| author | nipkow | 
| Thu, 18 Jul 2024 16:00:40 +0200 | |
| changeset 80578 | 27e66a8323b2 | 
| parent 80084 | 173548e4d5d0 | 
| permissions | -rw-r--r-- | 
| 65435 | 1 | (* Title: HOL/Computational_Algebra/Polynomial_Factorial.thy | 
| 63764 | 2 | Author: Manuel Eberl | 
| 3 | *) | |
| 4 | ||
| 66805 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 5 | section \<open>Polynomials, fractions and rings\<close> | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 6 | |
| 63498 | 7 | theory Polynomial_Factorial | 
| 8 | imports | |
| 9 | Complex_Main | |
| 65366 | 10 | Polynomial | 
| 11 | Normalized_Fraction | |
| 63498 | 12 | begin | 
| 13 | ||
| 14 | subsection \<open>Lifting elements into the field of fractions\<close> | |
| 15 | ||
| 66805 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 16 | definition to_fract :: "'a :: idom \<Rightarrow> 'a fract" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 17 | where "to_fract x = Fract x 1" | 
| 66808 
1907167b6038
elementary definition of division on natural numbers
 haftmann parents: 
66806diff
changeset | 18 | \<comment> \<open>FIXME: more idiomatic name, abbreviation\<close> | 
| 63498 | 19 | |
| 20 | lemma to_fract_0 [simp]: "to_fract 0 = 0" | |
| 21 | by (simp add: to_fract_def eq_fract Zero_fract_def) | |
| 22 | ||
| 23 | lemma to_fract_1 [simp]: "to_fract 1 = 1" | |
| 24 | by (simp add: to_fract_def eq_fract One_fract_def) | |
| 25 | ||
| 26 | lemma to_fract_add [simp]: "to_fract (x + y) = to_fract x + to_fract y" | |
| 27 | by (simp add: to_fract_def) | |
| 28 | ||
| 29 | lemma to_fract_diff [simp]: "to_fract (x - y) = to_fract x - to_fract y" | |
| 30 | by (simp add: to_fract_def) | |
| 31 | ||
| 32 | lemma to_fract_uminus [simp]: "to_fract (-x) = -to_fract x" | |
| 33 | by (simp add: to_fract_def) | |
| 34 | ||
| 35 | lemma to_fract_mult [simp]: "to_fract (x * y) = to_fract x * to_fract y" | |
| 36 | by (simp add: to_fract_def) | |
| 37 | ||
| 38 | lemma to_fract_eq_iff [simp]: "to_fract x = to_fract y \<longleftrightarrow> x = y" | |
| 39 | by (simp add: to_fract_def eq_fract) | |
| 40 | ||
| 41 | lemma to_fract_eq_0_iff [simp]: "to_fract x = 0 \<longleftrightarrow> x = 0" | |
| 42 | by (simp add: to_fract_def Zero_fract_def eq_fract) | |
| 43 | ||
| 44 | lemma to_fract_quot_of_fract: | |
| 45 | assumes "snd (quot_of_fract x) = 1" | |
| 46 | shows "to_fract (fst (quot_of_fract x)) = x" | |
| 47 | proof - | |
| 48 | have "x = Fract (fst (quot_of_fract x)) (snd (quot_of_fract x))" by simp | |
| 49 | also note assms | |
| 50 | finally show ?thesis by (simp add: to_fract_def) | |
| 51 | qed | |
| 52 | ||
| 53 | lemma Fract_conv_to_fract: "Fract a b = to_fract a / to_fract b" | |
| 54 | by (simp add: to_fract_def) | |
| 55 | ||
| 56 | lemma quot_of_fract_to_fract [simp]: "quot_of_fract (to_fract x) = (x, 1)" | |
| 57 | unfolding to_fract_def by transfer (simp add: normalize_quot_def) | |
| 58 | ||
| 59 | lemma snd_quot_of_fract_to_fract [simp]: "snd (quot_of_fract (to_fract x)) = 1" | |
| 60 | unfolding to_fract_def by (rule snd_quot_of_fract_Fract_whole) simp_all | |
| 61 | ||
| 62 | ||
| 63 | subsection \<open>Lifting polynomial coefficients to the field of fractions\<close> | |
| 64 | ||
| 76121 | 65 | abbreviation (input) fract_poly :: \<open>'a::idom poly \<Rightarrow> 'a fract poly\<close> | 
| 63498 | 66 | where "fract_poly \<equiv> map_poly to_fract" | 
| 67 | ||
| 76121 | 68 | abbreviation (input) unfract_poly :: \<open>'a::{ring_gcd,semiring_gcd_mult_normalize,idom_divide} fract poly \<Rightarrow> 'a poly\<close>
 | 
| 63498 | 69 | where "unfract_poly \<equiv> map_poly (fst \<circ> quot_of_fract)" | 
| 76121 | 70 | |
| 63498 | 71 | lemma fract_poly_smult [simp]: "fract_poly (smult c p) = smult (to_fract c) (fract_poly p)" | 
| 72 | by (simp add: smult_conv_map_poly map_poly_map_poly o_def) | |
| 73 | ||
| 74 | lemma fract_poly_0 [simp]: "fract_poly 0 = 0" | |
| 75 | by (simp add: poly_eqI coeff_map_poly) | |
| 76 | ||
| 77 | lemma fract_poly_1 [simp]: "fract_poly 1 = 1" | |
| 65486 | 78 | by (simp add: map_poly_pCons) | 
| 63498 | 79 | |
| 80 | lemma fract_poly_add [simp]: | |
| 81 | "fract_poly (p + q) = fract_poly p + fract_poly q" | |
| 82 | by (intro poly_eqI) (simp_all add: coeff_map_poly) | |
| 83 | ||
| 84 | lemma fract_poly_diff [simp]: | |
| 85 | "fract_poly (p - q) = fract_poly p - fract_poly q" | |
| 86 | by (intro poly_eqI) (simp_all add: coeff_map_poly) | |
| 87 | ||
| 64267 | 88 | lemma to_fract_sum [simp]: "to_fract (sum f A) = sum (\<lambda>x. to_fract (f x)) A" | 
| 63498 | 89 | by (cases "finite A", induction A rule: finite_induct) simp_all | 
| 90 | ||
| 91 | lemma fract_poly_mult [simp]: | |
| 92 | "fract_poly (p * q) = fract_poly p * fract_poly q" | |
| 93 | by (intro poly_eqI) (simp_all add: coeff_map_poly coeff_mult) | |
| 94 | ||
| 95 | lemma fract_poly_eq_iff [simp]: "fract_poly p = fract_poly q \<longleftrightarrow> p = q" | |
| 96 | by (auto simp: poly_eq_iff coeff_map_poly) | |
| 97 | ||
| 98 | lemma fract_poly_eq_0_iff [simp]: "fract_poly p = 0 \<longleftrightarrow> p = 0" | |
| 99 | using fract_poly_eq_iff[of p 0] by (simp del: fract_poly_eq_iff) | |
| 100 | ||
| 101 | lemma fract_poly_dvd: "p dvd q \<Longrightarrow> fract_poly p dvd fract_poly q" | |
| 76121 | 102 | by auto | 
| 63498 | 103 | |
| 63830 | 104 | lemma prod_mset_fract_poly: | 
| 65390 | 105 | "(\<Prod>x\<in>#A. map_poly to_fract (f x)) = fract_poly (prod_mset (image_mset f A))" | 
| 106 | by (induct A) (simp_all add: ac_simps) | |
| 63498 | 107 | |
| 108 | lemma is_unit_fract_poly_iff: | |
| 109 | "p dvd 1 \<longleftrightarrow> fract_poly p dvd 1 \<and> content p = 1" | |
| 110 | proof safe | |
| 111 | assume A: "p dvd 1" | |
| 65389 | 112 | with fract_poly_dvd [of p 1] show "is_unit (fract_poly p)" | 
| 113 | by simp | |
| 63498 | 114 | from A show "content p = 1" | 
| 115 | by (auto simp: is_unit_poly_iff normalize_1_iff) | |
| 116 | next | |
| 117 | assume A: "fract_poly p dvd 1" and B: "content p = 1" | |
| 118 | from A obtain c where c: "fract_poly p = [:c:]" by (auto simp: is_unit_poly_iff) | |
| 119 |   {
 | |
| 120 | fix n :: nat assume "n > 0" | |
| 121 | have "to_fract (coeff p n) = coeff (fract_poly p) n" by (simp add: coeff_map_poly) | |
| 122 | also note c | |
| 123 | also from \<open>n > 0\<close> have "coeff [:c:] n = 0" by (simp add: coeff_pCons split: nat.splits) | |
| 124 | finally have "coeff p n = 0" by simp | |
| 125 | } | |
| 126 | hence "degree p \<le> 0" by (intro degree_le) simp_all | |
| 127 | with B show "p dvd 1" by (auto simp: is_unit_poly_iff normalize_1_iff elim!: degree_eq_zeroE) | |
| 128 | qed | |
| 129 | ||
| 130 | lemma fract_poly_is_unit: "p dvd 1 \<Longrightarrow> fract_poly p dvd 1" | |
| 131 | using fract_poly_dvd[of p 1] by simp | |
| 132 | ||
| 133 | lemma fract_poly_smult_eqE: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 134 |   fixes c :: "'a :: {idom_divide,ring_gcd,semiring_gcd_mult_normalize} fract"
 | 
| 63498 | 135 | assumes "fract_poly p = smult c (fract_poly q)" | 
| 136 | obtains a b | |
| 137 | where "c = to_fract b / to_fract a" "smult a p = smult b q" "coprime a b" "normalize a = a" | |
| 138 | proof - | |
| 139 | define a b where "a = fst (quot_of_fract c)" and "b = snd (quot_of_fract c)" | |
| 140 | have "smult (to_fract a) (fract_poly q) = smult (to_fract b) (fract_poly p)" | |
| 141 | by (subst smult_eq_iff) (simp_all add: a_def b_def Fract_conv_to_fract [symmetric] assms) | |
| 142 | hence "fract_poly (smult a q) = fract_poly (smult b p)" by (simp del: fract_poly_eq_iff) | |
| 143 | hence "smult b p = smult a q" by (simp only: fract_poly_eq_iff) | |
| 144 | moreover have "c = to_fract a / to_fract b" "coprime b a" "normalize b = b" | |
| 67051 | 145 | by (simp_all add: a_def b_def coprime_quot_of_fract [of c] ac_simps | 
| 63498 | 146 | normalize_snd_quot_of_fract Fract_conv_to_fract [symmetric]) | 
| 147 | ultimately show ?thesis by (intro that[of a b]) | |
| 148 | qed | |
| 149 | ||
| 150 | ||
| 151 | subsection \<open>Fractional content\<close> | |
| 152 | ||
| 153 | abbreviation (input) Lcm_coeff_denoms | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 154 |     :: "'a :: {semiring_Gcd,idom_divide,ring_gcd,semiring_gcd_mult_normalize} fract poly \<Rightarrow> 'a"
 | 
| 63498 | 155 | where "Lcm_coeff_denoms p \<equiv> Lcm (snd ` quot_of_fract ` set (coeffs p))" | 
| 156 | ||
| 157 | definition fract_content :: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 158 |       "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,semiring_gcd_mult_normalize} fract poly \<Rightarrow> 'a fract" where
 | 
| 63498 | 159 | "fract_content p = | 
| 160 | (let d = Lcm_coeff_denoms p in Fract (content (unfract_poly (smult (to_fract d) p))) d)" | |
| 161 | ||
| 162 | definition primitive_part_fract :: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 163 |       "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,semiring_gcd_mult_normalize} fract poly \<Rightarrow> 'a poly" where
 | 
| 63498 | 164 | "primitive_part_fract p = | 
| 165 | primitive_part (unfract_poly (smult (to_fract (Lcm_coeff_denoms p)) p))" | |
| 166 | ||
| 167 | lemma primitive_part_fract_0 [simp]: "primitive_part_fract 0 = 0" | |
| 168 | by (simp add: primitive_part_fract_def) | |
| 169 | ||
| 170 | lemma fract_content_eq_0_iff [simp]: | |
| 171 | "fract_content p = 0 \<longleftrightarrow> p = 0" | |
| 172 | unfolding fract_content_def Let_def Zero_fract_def | |
| 173 | by (subst eq_fract) (auto simp: Lcm_0_iff map_poly_eq_0_iff) | |
| 174 | ||
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 175 | lemma content_primitive_part_fract [simp]: | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 176 |   fixes p :: "'a :: {semiring_gcd_mult_normalize,
 | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 177 | factorial_semiring, ring_gcd, semiring_Gcd,idom_divide} fract poly" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 178 | shows "p \<noteq> 0 \<Longrightarrow> content (primitive_part_fract p) = 1" | 
| 63498 | 179 | unfolding primitive_part_fract_def | 
| 180 | by (rule content_primitive_part) | |
| 181 | (auto simp: primitive_part_fract_def map_poly_eq_0_iff Lcm_0_iff) | |
| 182 | ||
| 183 | lemma content_times_primitive_part_fract: | |
| 184 | "smult (fract_content p) (fract_poly (primitive_part_fract p)) = p" | |
| 185 | proof - | |
| 186 | define p' where "p' = unfract_poly (smult (to_fract (Lcm_coeff_denoms p)) p)" | |
| 187 | have "fract_poly p' = | |
| 188 | map_poly (to_fract \<circ> fst \<circ> quot_of_fract) (smult (to_fract (Lcm_coeff_denoms p)) p)" | |
| 189 | unfolding primitive_part_fract_def p'_def | |
| 190 | by (subst map_poly_map_poly) (simp_all add: o_assoc) | |
| 191 | also have "\<dots> = smult (to_fract (Lcm_coeff_denoms p)) p" | |
| 192 | proof (intro map_poly_idI, unfold o_apply) | |
| 193 | fix c assume "c \<in> set (coeffs (smult (to_fract (Lcm_coeff_denoms p)) p))" | |
| 194 | then obtain c' where c: "c' \<in> set (coeffs p)" "c = to_fract (Lcm_coeff_denoms p) * c'" | |
| 195 | by (auto simp add: Lcm_0_iff coeffs_smult split: if_splits) | |
| 196 | note c(2) | |
| 197 | also have "c' = Fract (fst (quot_of_fract c')) (snd (quot_of_fract c'))" | |
| 198 | by simp | |
| 199 | also have "to_fract (Lcm_coeff_denoms p) * \<dots> = | |
| 200 | Fract (Lcm_coeff_denoms p * fst (quot_of_fract c')) (snd (quot_of_fract c'))" | |
| 201 | unfolding to_fract_def by (subst mult_fract) simp_all | |
| 202 | also have "snd (quot_of_fract \<dots>) = 1" | |
| 203 | by (intro snd_quot_of_fract_Fract_whole dvd_mult2 dvd_Lcm) (insert c(1), auto) | |
| 204 | finally show "to_fract (fst (quot_of_fract c)) = c" | |
| 205 | by (rule to_fract_quot_of_fract) | |
| 206 | qed | |
| 207 | also have "p' = smult (content p') (primitive_part p')" | |
| 208 | by (rule content_times_primitive_part [symmetric]) | |
| 209 | also have "primitive_part p' = primitive_part_fract p" | |
| 210 | by (simp add: primitive_part_fract_def p'_def) | |
| 211 | also have "fract_poly (smult (content p') (primitive_part_fract p)) = | |
| 212 | smult (to_fract (content p')) (fract_poly (primitive_part_fract p))" by simp | |
| 213 | finally have "smult (to_fract (content p')) (fract_poly (primitive_part_fract p)) = | |
| 214 | smult (to_fract (Lcm_coeff_denoms p)) p" . | |
| 215 | thus ?thesis | |
| 216 | by (subst (asm) smult_eq_iff) | |
| 217 | (auto simp add: Let_def p'_def Fract_conv_to_fract field_simps Lcm_0_iff fract_content_def) | |
| 218 | qed | |
| 219 | ||
| 220 | lemma fract_content_fract_poly [simp]: "fract_content (fract_poly p) = to_fract (content p)" | |
| 221 | proof - | |
| 222 | have "Lcm_coeff_denoms (fract_poly p) = 1" | |
| 63905 | 223 | by (auto simp: set_coeffs_map_poly) | 
| 63498 | 224 | hence "fract_content (fract_poly p) = | 
| 225 | to_fract (content (map_poly (fst \<circ> quot_of_fract \<circ> to_fract) p))" | |
| 226 | by (simp add: fract_content_def to_fract_def fract_collapse map_poly_map_poly del: Lcm_1_iff) | |
| 227 | also have "map_poly (fst \<circ> quot_of_fract \<circ> to_fract) p = p" | |
| 228 | by (intro map_poly_idI) simp_all | |
| 229 | finally show ?thesis . | |
| 230 | qed | |
| 231 | ||
| 232 | lemma content_decompose_fract: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 233 |   fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,
 | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 234 | semiring_gcd_mult_normalize} fract poly" | 
| 63498 | 235 | obtains c p' where "p = smult c (map_poly to_fract p')" "content p' = 1" | 
| 236 | proof (cases "p = 0") | |
| 237 | case True | |
| 238 | hence "p = smult 0 (map_poly to_fract 1)" "content 1 = 1" by simp_all | |
| 239 | thus ?thesis .. | |
| 240 | next | |
| 241 | case False | |
| 242 | thus ?thesis | |
| 243 | by (rule that[OF content_times_primitive_part_fract [symmetric] content_primitive_part_fract]) | |
| 244 | qed | |
| 245 | ||
| 246 | lemma fract_poly_dvdD: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 247 |   fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,
 | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 248 | semiring_gcd_mult_normalize} poly" | 
| 63498 | 249 | assumes "fract_poly p dvd fract_poly q" "content p = 1" | 
| 250 | shows "p dvd q" | |
| 251 | proof - | |
| 252 | from assms(1) obtain r where r: "fract_poly q = fract_poly p * r" by (erule dvdE) | |
| 74362 | 253 | from content_decompose_fract[of r] | 
| 254 | obtain c r' where r': "r = smult c (map_poly to_fract r')" "content r' = 1" . | |
| 63498 | 255 | from r r' have eq: "fract_poly q = smult c (fract_poly (p * r'))" by simp | 
| 74362 | 256 | from fract_poly_smult_eqE[OF this] obtain a b | 
| 257 | where ab: | |
| 258 | "c = to_fract b / to_fract a" | |
| 259 | "smult a q = smult b (p * r')" | |
| 260 | "coprime a b" | |
| 261 | "normalize a = a" . | |
| 63498 | 262 | have "content (smult a q) = content (smult b (p * r'))" by (simp only: ab(2)) | 
| 263 | hence eq': "normalize b = a * content q" by (simp add: assms content_mult r' ab(4)) | |
| 264 | have "1 = gcd a (normalize b)" by (simp add: ab) | |
| 265 | also note eq' | |
| 266 | also have "gcd a (a * content q) = a" by (simp add: gcd_proj1_if_dvd ab(4)) | |
| 267 | finally have [simp]: "a = 1" by simp | |
| 268 | from eq ab have "q = p * ([:b:] * r')" by simp | |
| 269 | thus ?thesis by (rule dvdI) | |
| 270 | qed | |
| 271 | ||
| 272 | ||
| 273 | subsection \<open>Polynomials over a field are a Euclidean ring\<close> | |
| 274 | ||
| 66805 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 275 | context | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 276 | begin | 
| 63498 | 277 | |
| 278 | interpretation field_poly: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 279 | normalization_euclidean_semiring_multiplicative where zero = "0 :: 'a :: field poly" | 
| 66817 | 280 | and one = 1 and plus = plus and minus = minus | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63954diff
changeset | 281 | and times = times | 
| 66805 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 282 | and normalize = "\<lambda>p. smult (inverse (lead_coeff p)) p" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 283 | and unit_factor = "\<lambda>p. [:lead_coeff p:]" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 284 | and euclidean_size = "\<lambda>p. if p = 0 then 0 else 2 ^ degree p" | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63954diff
changeset | 285 | and divide = divide and modulo = modulo | 
| 66805 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 286 | rewrites "dvd.dvd (times :: 'a poly \<Rightarrow> _) = Rings.dvd" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 287 | and "comm_monoid_mult.prod_mset times 1 = prod_mset" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 288 | and "comm_semiring_1.irreducible times 1 0 = irreducible" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 289 | and "comm_semiring_1.prime_elem times 1 0 = prime_elem" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 290 | proof - | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 291 | show "dvd.dvd (times :: 'a poly \<Rightarrow> _) = Rings.dvd" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 292 | by (simp add: dvd_dict) | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 293 | show "comm_monoid_mult.prod_mset times 1 = prod_mset" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 294 | by (simp add: prod_mset_dict) | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 295 | show "comm_semiring_1.irreducible times 1 0 = irreducible" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 296 | by (simp add: irreducible_dict) | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 297 | show "comm_semiring_1.prime_elem times 1 0 = prime_elem" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 298 | by (simp add: prime_elem_dict) | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 299 | show "class.normalization_euclidean_semiring_multiplicative divide plus minus (0 :: 'a poly) times 1 | 
| 66817 | 300 | modulo (\<lambda>p. if p = 0 then 0 else 2 ^ degree p) | 
| 301 | (\<lambda>p. [:lead_coeff p:]) (\<lambda>p. smult (inverse (lead_coeff p)) p)" | |
| 66805 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 302 | proof (standard, fold dvd_dict) | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 303 | fix p :: "'a poly" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 304 | show "[:lead_coeff p:] * smult (inverse (lead_coeff p)) p = p" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 305 | by (cases "p = 0") simp_all | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 306 | next | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 307 | fix p :: "'a poly" assume "is_unit p" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 308 | then show "[:lead_coeff p:] = p" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 309 | by (elim is_unit_polyE) (auto simp: monom_0 one_poly_def field_simps) | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 310 | next | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 311 | fix p :: "'a poly" assume "p \<noteq> 0" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 312 | then show "is_unit [:lead_coeff p:]" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 313 | by (simp add: is_unit_pCons_iff) | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 314 | next | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 315 | fix a b :: "'a poly" assume "is_unit a" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 316 | thus "[:lead_coeff (a * b):] = a * [:lead_coeff b:]" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 317 | by (auto elim!: is_unit_polyE) | 
| 66805 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 318 | qed (auto simp: lead_coeff_mult Rings.div_mult_mod_eq intro!: degree_mod_less' degree_mult_right_le) | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 319 | qed | 
| 63498 | 320 | |
| 63722 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 321 | lemma field_poly_irreducible_imp_prime: | 
| 66805 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 322 | "prime_elem p" if "irreducible p" for p :: "'a :: field poly" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 323 | using that by (fact field_poly.irreducible_imp_prime_elem) | 
| 72265 | 324 | |
| 63830 | 325 | lemma field_poly_prod_mset_prime_factorization: | 
| 66805 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 326 | "prod_mset (field_poly.prime_factorization p) = smult (inverse (lead_coeff p)) p" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 327 | if "p \<noteq> 0" for p :: "'a :: field poly" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 328 | using that by (fact field_poly.prod_mset_prime_factorization) | 
| 63498 | 329 | |
| 63722 
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
 Manuel Eberl <eberlm@in.tum.de> parents: 
63705diff
changeset | 330 | lemma field_poly_in_prime_factorization_imp_prime: | 
| 66805 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 331 | "prime_elem p" if "p \<in># field_poly.prime_factorization x" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 332 | for p :: "'a :: field poly" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 333 | by (rule field_poly.prime_imp_prime_elem, rule field_poly.in_prime_factors_imp_prime) | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 334 | (fact that) | 
| 63498 | 335 | |
| 336 | ||
| 337 | subsection \<open>Primality and irreducibility in polynomial rings\<close> | |
| 338 | ||
| 339 | lemma nonconst_poly_irreducible_iff: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 340 |   fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,semiring_gcd_mult_normalize} poly"
 | 
| 63498 | 341 | assumes "degree p \<noteq> 0" | 
| 342 | shows "irreducible p \<longleftrightarrow> irreducible (fract_poly p) \<and> content p = 1" | |
| 343 | proof safe | |
| 344 | assume p: "irreducible p" | |
| 345 | ||
| 74362 | 346 | from content_decompose[of p] obtain p' where p': "p = smult (content p) p'" "content p' = 1" . | 
| 63498 | 347 | hence "p = [:content p:] * p'" by simp | 
| 348 | from p this have "[:content p:] dvd 1 \<or> p' dvd 1" by (rule irreducibleD) | |
| 349 | moreover have "\<not>p' dvd 1" | |
| 350 | proof | |
| 351 | assume "p' dvd 1" | |
| 352 | hence "degree p = 0" by (subst p') (auto simp: is_unit_poly_iff) | |
| 353 | with assms show False by contradiction | |
| 354 | qed | |
| 355 | ultimately show [simp]: "content p = 1" by (simp add: is_unit_const_poly_iff) | |
| 356 | ||
| 357 | show "irreducible (map_poly to_fract p)" | |
| 358 | proof (rule irreducibleI) | |
| 359 | have "fract_poly p = 0 \<longleftrightarrow> p = 0" by (intro map_poly_eq_0_iff) auto | |
| 360 | with assms show "map_poly to_fract p \<noteq> 0" by auto | |
| 361 | next | |
| 362 | show "\<not>is_unit (fract_poly p)" | |
| 363 | proof | |
| 364 | assume "is_unit (map_poly to_fract p)" | |
| 365 | hence "degree (map_poly to_fract p) = 0" | |
| 366 | by (auto simp: is_unit_poly_iff) | |
| 367 | hence "degree p = 0" by (simp add: degree_map_poly) | |
| 368 | with assms show False by contradiction | |
| 369 | qed | |
| 370 | next | |
| 371 | fix q r assume qr: "fract_poly p = q * r" | |
| 74362 | 372 | from content_decompose_fract[of q] | 
| 373 | obtain cg q' where q: "q = smult cg (map_poly to_fract q')" "content q' = 1" . | |
| 374 | from content_decompose_fract[of r] | |
| 375 | obtain cr r' where r: "r = smult cr (map_poly to_fract r')" "content r' = 1" . | |
| 63498 | 376 | from qr q r p have nz: "cg \<noteq> 0" "cr \<noteq> 0" by auto | 
| 377 | from qr have eq: "fract_poly p = smult (cr * cg) (fract_poly (q' * r'))" | |
| 378 | by (simp add: q r) | |
| 74362 | 379 | from fract_poly_smult_eqE[OF this] obtain a b | 
| 380 | where ab: "cr * cg = to_fract b / to_fract a" | |
| 381 | "smult a p = smult b (q' * r')" "coprime a b" "normalize a = a" . | |
| 63498 | 382 | hence "content (smult a p) = content (smult b (q' * r'))" by (simp only:) | 
| 383 | with ab(4) have a: "a = normalize b" by (simp add: content_mult q r) | |
| 67051 | 384 | then have "normalize b = gcd a b" | 
| 385 | by simp | |
| 386 | with \<open>coprime a b\<close> have "normalize b = 1" | |
| 387 | by simp | |
| 388 | then have "a = 1" "is_unit b" | |
| 389 | by (simp_all add: a normalize_1_iff) | |
| 63498 | 390 | |
| 391 | note eq | |
| 392 | also from ab(1) \<open>a = 1\<close> have "cr * cg = to_fract b" by simp | |
| 393 | also have "smult \<dots> (fract_poly (q' * r')) = fract_poly (smult b (q' * r'))" by simp | |
| 394 | finally have "p = ([:b:] * q') * r'" by (simp del: fract_poly_smult) | |
| 395 | from p and this have "([:b:] * q') dvd 1 \<or> r' dvd 1" by (rule irreducibleD) | |
| 396 | hence "q' dvd 1 \<or> r' dvd 1" by (auto dest: dvd_mult_right simp del: mult_pCons_left) | |
| 397 | hence "fract_poly q' dvd 1 \<or> fract_poly r' dvd 1" by (auto simp: fract_poly_is_unit) | |
| 398 | with q r show "is_unit q \<or> is_unit r" | |
| 399 | by (auto simp add: is_unit_smult_iff dvd_field_iff nz) | |
| 400 | qed | |
| 401 | ||
| 402 | next | |
| 403 | ||
| 404 | assume irred: "irreducible (fract_poly p)" and primitive: "content p = 1" | |
| 405 | show "irreducible p" | |
| 406 | proof (rule irreducibleI) | |
| 407 | from irred show "p \<noteq> 0" by auto | |
| 408 | next | |
| 409 | from irred show "\<not>p dvd 1" | |
| 410 | by (auto simp: irreducible_def dest: fract_poly_is_unit) | |
| 411 | next | |
| 412 | fix q r assume qr: "p = q * r" | |
| 413 | hence "fract_poly p = fract_poly q * fract_poly r" by simp | |
| 414 | from irred and this have "fract_poly q dvd 1 \<or> fract_poly r dvd 1" | |
| 415 | by (rule irreducibleD) | |
| 416 | with primitive qr show "q dvd 1 \<or> r dvd 1" | |
| 417 | by (auto simp: content_prod_eq_1_iff is_unit_fract_poly_iff) | |
| 418 | qed | |
| 419 | qed | |
| 420 | ||
| 74542 
d592354c4a26
removed some 'private' modifiers from HOL-Computational_Algebra
 Manuel Eberl <manuel@pruvisto.org> parents: 
74362diff
changeset | 421 | lemma irreducible_imp_prime_poly: | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 422 |   fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,semiring_gcd_mult_normalize} poly"
 | 
| 63498 | 423 | assumes "irreducible p" | 
| 63633 | 424 | shows "prime_elem p" | 
| 63498 | 425 | proof (cases "degree p = 0") | 
| 426 | case True | |
| 427 | with assms show ?thesis | |
| 428 | by (auto simp: prime_elem_const_poly_iff irreducible_const_poly_iff | |
| 63633 | 429 | intro!: irreducible_imp_prime_elem elim!: degree_eq_zeroE) | 
| 63498 | 430 | next | 
| 431 | case False | |
| 432 | from assms False have irred: "irreducible (fract_poly p)" and primitive: "content p = 1" | |
| 433 | by (simp_all add: nonconst_poly_irreducible_iff) | |
| 63633 | 434 | from irred have prime: "prime_elem (fract_poly p)" by (rule field_poly_irreducible_imp_prime) | 
| 63498 | 435 | show ?thesis | 
| 63633 | 436 | proof (rule prime_elemI) | 
| 63498 | 437 | fix q r assume "p dvd q * r" | 
| 438 | hence "fract_poly p dvd fract_poly (q * r)" by (rule fract_poly_dvd) | |
| 439 | hence "fract_poly p dvd fract_poly q * fract_poly r" by simp | |
| 440 | from prime and this have "fract_poly p dvd fract_poly q \<or> fract_poly p dvd fract_poly r" | |
| 63633 | 441 | by (rule prime_elem_dvd_multD) | 
| 63498 | 442 | with primitive show "p dvd q \<or> p dvd r" by (auto dest: fract_poly_dvdD) | 
| 443 | qed (insert assms, auto simp: irreducible_def) | |
| 444 | qed | |
| 445 | ||
| 446 | lemma degree_primitive_part_fract [simp]: | |
| 447 | "degree (primitive_part_fract p) = degree p" | |
| 448 | proof - | |
| 449 | have "p = smult (fract_content p) (fract_poly (primitive_part_fract p))" | |
| 450 | by (simp add: content_times_primitive_part_fract) | |
| 451 | also have "degree \<dots> = degree (primitive_part_fract p)" | |
| 452 | by (auto simp: degree_map_poly) | |
| 453 | finally show ?thesis .. | |
| 454 | qed | |
| 455 | ||
| 456 | lemma irreducible_primitive_part_fract: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 457 |   fixes p :: "'a :: {idom_divide, ring_gcd, factorial_semiring, semiring_Gcd,semiring_gcd_mult_normalize} fract poly"
 | 
| 63498 | 458 | assumes "irreducible p" | 
| 459 | shows "irreducible (primitive_part_fract p)" | |
| 460 | proof - | |
| 461 | from assms have deg: "degree (primitive_part_fract p) \<noteq> 0" | |
| 462 | by (intro notI) | |
| 463 | (auto elim!: degree_eq_zeroE simp: irreducible_def is_unit_poly_iff dvd_field_iff) | |
| 464 | hence [simp]: "p \<noteq> 0" by auto | |
| 465 | ||
| 466 | note \<open>irreducible p\<close> | |
| 467 | also have "p = [:fract_content p:] * fract_poly (primitive_part_fract p)" | |
| 468 | by (simp add: content_times_primitive_part_fract) | |
| 469 | also have "irreducible \<dots> \<longleftrightarrow> irreducible (fract_poly (primitive_part_fract p))" | |
| 470 | by (intro irreducible_mult_unit_left) (simp_all add: is_unit_poly_iff dvd_field_iff) | |
| 471 | finally show ?thesis using deg | |
| 472 | by (simp add: nonconst_poly_irreducible_iff) | |
| 473 | qed | |
| 474 | ||
| 63633 | 475 | lemma prime_elem_primitive_part_fract: | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 476 |   fixes p :: "'a :: {idom_divide, ring_gcd, factorial_semiring, semiring_Gcd,semiring_gcd_mult_normalize} fract poly"
 | 
| 63633 | 477 | shows "irreducible p \<Longrightarrow> prime_elem (primitive_part_fract p)" | 
| 63498 | 478 | by (intro irreducible_imp_prime_poly irreducible_primitive_part_fract) | 
| 479 | ||
| 480 | lemma irreducible_linear_field_poly: | |
| 481 | fixes a b :: "'a::field" | |
| 482 | assumes "b \<noteq> 0" | |
| 483 | shows "irreducible [:a,b:]" | |
| 484 | proof (rule irreducibleI) | |
| 485 | fix p q assume pq: "[:a,b:] = p * q" | |
| 63539 | 486 | also from pq assms have "degree \<dots> = degree p + degree q" | 
| 63498 | 487 | by (intro degree_mult_eq) auto | 
| 488 | finally have "degree p = 0 \<or> degree q = 0" using assms by auto | |
| 489 | with assms pq show "is_unit p \<or> is_unit q" | |
| 490 | by (auto simp: is_unit_const_poly_iff dvd_field_iff elim!: degree_eq_zeroE) | |
| 491 | qed (insert assms, auto simp: is_unit_poly_iff) | |
| 492 | ||
| 63633 | 493 | lemma prime_elem_linear_field_poly: | 
| 494 | "(b :: 'a :: field) \<noteq> 0 \<Longrightarrow> prime_elem [:a,b:]" | |
| 63498 | 495 | by (rule field_poly_irreducible_imp_prime, rule irreducible_linear_field_poly) | 
| 496 | ||
| 497 | lemma irreducible_linear_poly: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 498 |   fixes a b :: "'a::{idom_divide,ring_gcd,factorial_semiring,semiring_Gcd,semiring_gcd_mult_normalize}"
 | 
| 63498 | 499 | shows "b \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> irreducible [:a,b:]" | 
| 500 | by (auto intro!: irreducible_linear_field_poly | |
| 501 | simp: nonconst_poly_irreducible_iff content_def map_poly_pCons) | |
| 502 | ||
| 63633 | 503 | lemma prime_elem_linear_poly: | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 504 |   fixes a b :: "'a::{idom_divide,ring_gcd,factorial_semiring,semiring_Gcd,semiring_gcd_mult_normalize}"
 | 
| 63633 | 505 | shows "b \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> prime_elem [:a,b:]" | 
| 63498 | 506 | by (rule irreducible_imp_prime_poly, rule irreducible_linear_poly) | 
| 507 | ||
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 508 | |
| 63498 | 509 | subsection \<open>Prime factorisation of polynomials\<close> | 
| 510 | ||
| 74542 
d592354c4a26
removed some 'private' modifiers from HOL-Computational_Algebra
 Manuel Eberl <manuel@pruvisto.org> parents: 
74362diff
changeset | 511 | lemma poly_prime_factorization_exists_content_1: | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 512 |   fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,semiring_gcd_mult_normalize} poly"
 | 
| 63498 | 513 | assumes "p \<noteq> 0" "content p = 1" | 
| 63830 | 514 | shows "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> prod_mset A = normalize p" | 
| 63498 | 515 | proof - | 
| 516 | let ?P = "field_poly.prime_factorization (fract_poly p)" | |
| 63830 | 517 | define c where "c = prod_mset (image_mset fract_content ?P)" | 
| 63498 | 518 | define c' where "c' = c * to_fract (lead_coeff p)" | 
| 63830 | 519 | define e where "e = prod_mset (image_mset primitive_part_fract ?P)" | 
| 63498 | 520 | define A where "A = image_mset (normalize \<circ> primitive_part_fract) ?P" | 
| 521 | have "content e = (\<Prod>x\<in>#field_poly.prime_factorization (map_poly to_fract p). | |
| 522 | content (primitive_part_fract x))" | |
| 63830 | 523 | by (simp add: e_def content_prod_mset multiset.map_comp o_def) | 
| 63498 | 524 | also have "image_mset (\<lambda>x. content (primitive_part_fract x)) ?P = image_mset (\<lambda>_. 1) ?P" | 
| 525 | by (intro image_mset_cong content_primitive_part_fract) auto | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 526 | finally have content_e: "content e = 1" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 527 | by simp | 
| 63498 | 528 | |
| 66805 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 529 | from \<open>p \<noteq> 0\<close> have "fract_poly p = [:lead_coeff (fract_poly p):] * | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 530 | smult (inverse (lead_coeff (fract_poly p))) (fract_poly p)" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 531 | by simp | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 532 | also have "[:lead_coeff (fract_poly p):] = [:to_fract (lead_coeff p):]" | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 533 | by (simp add: monom_0 degree_map_poly coeff_map_poly) | 
| 
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
 haftmann parents: 
65965diff
changeset | 534 | also from assms have "smult (inverse (lead_coeff (fract_poly p))) (fract_poly p) = prod_mset ?P" | 
| 63830 | 535 | by (subst field_poly_prod_mset_prime_factorization) simp_all | 
| 536 | also have "\<dots> = prod_mset (image_mset id ?P)" by simp | |
| 63498 | 537 | also have "image_mset id ?P = | 
| 538 | image_mset (\<lambda>x. [:fract_content x:] * fract_poly (primitive_part_fract x)) ?P" | |
| 539 | by (intro image_mset_cong) (auto simp: content_times_primitive_part_fract) | |
| 63830 | 540 | also have "prod_mset \<dots> = smult c (fract_poly e)" | 
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 541 | by (subst prod_mset.distrib) (simp_all add: prod_mset_fract_poly prod_mset_const_poly c_def e_def) | 
| 63498 | 542 | also have "[:to_fract (lead_coeff p):] * \<dots> = smult c' (fract_poly e)" | 
| 543 | by (simp add: c'_def) | |
| 544 | finally have eq: "fract_poly p = smult c' (fract_poly e)" . | |
| 545 | also obtain b where b: "c' = to_fract b" "is_unit b" | |
| 546 | proof - | |
| 74362 | 547 | from fract_poly_smult_eqE[OF eq] | 
| 548 | obtain a b where ab: | |
| 549 | "c' = to_fract b / to_fract a" | |
| 550 | "smult a p = smult b e" | |
| 551 | "coprime a b" | |
| 552 | "normalize a = a" . | |
| 63498 | 553 | from ab(2) have "content (smult a p) = content (smult b e)" by (simp only: ) | 
| 554 | with assms content_e have "a = normalize b" by (simp add: ab(4)) | |
| 67051 | 555 | with ab have ab': "a = 1" "is_unit b" | 
| 556 | by (simp_all add: normalize_1_iff) | |
| 63498 | 557 | with ab ab' have "c' = to_fract b" by auto | 
| 558 | from this and \<open>is_unit b\<close> show ?thesis by (rule that) | |
| 559 | qed | |
| 560 | hence "smult c' (fract_poly e) = fract_poly (smult b e)" by simp | |
| 561 | finally have "p = smult b e" by (simp only: fract_poly_eq_iff) | |
| 562 | hence "p = [:b:] * e" by simp | |
| 563 | with b have "normalize p = normalize e" | |
| 564 | by (simp only: normalize_mult) (simp add: is_unit_normalize is_unit_poly_iff) | |
| 63830 | 565 | also have "normalize e = prod_mset A" | 
| 566 | by (simp add: multiset.map_comp e_def A_def normalize_prod_mset) | |
| 567 | finally have "prod_mset A = normalize p" .. | |
| 63498 | 568 | |
| 63633 | 569 | have "prime_elem p" if "p \<in># A" for p | 
| 570 | using that by (auto simp: A_def prime_elem_primitive_part_fract prime_elem_imp_irreducible | |
| 63498 | 571 | dest!: field_poly_in_prime_factorization_imp_prime ) | 
| 63830 | 572 | from this and \<open>prod_mset A = normalize p\<close> show ?thesis | 
| 63498 | 573 | by (intro exI[of _ A]) blast | 
| 574 | qed | |
| 575 | ||
| 576 | lemma poly_prime_factorization_exists: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 577 |   fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,semiring_gcd_mult_normalize} poly"
 | 
| 63498 | 578 | assumes "p \<noteq> 0" | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 579 | shows "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> normalize (prod_mset A) = normalize p" | 
| 63498 | 580 | proof - | 
| 581 | define B where "B = image_mset (\<lambda>x. [:x:]) (prime_factorization (content p))" | |
| 63830 | 582 | have "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> prod_mset A = normalize (primitive_part p)" | 
| 63498 | 583 | by (rule poly_prime_factorization_exists_content_1) (insert assms, simp_all) | 
| 74362 | 584 | then obtain A where A: "\<forall>p. p \<in># A \<longrightarrow> prime_elem p" "\<Prod>\<^sub># A = normalize (primitive_part p)" | 
| 585 | by blast | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 586 | have "normalize (prod_mset (A + B)) = normalize (prod_mset A * normalize (prod_mset B))" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 587 | by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 588 | also from assms have "normalize (prod_mset B) = normalize [:content p:]" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 589 | by (simp add: prod_mset_const_poly normalize_const_poly prod_mset_prime_factorization_weak B_def) | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 590 | also have "prod_mset A = normalize (primitive_part p)" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 591 | using A by simp | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 592 | finally have "normalize (prod_mset (A + B)) = normalize (primitive_part p * [:content p:])" | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 593 | by simp | 
| 63633 | 594 | moreover have "\<forall>p. p \<in># B \<longrightarrow> prime_elem p" | 
| 63905 | 595 | by (auto simp: B_def intro!: lift_prime_elem_poly dest: in_prime_factors_imp_prime) | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 596 | ultimately show ?thesis using A by (intro exI[of _ "A + B"]) (auto) | 
| 63498 | 597 | qed | 
| 598 | ||
| 599 | end | |
| 600 | ||
| 601 | ||
| 602 | subsection \<open>Typeclass instances\<close> | |
| 603 | ||
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 604 | instance poly :: ("{factorial_ring_gcd,semiring_gcd_mult_normalize}") factorial_semiring
 | 
| 63498 | 605 | by standard (rule poly_prime_factorization_exists) | 
| 606 | ||
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 607 | instantiation poly :: ("{factorial_ring_gcd, semiring_gcd_mult_normalize}") factorial_ring_gcd
 | 
| 63498 | 608 | begin | 
| 609 | ||
| 610 | definition gcd_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where | |
| 611 | [code del]: "gcd_poly = gcd_factorial" | |
| 612 | ||
| 613 | definition lcm_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where | |
| 614 | [code del]: "lcm_poly = lcm_factorial" | |
| 615 | ||
| 616 | definition Gcd_poly :: "'a poly set \<Rightarrow> 'a poly" where | |
| 617 | [code del]: "Gcd_poly = Gcd_factorial" | |
| 618 | ||
| 619 | definition Lcm_poly :: "'a poly set \<Rightarrow> 'a poly" where | |
| 620 | [code del]: "Lcm_poly = Lcm_factorial" | |
| 621 | ||
| 622 | instance by standard (simp_all add: gcd_poly_def lcm_poly_def Gcd_poly_def Lcm_poly_def) | |
| 623 | ||
| 624 | end | |
| 625 | ||
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 626 | instance poly :: ("{factorial_ring_gcd, semiring_gcd_mult_normalize}") semiring_gcd_mult_normalize ..
 | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 627 | |
| 76121 | 628 | instance poly :: ("{field,factorial_ring_gcd,semiring_gcd_mult_normalize}")
 | 
| 629 | "normalization_euclidean_semiring" .. | |
| 63498 | 630 | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 631 | instance poly :: ("{field, normalization_euclidean_semiring, factorial_ring_gcd,
 | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 632 | semiring_gcd_mult_normalize}") euclidean_ring_gcd | 
| 66817 | 633 | by (rule euclidean_ring_gcd_class.intro, rule factorial_euclidean_semiring_gcdI) standard | 
| 63498 | 634 | |
| 80084 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76121diff
changeset | 635 | instance poly :: ("{field, normalization_euclidean_semiring, factorial_ring_gcd,
 | 
| 
173548e4d5d0
moved over material from the AFP to HOL, HOL-Computational_Algebra, and HOL-Number_Theory
 Manuel Eberl <manuel@pruvisto.org> parents: 
76121diff
changeset | 636 | semiring_gcd_mult_normalize}") factorial_semiring_multiplicative .. | 
| 63498 | 637 | |
| 638 | subsection \<open>Polynomial GCD\<close> | |
| 639 | ||
| 640 | lemma gcd_poly_decompose: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 641 |   fixes p q :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly"
 | 
| 63498 | 642 | shows "gcd p q = | 
| 643 | smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q))" | |
| 644 | proof (rule sym, rule gcdI) | |
| 645 | have "[:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q) dvd | |
| 646 | [:content p:] * primitive_part p" by (intro mult_dvd_mono) simp_all | |
| 647 | thus "smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q)) dvd p" | |
| 648 | by simp | |
| 649 | next | |
| 650 | have "[:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q) dvd | |
| 651 | [:content q:] * primitive_part q" by (intro mult_dvd_mono) simp_all | |
| 652 | thus "smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q)) dvd q" | |
| 653 | by simp | |
| 654 | next | |
| 655 | fix d assume "d dvd p" "d dvd q" | |
| 656 | hence "[:content d:] * primitive_part d dvd | |
| 657 | [:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q)" | |
| 658 | by (intro mult_dvd_mono) auto | |
| 659 | thus "d dvd smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q))" | |
| 660 | by simp | |
| 661 | qed (auto simp: normalize_smult) | |
| 662 | ||
| 663 | ||
| 664 | lemma gcd_poly_pseudo_mod: | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 665 |   fixes p q :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly"
 | 
| 63498 | 666 | assumes nz: "q \<noteq> 0" and prim: "content p = 1" "content q = 1" | 
| 667 | shows "gcd p q = gcd q (primitive_part (pseudo_mod p q))" | |
| 668 | proof - | |
| 669 | define r s where "r = fst (pseudo_divmod p q)" and "s = snd (pseudo_divmod p q)" | |
| 670 | define a where "a = [:coeff q (degree q) ^ (Suc (degree p) - degree q):]" | |
| 671 | have [simp]: "primitive_part a = unit_factor a" | |
| 672 | by (simp add: a_def unit_factor_poly_def unit_factor_power monom_0) | |
| 673 | from nz have [simp]: "a \<noteq> 0" by (auto simp: a_def) | |
| 674 | ||
| 675 | have rs: "pseudo_divmod p q = (r, s)" by (simp add: r_def s_def) | |
| 676 | have "gcd (q * r + s) q = gcd q s" | |
| 677 | using gcd_add_mult[of q r s] by (simp add: gcd.commute add_ac mult_ac) | |
| 678 | with pseudo_divmod(1)[OF nz rs] | |
| 679 | have "gcd (p * a) q = gcd q s" by (simp add: a_def) | |
| 680 | also from prim have "gcd (p * a) q = gcd p q" | |
| 681 | by (subst gcd_poly_decompose) | |
| 682 | (auto simp: primitive_part_mult gcd_mult_unit1 primitive_part_prim | |
| 683 | simp del: mult_pCons_right ) | |
| 684 | also from prim have "gcd q s = gcd q (primitive_part s)" | |
| 685 | by (subst gcd_poly_decompose) (simp_all add: primitive_part_prim) | |
| 686 | also have "s = pseudo_mod p q" by (simp add: s_def pseudo_mod_def) | |
| 687 | finally show ?thesis . | |
| 688 | qed | |
| 689 | ||
| 690 | lemma degree_pseudo_mod_less: | |
| 691 | assumes "q \<noteq> 0" "pseudo_mod p q \<noteq> 0" | |
| 692 | shows "degree (pseudo_mod p q) < degree q" | |
| 693 | using pseudo_mod(2)[of q p] assms by auto | |
| 694 | ||
| 695 | function gcd_poly_code_aux :: "'a :: factorial_ring_gcd poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where | |
| 696 | "gcd_poly_code_aux p q = | |
| 697 | (if q = 0 then normalize p else gcd_poly_code_aux q (primitive_part (pseudo_mod p q)))" | |
| 698 | by auto | |
| 699 | termination | |
| 700 | by (relation "measure ((\<lambda>p. if p = 0 then 0 else Suc (degree p)) \<circ> snd)") | |
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63954diff
changeset | 701 | (auto simp: degree_pseudo_mod_less) | 
| 63498 | 702 | |
| 703 | declare gcd_poly_code_aux.simps [simp del] | |
| 704 | ||
| 705 | lemma gcd_poly_code_aux_correct: | |
| 706 | assumes "content p = 1" "q = 0 \<or> content q = 1" | |
| 707 | shows "gcd_poly_code_aux p q = gcd p q" | |
| 708 | using assms | |
| 709 | proof (induction p q rule: gcd_poly_code_aux.induct) | |
| 710 | case (1 p q) | |
| 711 | show ?case | |
| 712 | proof (cases "q = 0") | |
| 713 | case True | |
| 714 | thus ?thesis by (subst gcd_poly_code_aux.simps) auto | |
| 715 | next | |
| 716 | case False | |
| 717 | hence "gcd_poly_code_aux p q = gcd_poly_code_aux q (primitive_part (pseudo_mod p q))" | |
| 718 | by (subst gcd_poly_code_aux.simps) simp_all | |
| 719 | also from "1.prems" False | |
| 720 | have "primitive_part (pseudo_mod p q) = 0 \<or> | |
| 721 | content (primitive_part (pseudo_mod p q)) = 1" | |
| 722 | by (cases "pseudo_mod p q = 0") auto | |
| 723 | with "1.prems" False | |
| 724 | have "gcd_poly_code_aux q (primitive_part (pseudo_mod p q)) = | |
| 725 | gcd q (primitive_part (pseudo_mod p q))" | |
| 726 | by (intro 1) simp_all | |
| 727 | also from "1.prems" False | |
| 728 | have "\<dots> = gcd p q" by (intro gcd_poly_pseudo_mod [symmetric]) auto | |
| 729 | finally show ?thesis . | |
| 730 | qed | |
| 731 | qed | |
| 732 | ||
| 733 | definition gcd_poly_code | |
| 734 | :: "'a :: factorial_ring_gcd poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" | |
| 735 | where "gcd_poly_code p q = | |
| 736 | (if p = 0 then normalize q else if q = 0 then normalize p else | |
| 737 | smult (gcd (content p) (content q)) | |
| 738 | (gcd_poly_code_aux (primitive_part p) (primitive_part q)))" | |
| 739 | ||
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 740 | lemma gcd_poly_code [code]: "gcd p q = gcd_poly_code p q" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 741 | by (simp add: gcd_poly_code_def gcd_poly_code_aux_correct gcd_poly_decompose [symmetric]) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 742 | |
| 63498 | 743 | lemma lcm_poly_code [code]: | 
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 744 |   fixes p q :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly"
 | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 745 | shows "lcm p q = normalize (p * q div gcd p q)" | 
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 746 | by (fact lcm_gcd) | 
| 63498 | 747 | |
| 71398 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 748 | lemmas Gcd_poly_set_eq_fold [code] = | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 749 |   Gcd_set_eq_fold [where ?'a = "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly"]
 | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 750 | lemmas Lcm_poly_set_eq_fold [code] = | 
| 
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
 Manuel Eberl <eberlm@in.tum.de> parents: 
68790diff
changeset | 751 |   Lcm_set_eq_fold [where ?'a = "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly"]
 | 
| 64860 | 752 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 753 | text \<open>Example: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 754 |   @{lemma "Lcm {[:1, 2, 3:], [:2, 3, 4:]} = [:[:2:], [:7:], [:16:], [:17:], [:12 :: int:]:]" by eval}
 | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64267diff
changeset | 755 | \<close> | 
| 63498 | 756 | |
| 63764 | 757 | end |