| author | hoelzl | 
| Mon, 14 Mar 2011 14:37:47 +0100 | |
| changeset 41980 | 28b51effc5ed | 
| parent 32960 | 69916a850301 | 
| child 45602 | 2a858377c3d2 | 
| permissions | -rw-r--r-- | 
| 1478 | 1 | (* Title: ZF/Finite.thy | 
| 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 516 | 3 | Copyright 1994 University of Cambridge | 
| 4 | ||
| 13194 | 5 | prove: b: Fin(A) ==> inj(b,b) <= surj(b,b) | 
| 516 | 6 | *) | 
| 7 | ||
| 13328 | 8 | header{*Finite Powerset Operator and Finite Function Space*}
 | 
| 9 | ||
| 26056 
6a0801279f4c
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
 krauss parents: 
24893diff
changeset | 10 | theory Finite imports Inductive_ZF Epsilon Nat_ZF begin | 
| 9491 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 paulson parents: 
6053diff
changeset | 11 | |
| 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 paulson parents: 
6053diff
changeset | 12 | (*The natural numbers as a datatype*) | 
| 13194 | 13 | rep_datatype | 
| 14 | elimination natE | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
26056diff
changeset | 15 | induction nat_induct | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
26056diff
changeset | 16 | case_eqns nat_case_0 nat_case_succ | 
| 13194 | 17 | recursor_eqns recursor_0 recursor_succ | 
| 9491 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 paulson parents: 
6053diff
changeset | 18 | |
| 
1a36151ee2fc
natify, a coercion to reduce the number of type constraints in arithmetic
 paulson parents: 
6053diff
changeset | 19 | |
| 534 | 20 | consts | 
| 13194 | 21 | Fin :: "i=>i" | 
| 22 |   FiniteFun :: "[i,i]=>i"         ("(_ -||>/ _)" [61, 60] 60)
 | |
| 534 | 23 | |
| 516 | 24 | inductive | 
| 25 | domains "Fin(A)" <= "Pow(A)" | |
| 13194 | 26 | intros | 
| 27 | emptyI: "0 : Fin(A)" | |
| 28 | consI: "[| a: A; b: Fin(A) |] ==> cons(a,b) : Fin(A)" | |
| 29 | type_intros empty_subsetI cons_subsetI PowI | |
| 30 | type_elims PowD [THEN revcut_rl] | |
| 534 | 31 | |
| 32 | inductive | |
| 33 | domains "FiniteFun(A,B)" <= "Fin(A*B)" | |
| 13194 | 34 | intros | 
| 35 | emptyI: "0 : A -||> B" | |
| 36 | consI: "[| a: A; b: B; h: A -||> B; a ~: domain(h) |] | |
| 37 | ==> cons(<a,b>,h) : A -||> B" | |
| 38 | type_intros Fin.intros | |
| 39 | ||
| 40 | ||
| 13356 | 41 | subsection {* Finite Powerset Operator *}
 | 
| 13194 | 42 | |
| 43 | lemma Fin_mono: "A<=B ==> Fin(A) <= Fin(B)" | |
| 44 | apply (unfold Fin.defs) | |
| 45 | apply (rule lfp_mono) | |
| 46 | apply (rule Fin.bnd_mono)+ | |
| 47 | apply blast | |
| 48 | done | |
| 49 | ||
| 50 | (* A : Fin(B) ==> A <= B *) | |
| 51 | lemmas FinD = Fin.dom_subset [THEN subsetD, THEN PowD, standard] | |
| 52 | ||
| 53 | (** Induction on finite sets **) | |
| 54 | ||
| 55 | (*Discharging x~:y entails extra work*) | |
| 13524 | 56 | lemma Fin_induct [case_names 0 cons, induct set: Fin]: | 
| 13194 | 57 | "[| b: Fin(A); | 
| 58 | P(0); | |
| 59 | !!x y. [| x: A; y: Fin(A); x~:y; P(y) |] ==> P(cons(x,y)) | |
| 60 | |] ==> P(b)" | |
| 61 | apply (erule Fin.induct, simp) | |
| 62 | apply (case_tac "a:b") | |
| 63 | apply (erule cons_absorb [THEN ssubst], assumption) (*backtracking!*) | |
| 64 | apply simp | |
| 65 | done | |
| 66 | ||
| 13203 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 paulson parents: 
13194diff
changeset | 67 | |
| 13194 | 68 | (** Simplification for Fin **) | 
| 69 | declare Fin.intros [simp] | |
| 70 | ||
| 13203 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 paulson parents: 
13194diff
changeset | 71 | lemma Fin_0: "Fin(0) = {0}"
 | 
| 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 paulson parents: 
13194diff
changeset | 72 | by (blast intro: Fin.emptyI dest: FinD) | 
| 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 paulson parents: 
13194diff
changeset | 73 | |
| 13194 | 74 | (*The union of two finite sets is finite.*) | 
| 13203 
fac77a839aa2
Tidying up.  Mainly moving proofs from Main.thy to other (Isar) theory files.
 paulson parents: 
13194diff
changeset | 75 | lemma Fin_UnI [simp]: "[| b: Fin(A); c: Fin(A) |] ==> b Un c : Fin(A)" | 
| 13194 | 76 | apply (erule Fin_induct) | 
| 77 | apply (simp_all add: Un_cons) | |
| 78 | done | |
| 79 | ||
| 80 | ||
| 81 | (*The union of a set of finite sets is finite.*) | |
| 82 | lemma Fin_UnionI: "C : Fin(Fin(A)) ==> Union(C) : Fin(A)" | |
| 83 | by (erule Fin_induct, simp_all) | |
| 84 | ||
| 85 | (*Every subset of a finite set is finite.*) | |
| 86 | lemma Fin_subset_lemma [rule_format]: "b: Fin(A) ==> \<forall>z. z<=b --> z: Fin(A)" | |
| 87 | apply (erule Fin_induct) | |
| 88 | apply (simp add: subset_empty_iff) | |
| 89 | apply (simp add: subset_cons_iff distrib_simps, safe) | |
| 13784 | 90 | apply (erule_tac b = z in cons_Diff [THEN subst], simp) | 
| 13194 | 91 | done | 
| 92 | ||
| 93 | lemma Fin_subset: "[| c<=b; b: Fin(A) |] ==> c: Fin(A)" | |
| 94 | by (blast intro: Fin_subset_lemma) | |
| 95 | ||
| 96 | lemma Fin_IntI1 [intro,simp]: "b: Fin(A) ==> b Int c : Fin(A)" | |
| 97 | by (blast intro: Fin_subset) | |
| 98 | ||
| 99 | lemma Fin_IntI2 [intro,simp]: "c: Fin(A) ==> b Int c : Fin(A)" | |
| 100 | by (blast intro: Fin_subset) | |
| 101 | ||
| 102 | lemma Fin_0_induct_lemma [rule_format]: | |
| 103 | "[| c: Fin(A); b: Fin(A); P(b); | |
| 104 |         !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x})
 | |
| 105 | |] ==> c<=b --> P(b-c)" | |
| 106 | apply (erule Fin_induct, simp) | |
| 107 | apply (subst Diff_cons) | |
| 108 | apply (simp add: cons_subset_iff Diff_subset [THEN Fin_subset]) | |
| 109 | done | |
| 110 | ||
| 111 | lemma Fin_0_induct: | |
| 112 | "[| b: Fin(A); | |
| 113 | P(b); | |
| 114 |         !!x y. [| x: A;  y: Fin(A);  x:y;  P(y) |] ==> P(y-{x})
 | |
| 115 | |] ==> P(0)" | |
| 116 | apply (rule Diff_cancel [THEN subst]) | |
| 117 | apply (blast intro: Fin_0_induct_lemma) | |
| 118 | done | |
| 119 | ||
| 120 | (*Functions from a finite ordinal*) | |
| 121 | lemma nat_fun_subset_Fin: "n: nat ==> n->A <= Fin(nat*A)" | |
| 122 | apply (induct_tac "n") | |
| 123 | apply (simp add: subset_iff) | |
| 124 | apply (simp add: succ_def mem_not_refl [THEN cons_fun_eq]) | |
| 125 | apply (fast intro!: Fin.consI) | |
| 126 | done | |
| 127 | ||
| 128 | ||
| 13356 | 129 | subsection{*Finite Function Space*}
 | 
| 13194 | 130 | |
| 131 | lemma FiniteFun_mono: | |
| 132 | "[| A<=C; B<=D |] ==> A -||> B <= C -||> D" | |
| 133 | apply (unfold FiniteFun.defs) | |
| 134 | apply (rule lfp_mono) | |
| 135 | apply (rule FiniteFun.bnd_mono)+ | |
| 136 | apply (intro Fin_mono Sigma_mono basic_monos, assumption+) | |
| 137 | done | |
| 138 | ||
| 139 | lemma FiniteFun_mono1: "A<=B ==> A -||> A <= B -||> B" | |
| 140 | by (blast dest: FiniteFun_mono) | |
| 141 | ||
| 142 | lemma FiniteFun_is_fun: "h: A -||>B ==> h: domain(h) -> B" | |
| 143 | apply (erule FiniteFun.induct, simp) | |
| 144 | apply (simp add: fun_extend3) | |
| 145 | done | |
| 146 | ||
| 147 | lemma FiniteFun_domain_Fin: "h: A -||>B ==> domain(h) : Fin(A)" | |
| 13269 | 148 | by (erule FiniteFun.induct, simp, simp) | 
| 13194 | 149 | |
| 150 | lemmas FiniteFun_apply_type = FiniteFun_is_fun [THEN apply_type, standard] | |
| 151 | ||
| 152 | (*Every subset of a finite function is a finite function.*) | |
| 153 | lemma FiniteFun_subset_lemma [rule_format]: | |
| 154 | "b: A-||>B ==> ALL z. z<=b --> z: A-||>B" | |
| 155 | apply (erule FiniteFun.induct) | |
| 156 | apply (simp add: subset_empty_iff FiniteFun.intros) | |
| 157 | apply (simp add: subset_cons_iff distrib_simps, safe) | |
| 13784 | 158 | apply (erule_tac b = z in cons_Diff [THEN subst]) | 
| 13194 | 159 | apply (drule spec [THEN mp], assumption) | 
| 160 | apply (fast intro!: FiniteFun.intros) | |
| 161 | done | |
| 162 | ||
| 163 | lemma FiniteFun_subset: "[| c<=b; b: A-||>B |] ==> c: A-||>B" | |
| 164 | by (blast intro: FiniteFun_subset_lemma) | |
| 165 | ||
| 166 | (** Some further results by Sidi O. Ehmety **) | |
| 167 | ||
| 168 | lemma fun_FiniteFunI [rule_format]: "A:Fin(X) ==> ALL f. f:A->B --> f:A-||>B" | |
| 169 | apply (erule Fin.induct) | |
| 13269 | 170 | apply (simp add: FiniteFun.intros, clarify) | 
| 13194 | 171 | apply (case_tac "a:b") | 
| 172 | apply (simp add: cons_absorb) | |
| 173 | apply (subgoal_tac "restrict (f,b) : b -||> B") | |
| 174 | prefer 2 apply (blast intro: restrict_type2) | |
| 175 | apply (subst fun_cons_restrict_eq, assumption) | |
| 176 | apply (simp add: restrict_def lam_def) | |
| 177 | apply (blast intro: apply_funtype FiniteFun.intros | |
| 178 | FiniteFun_mono [THEN [2] rev_subsetD]) | |
| 179 | done | |
| 180 | ||
| 181 | lemma lam_FiniteFun: "A: Fin(X) ==> (lam x:A. b(x)) : A -||> {b(x). x:A}"
 | |
| 182 | by (blast intro: fun_FiniteFunI lam_funtype) | |
| 183 | ||
| 184 | lemma FiniteFun_Collect_iff: | |
| 185 |      "f : FiniteFun(A, {y:B. P(y)})
 | |
| 186 | <-> f : FiniteFun(A,B) & (ALL x:domain(f). P(f`x))" | |
| 187 | apply auto | |
| 188 | apply (blast intro: FiniteFun_mono [THEN [2] rev_subsetD]) | |
| 189 | apply (blast dest: Pair_mem_PiD FiniteFun_is_fun) | |
| 190 | apply (rule_tac A1="domain(f)" in | |
| 191 | subset_refl [THEN [2] FiniteFun_mono, THEN subsetD]) | |
| 192 | apply (fast dest: FiniteFun_domain_Fin Fin.dom_subset [THEN subsetD]) | |
| 193 | apply (rule fun_FiniteFunI) | |
| 194 | apply (erule FiniteFun_domain_Fin) | |
| 195 | apply (rule_tac B = "range (f) " in fun_weaken_type) | |
| 196 | apply (blast dest: FiniteFun_is_fun range_of_fun range_type apply_equality)+ | |
| 197 | done | |
| 198 | ||
| 14883 | 199 | |
| 200 | subsection{*The Contents of a Singleton Set*}
 | |
| 201 | ||
| 24893 | 202 | definition | 
| 203 | contents :: "i=>i" where | |
| 14883 | 204 |    "contents(X) == THE x. X = {x}"
 | 
| 205 | ||
| 206 | lemma contents_eq [simp]: "contents ({x}) = x"
 | |
| 207 | by (simp add: contents_def) | |
| 208 | ||
| 516 | 209 | end |