| 0 |      1 | (*  Title: 	FOLP/ex/nat.ML
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      4 |     Copyright   1992  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Examples for the manual "Introduction to Isabelle"
 | 
|  |      7 | 
 | 
|  |      8 | Proofs about the natural numbers
 | 
|  |      9 | 
 | 
|  |     10 | To generate similar output to manual, execute these commands:
 | 
|  |     11 |     Pretty.setmargin 72; print_depth 0;
 | 
|  |     12 | *)
 | 
|  |     13 | 
 | 
|  |     14 | open Nat;
 | 
|  |     15 | 
 | 
|  |     16 | goal Nat.thy "?p : ~ (Suc(k) = k)";
 | 
|  |     17 | by (res_inst_tac [("n","k")] induct 1);
 | 
|  |     18 | by (rtac notI 1);
 | 
|  |     19 | by (etac Suc_neq_0 1);
 | 
|  |     20 | by (rtac notI 1);
 | 
|  |     21 | by (etac notE 1);
 | 
|  |     22 | by (etac Suc_inject 1);
 | 
|  |     23 | val Suc_n_not_n = result();
 | 
|  |     24 | 
 | 
|  |     25 | 
 | 
|  |     26 | goal Nat.thy "?p : (k+m)+n = k+(m+n)";
 | 
|  |     27 | prths ([induct] RL [topthm()]);  (*prints all 14 next states!*)
 | 
|  |     28 | by (rtac induct 1);
 | 
|  |     29 | back();
 | 
|  |     30 | back();
 | 
|  |     31 | back();
 | 
|  |     32 | back();
 | 
|  |     33 | back();
 | 
|  |     34 | back();
 | 
|  |     35 | 
 | 
|  |     36 | goalw Nat.thy [add_def] "?p : 0+n = n";
 | 
|  |     37 | by (rtac rec_0 1);
 | 
|  |     38 | val add_0 = result();
 | 
|  |     39 | 
 | 
|  |     40 | goalw Nat.thy [add_def] "?p : Suc(m)+n = Suc(m+n)";
 | 
|  |     41 | by (rtac rec_Suc 1);
 | 
|  |     42 | val add_Suc = result();
 | 
|  |     43 | 
 | 
|  |     44 | (*
 | 
|  |     45 | val nat_congs = mk_congs Nat.thy ["Suc", "op +"];
 | 
|  |     46 | prths nat_congs;
 | 
|  |     47 | *)
 | 
|  |     48 | val prems = goal Nat.thy "p: x=y ==> ?p : Suc(x) = Suc(y)";
 | 
|  |     49 | by (resolve_tac (prems RL [subst]) 1);
 | 
|  |     50 | by (rtac refl 1);
 | 
|  |     51 | val Suc_cong = result();
 | 
|  |     52 | 
 | 
|  |     53 | val prems = goal Nat.thy "[| p : a=x;  q: b=y |] ==> ?p : a+b=x+y";
 | 
|  |     54 | by (resolve_tac (prems RL [subst]) 1 THEN resolve_tac (prems RL [subst]) 1 THEN 
 | 
|  |     55 |     rtac refl 1);
 | 
|  |     56 | val Plus_cong = result();
 | 
|  |     57 | 
 | 
|  |     58 | val nat_congs = [Suc_cong,Plus_cong];
 | 
|  |     59 | 
 | 
|  |     60 | 
 | 
|  |     61 | val add_ss = FOLP_ss  addcongs nat_congs  
 | 
|  |     62 | 	             addrews  [add_0, add_Suc];
 | 
|  |     63 | 
 | 
|  |     64 | goal Nat.thy "?p : (k+m)+n = k+(m+n)";
 | 
|  |     65 | by (res_inst_tac [("n","k")] induct 1);
 | 
|  |     66 | by (SIMP_TAC add_ss 1);
 | 
|  |     67 | by (ASM_SIMP_TAC add_ss 1);
 | 
|  |     68 | val add_assoc = result();
 | 
|  |     69 | 
 | 
|  |     70 | goal Nat.thy "?p : m+0 = m";
 | 
|  |     71 | by (res_inst_tac [("n","m")] induct 1);
 | 
|  |     72 | by (SIMP_TAC add_ss 1);
 | 
|  |     73 | by (ASM_SIMP_TAC add_ss 1);
 | 
|  |     74 | val add_0_right = result();
 | 
|  |     75 | 
 | 
|  |     76 | goal Nat.thy "?p : m+Suc(n) = Suc(m+n)";
 | 
|  |     77 | by (res_inst_tac [("n","m")] induct 1);
 | 
|  |     78 | by (ALLGOALS (ASM_SIMP_TAC add_ss));
 | 
|  |     79 | val add_Suc_right = result();
 | 
|  |     80 | 
 | 
|  |     81 | (*mk_typed_congs appears not to work with FOLP's version of subst*)
 | 
|  |     82 | 
 |