| author | haftmann | 
| Sun, 31 Jan 2010 14:51:32 +0100 | |
| changeset 34977 | 27ceb64d41ea | 
| parent 31076 | 99fe356cbbc2 | 
| child 39967 | 1c6dce3ef477 | 
| permissions | -rw-r--r-- | 
| 27404 | 1 | (* Title: HOLCF/Completion.thy | 
| 2 | Author: Brian Huffman | |
| 3 | *) | |
| 4 | ||
| 5 | header {* Defining bifinite domains by ideal completion *}
 | |
| 6 | ||
| 7 | theory Completion | |
| 8 | imports Bifinite | |
| 9 | begin | |
| 10 | ||
| 11 | subsection {* Ideals over a preorder *}
 | |
| 12 | ||
| 13 | locale preorder = | |
| 14 | fixes r :: "'a::type \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50) | |
| 15 | assumes r_refl: "x \<preceq> x" | |
| 16 | assumes r_trans: "\<lbrakk>x \<preceq> y; y \<preceq> z\<rbrakk> \<Longrightarrow> x \<preceq> z" | |
| 17 | begin | |
| 18 | ||
| 19 | definition | |
| 20 | ideal :: "'a set \<Rightarrow> bool" where | |
| 21 | "ideal A = ((\<exists>x. x \<in> A) \<and> (\<forall>x\<in>A. \<forall>y\<in>A. \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z) \<and> | |
| 22 | (\<forall>x y. x \<preceq> y \<longrightarrow> y \<in> A \<longrightarrow> x \<in> A))" | |
| 23 | ||
| 24 | lemma idealI: | |
| 25 | assumes "\<exists>x. x \<in> A" | |
| 26 | assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z" | |
| 27 | assumes "\<And>x y. \<lbrakk>x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A" | |
| 28 | shows "ideal A" | |
| 29 | unfolding ideal_def using prems by fast | |
| 30 | ||
| 31 | lemma idealD1: | |
| 32 | "ideal A \<Longrightarrow> \<exists>x. x \<in> A" | |
| 33 | unfolding ideal_def by fast | |
| 34 | ||
| 35 | lemma idealD2: | |
| 36 | "\<lbrakk>ideal A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. x \<preceq> z \<and> y \<preceq> z" | |
| 37 | unfolding ideal_def by fast | |
| 38 | ||
| 39 | lemma idealD3: | |
| 40 | "\<lbrakk>ideal A; x \<preceq> y; y \<in> A\<rbrakk> \<Longrightarrow> x \<in> A" | |
| 41 | unfolding ideal_def by fast | |
| 42 | ||
| 43 | lemma ideal_directed_finite: | |
| 44 | assumes A: "ideal A" | |
| 45 | shows "\<lbrakk>finite U; U \<subseteq> A\<rbrakk> \<Longrightarrow> \<exists>z\<in>A. \<forall>x\<in>U. x \<preceq> z" | |
| 46 | apply (induct U set: finite) | |
| 47 | apply (simp add: idealD1 [OF A]) | |
| 48 | apply (simp, clarify, rename_tac y) | |
| 49 | apply (drule (1) idealD2 [OF A]) | |
| 50 | apply (clarify, erule_tac x=z in rev_bexI) | |
| 51 | apply (fast intro: r_trans) | |
| 52 | done | |
| 53 | ||
| 54 | lemma ideal_principal: "ideal {x. x \<preceq> z}"
 | |
| 55 | apply (rule idealI) | |
| 56 | apply (rule_tac x=z in exI) | |
| 57 | apply (fast intro: r_refl) | |
| 58 | apply (rule_tac x=z in bexI, fast) | |
| 59 | apply (fast intro: r_refl) | |
| 60 | apply (fast intro: r_trans) | |
| 61 | done | |
| 62 | ||
| 63 | lemma ex_ideal: "\<exists>A. ideal A" | |
| 64 | by (rule exI, rule ideal_principal) | |
| 65 | ||
| 66 | lemma directed_image_ideal: | |
| 67 | assumes A: "ideal A" | |
| 68 | assumes f: "\<And>x y. x \<preceq> y \<Longrightarrow> f x \<sqsubseteq> f y" | |
| 69 | shows "directed (f ` A)" | |
| 70 | apply (rule directedI) | |
| 71 | apply (cut_tac idealD1 [OF A], fast) | |
| 72 | apply (clarify, rename_tac a b) | |
| 73 | apply (drule (1) idealD2 [OF A]) | |
| 74 | apply (clarify, rename_tac c) | |
| 75 | apply (rule_tac x="f c" in rev_bexI) | |
| 76 | apply (erule imageI) | |
| 77 | apply (simp add: f) | |
| 78 | done | |
| 79 | ||
| 80 | lemma lub_image_principal: | |
| 81 | assumes f: "\<And>x y. x \<preceq> y \<Longrightarrow> f x \<sqsubseteq> f y" | |
| 82 |   shows "(\<Squnion>x\<in>{x. x \<preceq> y}. f x) = f y"
 | |
| 83 | apply (rule thelubI) | |
| 84 | apply (rule is_lub_maximal) | |
| 85 | apply (rule ub_imageI) | |
| 86 | apply (simp add: f) | |
| 87 | apply (rule imageI) | |
| 88 | apply (simp add: r_refl) | |
| 89 | done | |
| 90 | ||
| 91 | text {* The set of ideals is a cpo *}
 | |
| 92 | ||
| 93 | lemma ideal_UN: | |
| 94 | fixes A :: "nat \<Rightarrow> 'a set" | |
| 95 | assumes ideal_A: "\<And>i. ideal (A i)" | |
| 96 | assumes chain_A: "\<And>i j. i \<le> j \<Longrightarrow> A i \<subseteq> A j" | |
| 97 | shows "ideal (\<Union>i. A i)" | |
| 98 | apply (rule idealI) | |
| 99 | apply (cut_tac idealD1 [OF ideal_A], fast) | |
| 100 | apply (clarify, rename_tac i j) | |
| 101 | apply (drule subsetD [OF chain_A [OF le_maxI1]]) | |
| 102 | apply (drule subsetD [OF chain_A [OF le_maxI2]]) | |
| 103 | apply (drule (1) idealD2 [OF ideal_A]) | |
| 104 | apply blast | |
| 105 | apply clarify | |
| 106 | apply (drule (1) idealD3 [OF ideal_A]) | |
| 107 | apply fast | |
| 108 | done | |
| 109 | ||
| 110 | lemma typedef_ideal_po: | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 111 | fixes Abs :: "'a set \<Rightarrow> 'b::below" | 
| 27404 | 112 |   assumes type: "type_definition Rep Abs {S. ideal S}"
 | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 113 | assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y" | 
| 27404 | 114 |   shows "OFCLASS('b, po_class)"
 | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 115 | apply (intro_classes, unfold below) | 
| 27404 | 116 | apply (rule subset_refl) | 
| 117 | apply (erule (1) subset_trans) | |
| 118 | apply (rule type_definition.Rep_inject [OF type, THEN iffD1]) | |
| 119 | apply (erule (1) subset_antisym) | |
| 120 | done | |
| 121 | ||
| 122 | lemma | |
| 123 | fixes Abs :: "'a set \<Rightarrow> 'b::po" | |
| 124 |   assumes type: "type_definition Rep Abs {S. ideal S}"
 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 125 | assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y" | 
| 27404 | 126 | assumes S: "chain S" | 
| 127 | shows typedef_ideal_lub: "range S <<| Abs (\<Union>i. Rep (S i))" | |
| 128 | and typedef_ideal_rep_contlub: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))" | |
| 129 | proof - | |
| 130 | have 1: "ideal (\<Union>i. Rep (S i))" | |
| 131 | apply (rule ideal_UN) | |
| 132 | apply (rule type_definition.Rep [OF type, unfolded mem_Collect_eq]) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 133 | apply (subst below [symmetric]) | 
| 27404 | 134 | apply (erule chain_mono [OF S]) | 
| 135 | done | |
| 136 | hence 2: "Rep (Abs (\<Union>i. Rep (S i))) = (\<Union>i. Rep (S i))" | |
| 137 | by (simp add: type_definition.Abs_inverse [OF type]) | |
| 138 | show 3: "range S <<| Abs (\<Union>i. Rep (S i))" | |
| 139 | apply (rule is_lubI) | |
| 140 | apply (rule is_ubI) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 141 | apply (simp add: below 2, fast) | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 142 | apply (simp add: below 2 is_ub_def, fast) | 
| 27404 | 143 | done | 
| 144 | hence 4: "(\<Squnion>i. S i) = Abs (\<Union>i. Rep (S i))" | |
| 145 | by (rule thelubI) | |
| 146 | show 5: "Rep (\<Squnion>i. S i) = (\<Union>i. Rep (S i))" | |
| 147 | by (simp add: 4 2) | |
| 148 | qed | |
| 149 | ||
| 150 | lemma typedef_ideal_cpo: | |
| 151 | fixes Abs :: "'a set \<Rightarrow> 'b::po" | |
| 152 |   assumes type: "type_definition Rep Abs {S. ideal S}"
 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 153 | assumes below: "\<And>x y. x \<sqsubseteq> y \<longleftrightarrow> Rep x \<subseteq> Rep y" | 
| 27404 | 154 |   shows "OFCLASS('b, cpo_class)"
 | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 155 | by (default, rule exI, erule typedef_ideal_lub [OF type below]) | 
| 27404 | 156 | |
| 157 | end | |
| 158 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 159 | interpretation below: preorder "below :: 'a::po \<Rightarrow> 'a \<Rightarrow> bool" | 
| 27404 | 160 | apply unfold_locales | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 161 | apply (rule below_refl) | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 162 | apply (erule (1) below_trans) | 
| 27404 | 163 | done | 
| 164 | ||
| 28133 | 165 | subsection {* Lemmas about least upper bounds *}
 | 
| 27404 | 166 | |
| 167 | lemma finite_directed_contains_lub: | |
| 168 | "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u\<in>S. S <<| u" | |
| 169 | apply (drule (1) directed_finiteD, rule subset_refl) | |
| 170 | apply (erule bexE) | |
| 171 | apply (rule rev_bexI, assumption) | |
| 172 | apply (erule (1) is_lub_maximal) | |
| 173 | done | |
| 174 | ||
| 175 | lemma lub_finite_directed_in_self: | |
| 176 | "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> lub S \<in> S" | |
| 177 | apply (drule (1) finite_directed_contains_lub, clarify) | |
| 178 | apply (drule thelubI, simp) | |
| 179 | done | |
| 180 | ||
| 181 | lemma finite_directed_has_lub: "\<lbrakk>finite S; directed S\<rbrakk> \<Longrightarrow> \<exists>u. S <<| u" | |
| 182 | by (drule (1) finite_directed_contains_lub, fast) | |
| 183 | ||
| 184 | lemma is_ub_thelub0: "\<lbrakk>\<exists>u. S <<| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> lub S" | |
| 185 | apply (erule exE, drule lubI) | |
| 186 | apply (drule is_lubD1) | |
| 187 | apply (erule (1) is_ubD) | |
| 188 | done | |
| 189 | ||
| 190 | lemma is_lub_thelub0: "\<lbrakk>\<exists>u. S <<| u; S <| x\<rbrakk> \<Longrightarrow> lub S \<sqsubseteq> x" | |
| 191 | by (erule exE, drule lubI, erule is_lub_lub) | |
| 192 | ||
| 28133 | 193 | subsection {* Locale for ideal completion *}
 | 
| 194 | ||
| 27404 | 195 | locale basis_take = preorder + | 
| 196 | fixes take :: "nat \<Rightarrow> 'a::type \<Rightarrow> 'a" | |
| 197 | assumes take_less: "take n a \<preceq> a" | |
| 198 | assumes take_take: "take n (take n a) = take n a" | |
| 199 | assumes take_mono: "a \<preceq> b \<Longrightarrow> take n a \<preceq> take n b" | |
| 200 | assumes take_chain: "take n a \<preceq> take (Suc n) a" | |
| 201 | assumes finite_range_take: "finite (range (take n))" | |
| 202 | assumes take_covers: "\<exists>n. take n a = a" | |
| 203 | begin | |
| 204 | ||
| 205 | lemma take_chain_less: "m < n \<Longrightarrow> take m a \<preceq> take n a" | |
| 206 | by (erule less_Suc_induct, rule take_chain, erule (1) r_trans) | |
| 207 | ||
| 208 | lemma take_chain_le: "m \<le> n \<Longrightarrow> take m a \<preceq> take n a" | |
| 209 | by (cases "m = n", simp add: r_refl, simp add: take_chain_less) | |
| 210 | ||
| 211 | end | |
| 212 | ||
| 213 | locale ideal_completion = basis_take + | |
| 214 | fixes principal :: "'a::type \<Rightarrow> 'b::cpo" | |
| 215 | fixes rep :: "'b::cpo \<Rightarrow> 'a::type set" | |
| 216 | assumes ideal_rep: "\<And>x. preorder.ideal r (rep x)" | |
| 217 | assumes rep_contlub: "\<And>Y. chain Y \<Longrightarrow> rep (\<Squnion>i. Y i) = (\<Union>i. rep (Y i))" | |
| 218 |   assumes rep_principal: "\<And>a. rep (principal a) = {b. b \<preceq> a}"
 | |
| 219 | assumes subset_repD: "\<And>x y. rep x \<subseteq> rep y \<Longrightarrow> x \<sqsubseteq> y" | |
| 220 | begin | |
| 221 | ||
| 222 | lemma finite_take_rep: "finite (take n ` rep x)" | |
| 223 | by (rule finite_subset [OF image_mono [OF subset_UNIV] finite_range_take]) | |
| 224 | ||
| 28133 | 225 | lemma rep_mono: "x \<sqsubseteq> y \<Longrightarrow> rep x \<subseteq> rep y" | 
| 226 | apply (frule bin_chain) | |
| 227 | apply (drule rep_contlub) | |
| 228 | apply (simp only: thelubI [OF lub_bin_chain]) | |
| 229 | apply (rule subsetI, rule UN_I [where a=0], simp_all) | |
| 230 | done | |
| 231 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 232 | lemma below_def: "x \<sqsubseteq> y \<longleftrightarrow> rep x \<subseteq> rep y" | 
| 28133 | 233 | by (rule iffI [OF rep_mono subset_repD]) | 
| 234 | ||
| 235 | lemma rep_eq: "rep x = {a. principal a \<sqsubseteq> x}"
 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 236 | unfolding below_def rep_principal | 
| 28133 | 237 | apply safe | 
| 238 | apply (erule (1) idealD3 [OF ideal_rep]) | |
| 239 | apply (erule subsetD, simp add: r_refl) | |
| 240 | done | |
| 241 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 242 | lemma mem_rep_iff_principal_below: "a \<in> rep x \<longleftrightarrow> principal a \<sqsubseteq> x" | 
| 28133 | 243 | by (simp add: rep_eq) | 
| 244 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 245 | lemma principal_below_iff_mem_rep: "principal a \<sqsubseteq> x \<longleftrightarrow> a \<in> rep x" | 
| 28133 | 246 | by (simp add: rep_eq) | 
| 247 | ||
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 248 | lemma principal_below_iff [simp]: "principal a \<sqsubseteq> principal b \<longleftrightarrow> a \<preceq> b" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 249 | by (simp add: principal_below_iff_mem_rep rep_principal) | 
| 28133 | 250 | |
| 251 | lemma principal_eq_iff: "principal a = principal b \<longleftrightarrow> a \<preceq> b \<and> b \<preceq> a" | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 252 | unfolding po_eq_conv [where 'a='b] principal_below_iff .. | 
| 28133 | 253 | |
| 254 | lemma repD: "a \<in> rep x \<Longrightarrow> principal a \<sqsubseteq> x" | |
| 255 | by (simp add: rep_eq) | |
| 256 | ||
| 257 | lemma principal_mono: "a \<preceq> b \<Longrightarrow> principal a \<sqsubseteq> principal b" | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 258 | by (simp only: principal_below_iff) | 
| 28133 | 259 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 260 | lemma belowI: "(\<And>a. principal a \<sqsubseteq> x \<Longrightarrow> principal a \<sqsubseteq> u) \<Longrightarrow> x \<sqsubseteq> u" | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 261 | unfolding principal_below_iff_mem_rep | 
| 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 262 | by (simp add: below_def subset_eq) | 
| 28133 | 263 | |
| 264 | lemma lub_principal_rep: "principal ` rep x <<| x" | |
| 265 | apply (rule is_lubI) | |
| 266 | apply (rule ub_imageI) | |
| 267 | apply (erule repD) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 268 | apply (subst below_def) | 
| 28133 | 269 | apply (rule subsetI) | 
| 270 | apply (drule (1) ub_imageD) | |
| 271 | apply (simp add: rep_eq) | |
| 272 | done | |
| 273 | ||
| 274 | subsection {* Defining functions in terms of basis elements *}
 | |
| 275 | ||
| 276 | definition | |
| 277 |   basis_fun :: "('a::type \<Rightarrow> 'c::cpo) \<Rightarrow> 'b \<rightarrow> 'c" where
 | |
| 278 | "basis_fun = (\<lambda>f. (\<Lambda> x. lub (f ` rep x)))" | |
| 279 | ||
| 27404 | 280 | lemma basis_fun_lemma0: | 
| 281 | fixes f :: "'a::type \<Rightarrow> 'c::cpo" | |
| 282 | assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" | |
| 283 | shows "\<exists>u. f ` take i ` rep x <<| u" | |
| 284 | apply (rule finite_directed_has_lub) | |
| 285 | apply (rule finite_imageI) | |
| 286 | apply (rule finite_take_rep) | |
| 287 | apply (subst image_image) | |
| 288 | apply (rule directed_image_ideal) | |
| 289 | apply (rule ideal_rep) | |
| 290 | apply (rule f_mono) | |
| 291 | apply (erule take_mono) | |
| 292 | done | |
| 293 | ||
| 294 | lemma basis_fun_lemma1: | |
| 295 | fixes f :: "'a::type \<Rightarrow> 'c::cpo" | |
| 296 | assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" | |
| 297 | shows "chain (\<lambda>i. lub (f ` take i ` rep x))" | |
| 298 | apply (rule chainI) | |
| 299 | apply (rule is_lub_thelub0) | |
| 300 | apply (rule basis_fun_lemma0, erule f_mono) | |
| 301 | apply (rule is_ubI, clarsimp, rename_tac a) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 302 | apply (rule below_trans [OF f_mono [OF take_chain]]) | 
| 27404 | 303 | apply (rule is_ub_thelub0) | 
| 304 | apply (rule basis_fun_lemma0, erule f_mono) | |
| 305 | apply simp | |
| 306 | done | |
| 307 | ||
| 308 | lemma basis_fun_lemma2: | |
| 309 | fixes f :: "'a::type \<Rightarrow> 'c::cpo" | |
| 310 | assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" | |
| 311 | shows "f ` rep x <<| (\<Squnion>i. lub (f ` take i ` rep x))" | |
| 312 | apply (rule is_lubI) | |
| 313 | apply (rule ub_imageI, rename_tac a) | |
| 314 | apply (cut_tac a=a in take_covers, erule exE, rename_tac i) | |
| 315 | apply (erule subst) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 316 | apply (rule rev_below_trans) | 
| 27404 | 317 | apply (rule_tac x=i in is_ub_thelub) | 
| 318 | apply (rule basis_fun_lemma1, erule f_mono) | |
| 319 | apply (rule is_ub_thelub0) | |
| 320 | apply (rule basis_fun_lemma0, erule f_mono) | |
| 321 | apply simp | |
| 322 | apply (rule is_lub_thelub [OF _ ub_rangeI]) | |
| 323 | apply (rule basis_fun_lemma1, erule f_mono) | |
| 324 | apply (rule is_lub_thelub0) | |
| 325 | apply (rule basis_fun_lemma0, erule f_mono) | |
| 326 | apply (rule is_ubI, clarsimp, rename_tac a) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 327 | apply (rule below_trans [OF f_mono [OF take_less]]) | 
| 27404 | 328 | apply (erule (1) ub_imageD) | 
| 329 | done | |
| 330 | ||
| 331 | lemma basis_fun_lemma: | |
| 332 | fixes f :: "'a::type \<Rightarrow> 'c::cpo" | |
| 333 | assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" | |
| 334 | shows "\<exists>u. f ` rep x <<| u" | |
| 335 | by (rule exI, rule basis_fun_lemma2, erule f_mono) | |
| 336 | ||
| 337 | lemma basis_fun_beta: | |
| 338 | fixes f :: "'a::type \<Rightarrow> 'c::cpo" | |
| 339 | assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" | |
| 340 | shows "basis_fun f\<cdot>x = lub (f ` rep x)" | |
| 341 | unfolding basis_fun_def | |
| 342 | proof (rule beta_cfun) | |
| 343 | have lub: "\<And>x. \<exists>u. f ` rep x <<| u" | |
| 344 | using f_mono by (rule basis_fun_lemma) | |
| 345 | show cont: "cont (\<lambda>x. lub (f ` rep x))" | |
| 346 | apply (rule contI2) | |
| 347 | apply (rule monofunI) | |
| 348 | apply (rule is_lub_thelub0 [OF lub ub_imageI]) | |
| 349 | apply (rule is_ub_thelub0 [OF lub imageI]) | |
| 350 | apply (erule (1) subsetD [OF rep_mono]) | |
| 351 | apply (rule is_lub_thelub0 [OF lub ub_imageI]) | |
| 352 | apply (simp add: rep_contlub, clarify) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 353 | apply (erule rev_below_trans [OF is_ub_thelub]) | 
| 27404 | 354 | apply (erule is_ub_thelub0 [OF lub imageI]) | 
| 355 | done | |
| 356 | qed | |
| 357 | ||
| 358 | lemma basis_fun_principal: | |
| 359 | fixes f :: "'a::type \<Rightarrow> 'c::cpo" | |
| 360 | assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" | |
| 361 | shows "basis_fun f\<cdot>(principal a) = f a" | |
| 362 | apply (subst basis_fun_beta, erule f_mono) | |
| 363 | apply (subst rep_principal) | |
| 364 | apply (rule lub_image_principal, erule f_mono) | |
| 365 | done | |
| 366 | ||
| 367 | lemma basis_fun_mono: | |
| 368 | assumes f_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> f a \<sqsubseteq> f b" | |
| 369 | assumes g_mono: "\<And>a b. a \<preceq> b \<Longrightarrow> g a \<sqsubseteq> g b" | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 370 | assumes below: "\<And>a. f a \<sqsubseteq> g a" | 
| 27404 | 371 | shows "basis_fun f \<sqsubseteq> basis_fun g" | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 372 | apply (rule below_cfun_ext) | 
| 27404 | 373 | apply (simp only: basis_fun_beta f_mono g_mono) | 
| 374 | apply (rule is_lub_thelub0) | |
| 375 | apply (rule basis_fun_lemma, erule f_mono) | |
| 376 | apply (rule ub_imageI, rename_tac a) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 377 | apply (rule below_trans [OF below]) | 
| 27404 | 378 | apply (rule is_ub_thelub0) | 
| 379 | apply (rule basis_fun_lemma, erule g_mono) | |
| 380 | apply (erule imageI) | |
| 381 | done | |
| 382 | ||
| 383 | lemma compact_principal [simp]: "compact (principal a)" | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 384 | by (rule compactI2, simp add: principal_below_iff_mem_rep rep_contlub) | 
| 27404 | 385 | |
| 28133 | 386 | subsection {* Bifiniteness of ideal completions *}
 | 
| 387 | ||
| 27404 | 388 | definition | 
| 389 | completion_approx :: "nat \<Rightarrow> 'b \<rightarrow> 'b" where | |
| 390 | "completion_approx = (\<lambda>i. basis_fun (\<lambda>a. principal (take i a)))" | |
| 391 | ||
| 392 | lemma completion_approx_beta: | |
| 393 | "completion_approx i\<cdot>x = (\<Squnion>a\<in>rep x. principal (take i a))" | |
| 394 | unfolding completion_approx_def | |
| 395 | by (simp add: basis_fun_beta principal_mono take_mono) | |
| 396 | ||
| 397 | lemma completion_approx_principal: | |
| 398 | "completion_approx i\<cdot>(principal a) = principal (take i a)" | |
| 399 | unfolding completion_approx_def | |
| 400 | by (simp add: basis_fun_principal principal_mono take_mono) | |
| 401 | ||
| 402 | lemma chain_completion_approx: "chain completion_approx" | |
| 403 | unfolding completion_approx_def | |
| 404 | apply (rule chainI) | |
| 405 | apply (rule basis_fun_mono) | |
| 406 | apply (erule principal_mono [OF take_mono]) | |
| 407 | apply (erule principal_mono [OF take_mono]) | |
| 408 | apply (rule principal_mono [OF take_chain]) | |
| 409 | done | |
| 410 | ||
| 411 | lemma lub_completion_approx: "(\<Squnion>i. completion_approx i\<cdot>x) = x" | |
| 412 | unfolding completion_approx_beta | |
| 413 | apply (subst image_image [where f=principal, symmetric]) | |
| 414 | apply (rule unique_lub [OF _ lub_principal_rep]) | |
| 415 | apply (rule basis_fun_lemma2, erule principal_mono) | |
| 416 | done | |
| 417 | ||
| 418 | lemma completion_approx_eq_principal: | |
| 419 | "\<exists>a\<in>rep x. completion_approx i\<cdot>x = principal (take i a)" | |
| 420 | unfolding completion_approx_beta | |
| 421 | apply (subst image_image [where f=principal, symmetric]) | |
| 422 | apply (subgoal_tac "finite (principal ` take i ` rep x)") | |
| 423 | apply (subgoal_tac "directed (principal ` take i ` rep x)") | |
| 424 | apply (drule (1) lub_finite_directed_in_self, fast) | |
| 425 | apply (subst image_image) | |
| 426 | apply (rule directed_image_ideal) | |
| 427 | apply (rule ideal_rep) | |
| 428 | apply (erule principal_mono [OF take_mono]) | |
| 429 | apply (rule finite_imageI) | |
| 430 | apply (rule finite_take_rep) | |
| 431 | done | |
| 432 | ||
| 433 | lemma completion_approx_idem: | |
| 434 | "completion_approx i\<cdot>(completion_approx i\<cdot>x) = completion_approx i\<cdot>x" | |
| 435 | using completion_approx_eq_principal [where i=i and x=x] | |
| 436 | by (auto simp add: completion_approx_principal take_take) | |
| 437 | ||
| 438 | lemma finite_fixes_completion_approx: | |
| 439 |   "finite {x. completion_approx i\<cdot>x = x}" (is "finite ?S")
 | |
| 440 | apply (subgoal_tac "?S \<subseteq> principal ` range (take i)") | |
| 441 | apply (erule finite_subset) | |
| 442 | apply (rule finite_imageI) | |
| 443 | apply (rule finite_range_take) | |
| 444 | apply (clarify, erule subst) | |
| 445 | apply (cut_tac x=x and i=i in completion_approx_eq_principal) | |
| 446 | apply fast | |
| 447 | done | |
| 448 | ||
| 449 | lemma principal_induct: | |
| 450 | assumes adm: "adm P" | |
| 451 | assumes P: "\<And>a. P (principal a)" | |
| 452 | shows "P x" | |
| 453 | apply (subgoal_tac "P (\<Squnion>i. completion_approx i\<cdot>x)") | |
| 454 | apply (simp add: lub_completion_approx) | |
| 455 | apply (rule admD [OF adm]) | |
| 456 | apply (simp add: chain_completion_approx) | |
| 457 | apply (cut_tac x=x and i=i in completion_approx_eq_principal) | |
| 458 | apply (clarify, simp add: P) | |
| 459 | done | |
| 460 | ||
| 461 | lemma principal_induct2: | |
| 462 | "\<lbrakk>\<And>y. adm (\<lambda>x. P x y); \<And>x. adm (\<lambda>y. P x y); | |
| 463 | \<And>a b. P (principal a) (principal b)\<rbrakk> \<Longrightarrow> P x y" | |
| 464 | apply (rule_tac x=y in spec) | |
| 465 | apply (rule_tac x=x in principal_induct, simp) | |
| 466 | apply (rule allI, rename_tac y) | |
| 467 | apply (rule_tac x=y in principal_induct, simp) | |
| 468 | apply simp | |
| 469 | done | |
| 470 | ||
| 471 | lemma compact_imp_principal: "compact x \<Longrightarrow> \<exists>a. x = principal a" | |
| 472 | apply (drule adm_compact_neq [OF _ cont_id]) | |
| 473 | apply (drule admD2 [where Y="\<lambda>n. completion_approx n\<cdot>x"]) | |
| 474 | apply (simp add: chain_completion_approx) | |
| 475 | apply (simp add: lub_completion_approx) | |
| 476 | apply (erule exE, erule ssubst) | |
| 477 | apply (cut_tac i=i and x=x in completion_approx_eq_principal) | |
| 478 | apply (clarify, erule exI) | |
| 479 | done | |
| 480 | ||
| 481 | end | |
| 482 | ||
| 483 | end |