2317 | have "?lhs$n = of_nat (n+1) * (fps_cos c $ (n+1))" by simp | |
| 2318 | also have "\<dots> = of_nat (n+1) * ((- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact (Suc n)))" | |
| 2319 | using en by (simp add: fps_cos_def) | |
| 2320 | also have "\<dots> = (- 1)^((n + 1) div 2)*c^Suc n * (of_nat (n+1) / (of_nat (Suc n) * of_nat (fact n)))" | |
| 2321 | unfolding fact_Suc of_nat_mult | |
| 2322 | by (simp add: field_simps del: of_nat_add of_nat_Suc) | |
| 2323 | also have "\<dots> = (- 1)^((n + 1) div 2) * c^Suc n / of_nat (fact n)" | |
| 2324 | by (simp add: field_simps del: of_nat_add of_nat_Suc) | |
| 2325 | also have "\<dots> = (- ((- 1)^((n - 1) div 2))) * c^Suc n / of_nat (fact n)" | |
| 2326 | unfolding th0 unfolding th1[OF en] by simp | |
| 2327 | finally have "?lhs $n = ?rhs$n" using en | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 2328 | by (simp add: fps_sin_def ring_simps power_Suc)} | 
| 29687 | 2329 | then have "?lhs $ n = ?rhs $ n" | 
| 2330 | by (cases "even n", simp_all add: fps_deriv_def fps_sin_def | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 2331 | fps_cos_def) } | 
| 29687 | 2332 | then show ?thesis by (auto simp add: fps_eq_iff) | 
| 2333 | qed | |
| 2334 | ||
| 2335 | lemma fps_sin_cos_sum_of_squares: | |
| 2336 | "fps_cos c ^ 2 + fps_sin c ^ 2 = 1" (is "?lhs = 1") | |
| 2337 | proof- | |
| 2338 | have "fps_deriv ?lhs = 0" | |
| 2339 | apply (simp add: fps_deriv_power fps_sin_deriv fps_cos_deriv power_Suc) | |
| 2340 | by (simp add: fps_power_def ring_simps fps_const_neg[symmetric] del: fps_const_neg) | |
| 2341 | then have "?lhs = fps_const (?lhs $ 0)" | |
| 2342 | unfolding fps_deriv_eq_0_iff . | |
| 2343 | also have "\<dots> = 1" | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 2344 | by (auto simp add: fps_eq_iff fps_power_def numeral_2_eq_2 fps_mult_nth fps_cos_def fps_sin_def) | 
| 29687 | 2345 | finally show ?thesis . | 
| 2346 | qed | |
| 2347 | ||
| 2348 | definition "fps_tan c = fps_sin c / fps_cos c" | |
| 2349 | ||
| 2350 | lemma fps_tan_deriv: "fps_deriv(fps_tan c) = fps_const c/ (fps_cos c ^ 2)" | |
| 2351 | proof- | |
| 2352 | have th0: "fps_cos c $ 0 \<noteq> 0" by (simp add: fps_cos_def) | |
| 2353 | show ?thesis | |
| 2354 | using fps_sin_cos_sum_of_squares[of c] | |
| 2355 | apply (simp add: fps_tan_def fps_divide_deriv[OF th0] fps_sin_deriv fps_cos_deriv add: fps_const_neg[symmetric] ring_simps power2_eq_square del: fps_const_neg) | |
| 2356 | unfolding right_distrib[symmetric] | |
| 2357 | by simp | |
| 2358 | qed | |
| 29911 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 2359 | |
| 
c790a70a3d19
declare fps_nth as a typedef morphism; clean up instance proofs
 huffman parents: 
29906diff
changeset | 2360 | end |