| author | wenzelm | 
| Mon, 01 May 2017 11:04:33 +0200 | |
| changeset 65659 | 293141fb093d | 
| parent 62042 | 6c6ccf573479 | 
| child 67443 | 3abf6a722518 | 
| permissions | -rw-r--r-- | 
| 59189 | 1  | 
section \<open>The Multi-Mutator Case\<close>  | 
| 13020 | 2  | 
|
| 16417 | 3  | 
theory Mul_Gar_Coll imports Graph OG_Syntax begin  | 
| 13020 | 4  | 
|
| 59189 | 5  | 
text \<open>The full theory takes aprox. 18 minutes.\<close>  | 
| 13020 | 6  | 
|
7  | 
record mut =  | 
|
8  | 
Z :: bool  | 
|
9  | 
R :: nat  | 
|
10  | 
T :: nat  | 
|
11  | 
||
| 59189 | 12  | 
text \<open>Declaration of variables:\<close>  | 
| 13020 | 13  | 
|
14  | 
record mul_gar_coll_state =  | 
|
15  | 
M :: nodes  | 
|
16  | 
E :: edges  | 
|
17  | 
bc :: "nat set"  | 
|
18  | 
obc :: "nat set"  | 
|
19  | 
Ma :: nodes  | 
|
| 59189 | 20  | 
ind :: nat  | 
| 13020 | 21  | 
k :: nat  | 
22  | 
q :: nat  | 
|
23  | 
l :: nat  | 
|
24  | 
Muts :: "mut list"  | 
|
25  | 
||
| 59189 | 26  | 
subsection \<open>The Mutators\<close>  | 
| 13020 | 27  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
28  | 
definition Mul_mut_init :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where  | 
| 59189 | 29  | 
"Mul_mut_init \<equiv> \<guillemotleft> \<lambda>n. n=length \<acute>Muts \<and> (\<forall>i<n. R (\<acute>Muts!i)<length \<acute>E  | 
| 13020 | 30  | 
\<and> T (\<acute>Muts!i)<length \<acute>M) \<guillemotright>"  | 
31  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
32  | 
definition Mul_Redirect_Edge :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where  | 
| 13020 | 33  | 
"Mul_Redirect_Edge j n \<equiv>  | 
| 53241 | 34  | 
\<lbrace>\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)\<rbrace>  | 
| 59189 | 35  | 
\<langle>IF T(\<acute>Muts!j) \<in> Reach \<acute>E THEN  | 
36  | 
\<acute>E:= \<acute>E[R (\<acute>Muts!j):= (fst (\<acute>E!R(\<acute>Muts!j)), T (\<acute>Muts!j))] FI,,  | 
|
| 13020 | 37  | 
\<acute>Muts:= \<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=False\<rparr>]\<rangle>"  | 
38  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
39  | 
definition Mul_Color_Target :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where  | 
| 13020 | 40  | 
"Mul_Color_Target j n \<equiv>  | 
| 59189 | 41  | 
\<lbrace>\<acute>Mul_mut_init n \<and> \<not> Z (\<acute>Muts!j)\<rbrace>  | 
| 13020 | 42  | 
\<langle>\<acute>M:=\<acute>M[T (\<acute>Muts!j):=Black],, \<acute>Muts:=\<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=True\<rparr>]\<rangle>"  | 
43  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
44  | 
definition Mul_Mutator :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where  | 
| 13020 | 45  | 
"Mul_Mutator j n \<equiv>  | 
| 59189 | 46  | 
\<lbrace>\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)\<rbrace>  | 
47  | 
WHILE True  | 
|
48  | 
INV \<lbrace>\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)\<rbrace>  | 
|
49  | 
DO Mul_Redirect_Edge j n ;;  | 
|
50  | 
Mul_Color_Target j n  | 
|
| 13020 | 51  | 
OD"  | 
52  | 
||
| 59189 | 53  | 
lemmas mul_mutator_defs = Mul_mut_init_def Mul_Redirect_Edge_def Mul_Color_Target_def  | 
| 13020 | 54  | 
|
| 59189 | 55  | 
subsubsection \<open>Correctness of the proof outline of one mutator\<close>  | 
| 13020 | 56  | 
|
| 59189 | 57  | 
lemma Mul_Redirect_Edge: "0\<le>j \<and> j<n \<Longrightarrow>  | 
58  | 
\<turnstile> Mul_Redirect_Edge j n  | 
|
| 13020 | 59  | 
pre(Mul_Color_Target j n)"  | 
60  | 
apply (unfold mul_mutator_defs)  | 
|
61  | 
apply annhoare  | 
|
62  | 
apply(simp_all)  | 
|
63  | 
apply clarify  | 
|
64  | 
apply(simp add:nth_list_update)  | 
|
65  | 
done  | 
|
66  | 
||
| 59189 | 67  | 
lemma Mul_Color_Target: "0\<le>j \<and> j<n \<Longrightarrow>  | 
68  | 
\<turnstile> Mul_Color_Target j n  | 
|
| 53241 | 69  | 
\<lbrace>\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)\<rbrace>"  | 
| 13020 | 70  | 
apply (unfold mul_mutator_defs)  | 
71  | 
apply annhoare  | 
|
72  | 
apply(simp_all)  | 
|
73  | 
apply clarify  | 
|
74  | 
apply(simp add:nth_list_update)  | 
|
75  | 
done  | 
|
76  | 
||
| 59189 | 77  | 
lemma Mul_Mutator: "0\<le>j \<and> j<n \<Longrightarrow>  | 
| 53241 | 78  | 
\<turnstile> Mul_Mutator j n \<lbrace>False\<rbrace>"  | 
| 13020 | 79  | 
apply(unfold Mul_Mutator_def)  | 
80  | 
apply annhoare  | 
|
81  | 
apply(simp_all add:Mul_Redirect_Edge Mul_Color_Target)  | 
|
82  | 
apply(simp add:mul_mutator_defs Mul_Redirect_Edge_def)  | 
|
83  | 
done  | 
|
84  | 
||
| 59189 | 85  | 
subsubsection \<open>Interference freedom between mutators\<close>  | 
| 13020 | 86  | 
|
| 59189 | 87  | 
lemma Mul_interfree_Redirect_Edge_Redirect_Edge:  | 
88  | 
"\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow>  | 
|
| 13020 | 89  | 
  interfree_aux (Some (Mul_Redirect_Edge i n),{}, Some(Mul_Redirect_Edge j n))"
 | 
90  | 
apply (unfold mul_mutator_defs)  | 
|
91  | 
apply interfree_aux  | 
|
92  | 
apply safe  | 
|
93  | 
apply(simp_all add: nth_list_update)  | 
|
94  | 
done  | 
|
95  | 
||
| 59189 | 96  | 
lemma Mul_interfree_Redirect_Edge_Color_Target:  | 
97  | 
"\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow>  | 
|
| 13020 | 98  | 
  interfree_aux (Some(Mul_Redirect_Edge i n),{},Some(Mul_Color_Target j n))"
 | 
99  | 
apply (unfold mul_mutator_defs)  | 
|
100  | 
apply interfree_aux  | 
|
101  | 
apply safe  | 
|
102  | 
apply(simp_all add: nth_list_update)  | 
|
103  | 
done  | 
|
104  | 
||
| 59189 | 105  | 
lemma Mul_interfree_Color_Target_Redirect_Edge:  | 
106  | 
"\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow>  | 
|
| 13020 | 107  | 
  interfree_aux (Some(Mul_Color_Target i n),{},Some(Mul_Redirect_Edge j n))"
 | 
108  | 
apply (unfold mul_mutator_defs)  | 
|
109  | 
apply interfree_aux  | 
|
110  | 
apply safe  | 
|
111  | 
apply(simp_all add:nth_list_update)  | 
|
112  | 
done  | 
|
113  | 
||
| 59189 | 114  | 
lemma Mul_interfree_Color_Target_Color_Target:  | 
115  | 
" \<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow>  | 
|
| 13020 | 116  | 
  interfree_aux (Some(Mul_Color_Target i n),{},Some(Mul_Color_Target j n))"
 | 
117  | 
apply (unfold mul_mutator_defs)  | 
|
118  | 
apply interfree_aux  | 
|
119  | 
apply safe  | 
|
120  | 
apply(simp_all add: nth_list_update)  | 
|
121  | 
done  | 
|
122  | 
||
| 59189 | 123  | 
lemmas mul_mutator_interfree =  | 
| 13020 | 124  | 
Mul_interfree_Redirect_Edge_Redirect_Edge Mul_interfree_Redirect_Edge_Color_Target  | 
125  | 
Mul_interfree_Color_Target_Redirect_Edge Mul_interfree_Color_Target_Color_Target  | 
|
126  | 
||
| 59189 | 127  | 
lemma Mul_interfree_Mutator_Mutator: "\<lbrakk>i < n; j < n; i \<noteq> j\<rbrakk> \<Longrightarrow>  | 
| 13020 | 128  | 
  interfree_aux (Some (Mul_Mutator i n), {}, Some (Mul_Mutator j n))"
 | 
129  | 
apply(unfold Mul_Mutator_def)  | 
|
130  | 
apply(interfree_aux)  | 
|
131  | 
apply(simp_all add:mul_mutator_interfree)  | 
|
132  | 
apply(simp_all add: mul_mutator_defs)  | 
|
| 59189 | 133  | 
apply(tactic \<open>TRYALL (interfree_aux_tac @{context})\<close>)
 | 
134  | 
apply(tactic \<open>ALLGOALS (clarify_tac @{context})\<close>)
 | 
|
| 13020 | 135  | 
apply (simp_all add:nth_list_update)  | 
136  | 
done  | 
|
137  | 
||
| 59189 | 138  | 
subsubsection \<open>Modular Parameterized Mutators\<close>  | 
| 13020 | 139  | 
|
140  | 
lemma Mul_Parameterized_Mutators: "0<n \<Longrightarrow>  | 
|
| 53241 | 141  | 
\<parallel>- \<lbrace>\<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))\<rbrace>  | 
| 13020 | 142  | 
COBEGIN  | 
143  | 
SCHEME [0\<le> j< n]  | 
|
144  | 
Mul_Mutator j n  | 
|
| 53241 | 145  | 
\<lbrace>False\<rbrace>  | 
| 13020 | 146  | 
COEND  | 
| 53241 | 147  | 
\<lbrace>False\<rbrace>"  | 
| 13020 | 148  | 
apply oghoare  | 
149  | 
apply(force simp add:Mul_Mutator_def mul_mutator_defs nth_list_update)  | 
|
150  | 
apply(erule Mul_Mutator)  | 
|
| 13187 | 151  | 
apply(simp add:Mul_interfree_Mutator_Mutator)  | 
| 13020 | 152  | 
apply(force simp add:Mul_Mutator_def mul_mutator_defs nth_list_update)  | 
153  | 
done  | 
|
154  | 
||
| 59189 | 155  | 
subsection \<open>The Collector\<close>  | 
| 13020 | 156  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
157  | 
definition Queue :: "mul_gar_coll_state \<Rightarrow> nat" where  | 
| 13020 | 158  | 
"Queue \<equiv> \<guillemotleft> length (filter (\<lambda>i. \<not> Z i \<and> \<acute>M!(T i) \<noteq> Black) \<acute>Muts) \<guillemotright>"  | 
159  | 
||
160  | 
consts M_init :: nodes  | 
|
161  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
162  | 
definition Proper_M_init :: "mul_gar_coll_state \<Rightarrow> bool" where  | 
| 13020 | 163  | 
"Proper_M_init \<equiv> \<guillemotleft> Blacks M_init=Roots \<and> length M_init=length \<acute>M \<guillemotright>"  | 
164  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
165  | 
definition Mul_Proper :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where  | 
| 13020 | 166  | 
"Mul_Proper \<equiv> \<guillemotleft> \<lambda>n. Proper_Roots \<acute>M \<and> Proper_Edges (\<acute>M, \<acute>E) \<and> \<acute>Proper_M_init \<and> n=length \<acute>Muts \<guillemotright>"  | 
167  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
168  | 
definition Safe :: "mul_gar_coll_state \<Rightarrow> bool" where  | 
| 13020 | 169  | 
"Safe \<equiv> \<guillemotleft> Reach \<acute>E \<subseteq> Blacks \<acute>M \<guillemotright>"  | 
170  | 
||
171  | 
lemmas mul_collector_defs = Proper_M_init_def Mul_Proper_def Safe_def  | 
|
172  | 
||
| 59189 | 173  | 
subsubsection \<open>Blackening Roots\<close>  | 
| 13020 | 174  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
175  | 
definition Mul_Blacken_Roots :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where  | 
| 13020 | 176  | 
"Mul_Blacken_Roots n \<equiv>  | 
| 53241 | 177  | 
\<lbrace>\<acute>Mul_Proper n\<rbrace>  | 
| 13020 | 178  | 
\<acute>ind:=0;;  | 
| 53241 | 179  | 
\<lbrace>\<acute>Mul_Proper n \<and> \<acute>ind=0\<rbrace>  | 
| 59189 | 180  | 
WHILE \<acute>ind<length \<acute>M  | 
| 53241 | 181  | 
INV \<lbrace>\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind\<le>length \<acute>M\<rbrace>  | 
182  | 
DO \<lbrace>\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M\<rbrace>  | 
|
| 59189 | 183  | 
IF \<acute>ind\<in>Roots THEN  | 
184  | 
\<lbrace>\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<in>Roots\<rbrace>  | 
|
| 13020 | 185  | 
\<acute>M:=\<acute>M[\<acute>ind:=Black] FI;;  | 
| 53241 | 186  | 
\<lbrace>\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind+1. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M\<rbrace>  | 
| 59189 | 187  | 
\<acute>ind:=\<acute>ind+1  | 
| 13020 | 188  | 
OD"  | 
189  | 
||
| 59189 | 190  | 
lemma Mul_Blacken_Roots:  | 
191  | 
"\<turnstile> Mul_Blacken_Roots n  | 
|
| 53241 | 192  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots \<subseteq> Blacks \<acute>M\<rbrace>"  | 
| 13020 | 193  | 
apply (unfold Mul_Blacken_Roots_def)  | 
194  | 
apply annhoare  | 
|
195  | 
apply(simp_all add:mul_collector_defs Graph_defs)  | 
|
196  | 
apply safe  | 
|
197  | 
apply(simp_all add:nth_list_update)  | 
|
198  | 
apply (erule less_SucE)  | 
|
199  | 
apply simp+  | 
|
200  | 
apply force  | 
|
201  | 
apply force  | 
|
202  | 
done  | 
|
203  | 
||
| 59189 | 204  | 
subsubsection \<open>Propagating Black\<close>  | 
| 13020 | 205  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
206  | 
definition Mul_PBInv :: "mul_gar_coll_state \<Rightarrow> bool" where  | 
| 59189 | 207  | 
"Mul_PBInv \<equiv> \<guillemotleft>\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue  | 
| 13020 | 208  | 
\<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M)) \<and> \<acute>l\<le>\<acute>Queue\<guillemotright>"  | 
209  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
210  | 
definition Mul_Auxk :: "mul_gar_coll_state \<Rightarrow> bool" where  | 
| 13020 | 211  | 
"Mul_Auxk \<equiv> \<guillemotleft>\<acute>l<\<acute>Queue \<or> \<acute>M!\<acute>k\<noteq>Black \<or> \<not>BtoW(\<acute>E!\<acute>ind, \<acute>M) \<or> \<acute>obc\<subset>Blacks \<acute>M\<guillemotright>"  | 
212  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
213  | 
definition Mul_Propagate_Black :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where  | 
| 13020 | 214  | 
"Mul_Propagate_Black n \<equiv>  | 
| 59189 | 215  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
216  | 
\<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)\<rbrace>  | 
|
| 13020 | 217  | 
\<acute>ind:=0;;  | 
| 59189 | 218  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
219  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> Blacks \<acute>M\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
220  | 
\<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) \<and> \<acute>ind=0\<rbrace>  | 
|
221  | 
WHILE \<acute>ind<length \<acute>E  | 
|
222  | 
INV \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
|
223  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
| 53241 | 224  | 
\<and> \<acute>Mul_PBInv \<and> \<acute>ind\<le>length \<acute>E\<rbrace>  | 
| 59189 | 225  | 
DO \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
226  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
| 53241 | 227  | 
\<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E\<rbrace>  | 
| 59189 | 228  | 
IF \<acute>M!(fst (\<acute>E!\<acute>ind))=Black THEN  | 
229  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
|
230  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
| 53241 | 231  | 
\<and> \<acute>Mul_PBInv \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black \<and> \<acute>ind<length \<acute>E\<rbrace>  | 
| 13020 | 232  | 
\<acute>k:=snd(\<acute>E!\<acute>ind);;  | 
| 59189 | 233  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
234  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
235  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M))  | 
|
236  | 
\<and> \<acute>l\<le>\<acute>Queue \<and> \<acute>Mul_Auxk ) \<and> \<acute>k<length \<acute>M \<and> \<acute>M!fst(\<acute>E!\<acute>ind)=Black  | 
|
| 53241 | 237  | 
\<and> \<acute>ind<length \<acute>E\<rbrace>  | 
| 13020 | 238  | 
\<langle>\<acute>M:=\<acute>M[\<acute>k:=Black],,\<acute>ind:=\<acute>ind+1\<rangle>  | 
| 59189 | 239  | 
ELSE \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
240  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
| 53241 | 241  | 
\<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E\<rbrace>  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
32687 
diff
changeset
 | 
242  | 
\<langle>IF \<acute>M!(fst (\<acute>E!\<acute>ind))\<noteq>Black THEN \<acute>ind:=\<acute>ind+1 FI\<rangle> FI  | 
| 13020 | 243  | 
OD"  | 
244  | 
||
| 59189 | 245  | 
lemma Mul_Propagate_Black:  | 
246  | 
"\<turnstile> Mul_Propagate_Black n  | 
|
247  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
| 53241 | 248  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))\<rbrace>"  | 
| 13020 | 249  | 
apply(unfold Mul_Propagate_Black_def)  | 
250  | 
apply annhoare  | 
|
251  | 
apply(simp_all add:Mul_PBInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def)  | 
|
| 62042 | 252  | 
\<comment>\<open>8 subgoals left\<close>  | 
| 13020 | 253  | 
apply force  | 
254  | 
apply force  | 
|
255  | 
apply force  | 
|
256  | 
apply(force simp add:BtoW_def Graph_defs)  | 
|
| 62042 | 257  | 
\<comment>\<open>4 subgoals left\<close>  | 
| 13020 | 258  | 
apply clarify  | 
259  | 
apply(simp add: mul_collector_defs Graph12 Graph6 Graph7 Graph8)  | 
|
260  | 
apply(disjE_tac)  | 
|
261  | 
apply(simp_all add:Graph12 Graph13)  | 
|
262  | 
apply(case_tac "M x! k x=Black")  | 
|
263  | 
apply(simp add: Graph10)  | 
|
264  | 
apply(rule disjI2, rule disjI1, erule subset_psubset_trans, erule Graph11, force)  | 
|
265  | 
apply(case_tac "M x! k x=Black")  | 
|
266  | 
apply(simp add: Graph10 BtoW_def)  | 
|
267  | 
apply(rule disjI2, clarify, erule less_SucE, force)  | 
|
268  | 
apply(case_tac "M x!snd(E x! ind x)=Black")  | 
|
269  | 
apply(force)  | 
|
270  | 
apply(force)  | 
|
271  | 
apply(rule disjI2, rule disjI1, erule subset_psubset_trans, erule Graph11, force)  | 
|
| 62042 | 272  | 
\<comment>\<open>2 subgoals left\<close>  | 
| 13020 | 273  | 
apply clarify  | 
274  | 
apply(conjI_tac)  | 
|
275  | 
apply(disjE_tac)  | 
|
276  | 
apply (simp_all)  | 
|
277  | 
apply clarify  | 
|
278  | 
apply(erule less_SucE)  | 
|
279  | 
apply force  | 
|
280  | 
apply (simp add:BtoW_def)  | 
|
| 62042 | 281  | 
\<comment>\<open>1 subgoal left\<close>  | 
| 13020 | 282  | 
apply clarify  | 
283  | 
apply simp  | 
|
284  | 
apply(disjE_tac)  | 
|
285  | 
apply (simp_all)  | 
|
286  | 
apply(rule disjI1 , rule Graph1)  | 
|
287  | 
apply simp_all  | 
|
288  | 
done  | 
|
289  | 
||
| 59189 | 290  | 
subsubsection \<open>Counting Black Nodes\<close>  | 
| 13020 | 291  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
292  | 
definition Mul_CountInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where  | 
| 
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
293  | 
  "Mul_CountInv \<equiv> \<guillemotleft> \<lambda>ind. {i. i<ind \<and> \<acute>Ma!i=Black}\<subseteq>\<acute>bc \<guillemotright>"
 | 
| 13020 | 294  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
295  | 
definition Mul_Count :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where  | 
| 59189 | 296  | 
"Mul_Count n \<equiv>  | 
297  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
|
298  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
299  | 
\<and> length \<acute>Ma=length \<acute>M  | 
|
300  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) )  | 
|
| 53241 | 301  | 
    \<and> \<acute>q<n+1 \<and> \<acute>bc={}\<rbrace>
 | 
| 13020 | 302  | 
\<acute>ind:=0;;  | 
| 59189 | 303  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
304  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
305  | 
\<and> length \<acute>Ma=length \<acute>M  | 
|
306  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) )  | 
|
| 53241 | 307  | 
    \<and> \<acute>q<n+1 \<and> \<acute>bc={} \<and> \<acute>ind=0\<rbrace>
 | 
| 59189 | 308  | 
WHILE \<acute>ind<length \<acute>M  | 
309  | 
INV \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
|
310  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
311  | 
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind  | 
|
| 13020 | 312  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
| 53241 | 313  | 
\<and> \<acute>q<n+1 \<and> \<acute>ind\<le>length \<acute>M\<rbrace>  | 
| 59189 | 314  | 
DO \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
315  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
316  | 
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind  | 
|
| 13020 | 317  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
| 59189 | 318  | 
\<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M\<rbrace>  | 
319  | 
IF \<acute>M!\<acute>ind=Black  | 
|
320  | 
THEN \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
|
321  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
322  | 
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind  | 
|
| 13020 | 323  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
| 53241 | 324  | 
\<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black\<rbrace>  | 
| 13020 | 325  | 
\<acute>bc:=insert \<acute>ind \<acute>bc  | 
326  | 
FI;;  | 
|
| 59189 | 327  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
328  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
329  | 
\<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv (\<acute>ind+1)  | 
|
| 13020 | 330  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
| 53241 | 331  | 
\<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M\<rbrace>  | 
| 13020 | 332  | 
\<acute>ind:=\<acute>ind+1  | 
333  | 
OD"  | 
|
| 59189 | 334  | 
|
335  | 
lemma Mul_Count:  | 
|
336  | 
"\<turnstile> Mul_Count n  | 
|
337  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
|
338  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
339  | 
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc  | 
|
340  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
|
| 53241 | 341  | 
\<and> \<acute>q<n+1\<rbrace>"  | 
| 13020 | 342  | 
apply (unfold Mul_Count_def)  | 
343  | 
apply annhoare  | 
|
344  | 
apply(simp_all add:Mul_CountInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def)  | 
|
| 62042 | 345  | 
\<comment>\<open>7 subgoals left\<close>  | 
| 13020 | 346  | 
apply force  | 
347  | 
apply force  | 
|
348  | 
apply force  | 
|
| 62042 | 349  | 
\<comment>\<open>4 subgoals left\<close>  | 
| 13020 | 350  | 
apply clarify  | 
351  | 
apply(conjI_tac)  | 
|
352  | 
apply(disjE_tac)  | 
|
353  | 
apply simp_all  | 
|
354  | 
apply(simp add:Blacks_def)  | 
|
355  | 
apply clarify  | 
|
356  | 
apply(erule less_SucE)  | 
|
357  | 
back  | 
|
358  | 
apply force  | 
|
359  | 
apply force  | 
|
| 62042 | 360  | 
\<comment>\<open>3 subgoals left\<close>  | 
| 13020 | 361  | 
apply clarify  | 
362  | 
apply(conjI_tac)  | 
|
363  | 
apply(disjE_tac)  | 
|
364  | 
apply simp_all  | 
|
365  | 
apply clarify  | 
|
366  | 
apply(erule less_SucE)  | 
|
367  | 
back  | 
|
368  | 
apply force  | 
|
369  | 
apply simp  | 
|
370  | 
apply(rotate_tac -1)  | 
|
371  | 
apply (force simp add:Blacks_def)  | 
|
| 62042 | 372  | 
\<comment>\<open>2 subgoals left\<close>  | 
| 13020 | 373  | 
apply force  | 
| 62042 | 374  | 
\<comment>\<open>1 subgoal left\<close>  | 
| 13020 | 375  | 
apply clarify  | 
| 
26316
 
9e9e67e33557
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 
wenzelm 
parents: 
24742 
diff
changeset
 | 
376  | 
apply(drule_tac x = "ind x" in le_imp_less_or_eq)  | 
| 13020 | 377  | 
apply (simp_all add:Blacks_def)  | 
378  | 
done  | 
|
379  | 
||
| 59189 | 380  | 
subsubsection \<open>Appending garbage nodes to the free list\<close>  | 
| 13020 | 381  | 
|
| 45827 | 382  | 
axiomatization Append_to_free :: "nat \<times> edges \<Rightarrow> edges"  | 
383  | 
where  | 
|
384  | 
Append_to_free0: "length (Append_to_free (i, e)) = length e" and  | 
|
385  | 
Append_to_free1: "Proper_Edges (m, e)  | 
|
386  | 
\<Longrightarrow> Proper_Edges (m, Append_to_free(i, e))" and  | 
|
387  | 
Append_to_free2: "i \<notin> Reach e  | 
|
| 13020 | 388  | 
\<Longrightarrow> n \<in> Reach (Append_to_free(i, e)) = ( n = i \<or> n \<in> Reach e)"  | 
389  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
390  | 
definition Mul_AppendInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where  | 
| 13020 | 391  | 
"Mul_AppendInv \<equiv> \<guillemotleft> \<lambda>ind. (\<forall>i. ind\<le>i \<longrightarrow> i<length \<acute>M \<longrightarrow> i\<in>Reach \<acute>E \<longrightarrow> \<acute>M!i=Black)\<guillemotright>"  | 
392  | 
||
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
393  | 
definition Mul_Append :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where  | 
| 59189 | 394  | 
"Mul_Append n \<equiv>  | 
| 53241 | 395  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe\<rbrace>  | 
| 13020 | 396  | 
\<acute>ind:=0;;  | 
| 53241 | 397  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe \<and> \<acute>ind=0\<rbrace>  | 
| 59189 | 398  | 
WHILE \<acute>ind<length \<acute>M  | 
| 53241 | 399  | 
INV \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>M\<rbrace>  | 
400  | 
DO \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M\<rbrace>  | 
|
| 59189 | 401  | 
IF \<acute>M!\<acute>ind=Black THEN  | 
402  | 
\<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black\<rbrace>  | 
|
403  | 
\<acute>M:=\<acute>M[\<acute>ind:=White]  | 
|
404  | 
ELSE  | 
|
405  | 
\<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<notin>Reach \<acute>E\<rbrace>  | 
|
| 13020 | 406  | 
\<acute>E:=Append_to_free(\<acute>ind,\<acute>E)  | 
407  | 
FI;;  | 
|
| 59189 | 408  | 
\<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv (\<acute>ind+1) \<and> \<acute>ind<length \<acute>M\<rbrace>  | 
| 13020 | 409  | 
\<acute>ind:=\<acute>ind+1  | 
410  | 
OD"  | 
|
411  | 
||
| 59189 | 412  | 
lemma Mul_Append:  | 
413  | 
"\<turnstile> Mul_Append n  | 
|
| 53241 | 414  | 
\<lbrace>\<acute>Mul_Proper n\<rbrace>"  | 
| 13020 | 415  | 
apply(unfold Mul_Append_def)  | 
416  | 
apply annhoare  | 
|
| 59189 | 417  | 
apply(simp_all add: mul_collector_defs Mul_AppendInv_def  | 
| 13020 | 418  | 
Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)  | 
419  | 
apply(force simp add:Blacks_def)  | 
|
420  | 
apply(force simp add:Blacks_def)  | 
|
421  | 
apply(force simp add:Blacks_def)  | 
|
422  | 
apply(force simp add:Graph_defs)  | 
|
423  | 
apply force  | 
|
424  | 
apply(force simp add:Append_to_free1 Append_to_free2)  | 
|
425  | 
apply force  | 
|
426  | 
apply force  | 
|
427  | 
done  | 
|
428  | 
||
| 59189 | 429  | 
subsubsection \<open>Collector\<close>  | 
| 13020 | 430  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
431  | 
definition Mul_Collector :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where  | 
| 13020 | 432  | 
"Mul_Collector n \<equiv>  | 
| 59189 | 433  | 
\<lbrace>\<acute>Mul_Proper n\<rbrace>  | 
434  | 
WHILE True INV \<lbrace>\<acute>Mul_Proper n\<rbrace>  | 
|
435  | 
DO  | 
|
436  | 
Mul_Blacken_Roots n ;;  | 
|
437  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M\<rbrace>  | 
|
438  | 
 \<acute>obc:={};;
 | 
|
439  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={}\<rbrace>
 | 
|
440  | 
\<acute>bc:=Roots;;  | 
|
441  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots\<rbrace>
 | 
|
442  | 
\<acute>l:=0;;  | 
|
443  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots \<and> \<acute>l=0\<rbrace>
 | 
|
444  | 
WHILE \<acute>l<n+1  | 
|
445  | 
INV \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and>  | 
|
446  | 
(\<acute>Safe \<or> (\<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M) \<and> \<acute>l<n+1)\<rbrace>  | 
|
447  | 
DO \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
| 53241 | 448  | 
\<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M)\<rbrace>  | 
| 13020 | 449  | 
\<acute>obc:=\<acute>bc;;  | 
| 59189 | 450  | 
Mul_Propagate_Black n;;  | 
451  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
|
452  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
453  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue  | 
|
454  | 
\<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))\<rbrace>  | 
|
| 13020 | 455  | 
    \<acute>bc:={};;
 | 
| 59189 | 456  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
457  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
458  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue  | 
|
459  | 
      \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) \<and> \<acute>bc={}\<rbrace>
 | 
|
| 13020 | 460  | 
\<langle> \<acute>Ma:=\<acute>M,, \<acute>q:=\<acute>Queue \<rangle>;;  | 
| 59189 | 461  | 
Mul_Count n;;  | 
462  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
|
463  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
464  | 
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc  | 
|
465  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
|
466  | 
\<and> \<acute>q<n+1\<rbrace>  | 
|
| 13020 | 467  | 
IF \<acute>obc=\<acute>bc THEN  | 
| 59189 | 468  | 
\<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
469  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
470  | 
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc  | 
|
471  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
|
472  | 
\<and> \<acute>q<n+1 \<and> \<acute>obc=\<acute>bc\<rbrace>  | 
|
473  | 
\<acute>l:=\<acute>l+1  | 
|
474  | 
ELSE \<lbrace>\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M  | 
|
475  | 
\<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M  | 
|
476  | 
\<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc  | 
|
477  | 
\<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))  | 
|
478  | 
\<and> \<acute>q<n+1 \<and> \<acute>obc\<noteq>\<acute>bc\<rbrace>  | 
|
479  | 
\<acute>l:=0 FI  | 
|
480  | 
OD;;  | 
|
481  | 
Mul_Append n  | 
|
| 13020 | 482  | 
OD"  | 
483  | 
||
| 59189 | 484  | 
lemmas mul_modules = Mul_Redirect_Edge_def Mul_Color_Target_def  | 
485  | 
Mul_Blacken_Roots_def Mul_Propagate_Black_def  | 
|
| 13020 | 486  | 
Mul_Count_def Mul_Append_def  | 
487  | 
||
488  | 
lemma Mul_Collector:  | 
|
| 59189 | 489  | 
"\<turnstile> Mul_Collector n  | 
| 53241 | 490  | 
\<lbrace>False\<rbrace>"  | 
| 13020 | 491  | 
apply(unfold Mul_Collector_def)  | 
492  | 
apply annhoare  | 
|
| 59189 | 493  | 
apply(simp_all only:pre.simps Mul_Blacken_Roots  | 
| 13020 | 494  | 
Mul_Propagate_Black Mul_Count Mul_Append)  | 
495  | 
apply(simp_all add:mul_modules)  | 
|
496  | 
apply(simp_all add:mul_collector_defs Queue_def)  | 
|
497  | 
apply force  | 
|
498  | 
apply force  | 
|
499  | 
apply force  | 
|
| 15247 | 500  | 
apply (force simp add: less_Suc_eq_le)  | 
| 13020 | 501  | 
apply force  | 
502  | 
apply (force dest:subset_antisym)  | 
|
503  | 
apply force  | 
|
504  | 
apply force  | 
|
505  | 
apply force  | 
|
506  | 
done  | 
|
507  | 
||
| 59189 | 508  | 
subsection \<open>Interference Freedom\<close>  | 
| 13020 | 509  | 
|
| 59189 | 510  | 
lemma le_length_filter_update[rule_format]:  | 
511  | 
"\<forall>i. (\<not>P (list!i) \<or> P j) \<and> i<length list  | 
|
| 13020 | 512  | 
\<longrightarrow> length(filter P list) \<le> length(filter P (list[i:=j]))"  | 
513  | 
apply(induct_tac "list")  | 
|
514  | 
apply(simp)  | 
|
515  | 
apply(clarify)  | 
|
516  | 
apply(case_tac i)  | 
|
517  | 
apply(simp)  | 
|
518  | 
apply(simp)  | 
|
519  | 
done  | 
|
520  | 
||
| 59189 | 521  | 
lemma less_length_filter_update [rule_format]:  | 
522  | 
"\<forall>i. P j \<and> \<not>(P (list!i)) \<and> i<length list  | 
|
| 13020 | 523  | 
\<longrightarrow> length(filter P list) < length(filter P (list[i:=j]))"  | 
524  | 
apply(induct_tac "list")  | 
|
525  | 
apply(simp)  | 
|
526  | 
apply(clarify)  | 
|
527  | 
apply(case_tac i)  | 
|
528  | 
apply(simp)  | 
|
529  | 
apply(simp)  | 
|
530  | 
done  | 
|
531  | 
||
| 59189 | 532  | 
lemma Mul_interfree_Blacken_Roots_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk> \<Longrightarrow>  | 
| 13020 | 533  | 
  interfree_aux (Some(Mul_Blacken_Roots n),{},Some(Mul_Redirect_Edge j n))"
 | 
534  | 
apply (unfold mul_modules)  | 
|
535  | 
apply interfree_aux  | 
|
536  | 
apply safe  | 
|
537  | 
apply(simp_all add:Graph6 Graph9 Graph12 nth_list_update mul_mutator_defs mul_collector_defs)  | 
|
538  | 
done  | 
|
539  | 
||
| 59189 | 540  | 
lemma Mul_interfree_Redirect_Edge_Blacken_Roots: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 541  | 
  interfree_aux (Some(Mul_Redirect_Edge j n ),{},Some (Mul_Blacken_Roots n))"
 | 
542  | 
apply (unfold mul_modules)  | 
|
543  | 
apply interfree_aux  | 
|
544  | 
apply safe  | 
|
545  | 
apply(simp_all add:mul_mutator_defs nth_list_update)  | 
|
546  | 
done  | 
|
547  | 
||
| 59189 | 548  | 
lemma Mul_interfree_Blacken_Roots_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 549  | 
  interfree_aux (Some(Mul_Blacken_Roots n),{},Some (Mul_Color_Target j n ))"
 | 
550  | 
apply (unfold mul_modules)  | 
|
551  | 
apply interfree_aux  | 
|
552  | 
apply safe  | 
|
553  | 
apply(simp_all add:mul_mutator_defs mul_collector_defs nth_list_update Graph7 Graph8 Graph9 Graph12)  | 
|
554  | 
done  | 
|
555  | 
||
| 59189 | 556  | 
lemma Mul_interfree_Color_Target_Blacken_Roots: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 557  | 
  interfree_aux (Some(Mul_Color_Target j n ),{},Some (Mul_Blacken_Roots n ))"
 | 
558  | 
apply (unfold mul_modules)  | 
|
559  | 
apply interfree_aux  | 
|
560  | 
apply safe  | 
|
561  | 
apply(simp_all add:mul_mutator_defs nth_list_update)  | 
|
562  | 
done  | 
|
563  | 
||
| 59189 | 564  | 
lemma Mul_interfree_Propagate_Black_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 565  | 
  interfree_aux (Some(Mul_Propagate_Black n),{},Some (Mul_Redirect_Edge j n ))"
 | 
566  | 
apply (unfold mul_modules)  | 
|
567  | 
apply interfree_aux  | 
|
568  | 
apply(simp_all add:mul_mutator_defs mul_collector_defs Mul_PBInv_def nth_list_update Graph6)  | 
|
| 62042 | 569  | 
\<comment>\<open>7 subgoals left\<close>  | 
| 13020 | 570  | 
apply clarify  | 
571  | 
apply(disjE_tac)  | 
|
572  | 
apply(simp_all add:Graph6)  | 
|
573  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
574  | 
apply(rule conjI)  | 
|
575  | 
apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
576  | 
apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
| 62042 | 577  | 
\<comment>\<open>6 subgoals left\<close>  | 
| 13020 | 578  | 
apply clarify  | 
579  | 
apply(disjE_tac)  | 
|
580  | 
apply(simp_all add:Graph6)  | 
|
581  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
582  | 
apply(rule conjI)  | 
|
583  | 
apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
584  | 
apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
| 62042 | 585  | 
\<comment>\<open>5 subgoals left\<close>  | 
| 13020 | 586  | 
apply clarify  | 
587  | 
apply(disjE_tac)  | 
|
588  | 
apply(simp_all add:Graph6)  | 
|
589  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
590  | 
apply(rule conjI)  | 
|
591  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
592  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
593  | 
apply(erule conjE)  | 
|
594  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
595  | 
apply(rule conjI)  | 
|
596  | 
apply(rule impI,(rule disjI2)+,rule conjI)  | 
|
597  | 
apply clarify  | 
|
598  | 
apply(case_tac "R (Muts x! j)=i")  | 
|
599  | 
apply (force simp add: nth_list_update BtoW_def)  | 
|
600  | 
apply (force simp add: nth_list_update)  | 
|
601  | 
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
602  | 
apply(rule impI,(rule disjI2)+, erule le_trans)  | 
|
603  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
604  | 
apply(rule conjI)  | 
|
605  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
606  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
607  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
608  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
| 62042 | 609  | 
\<comment>\<open>4 subgoals left\<close>  | 
| 13020 | 610  | 
apply clarify  | 
611  | 
apply(disjE_tac)  | 
|
612  | 
apply(simp_all add:Graph6)  | 
|
613  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
614  | 
apply(rule conjI)  | 
|
615  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
616  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
617  | 
apply(erule conjE)  | 
|
618  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
619  | 
apply(rule conjI)  | 
|
620  | 
apply(rule impI,(rule disjI2)+,rule conjI)  | 
|
621  | 
apply clarify  | 
|
622  | 
apply(case_tac "R (Muts x! j)=i")  | 
|
623  | 
apply (force simp add: nth_list_update BtoW_def)  | 
|
624  | 
apply (force simp add: nth_list_update)  | 
|
625  | 
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
626  | 
apply(rule impI,(rule disjI2)+, erule le_trans)  | 
|
627  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
628  | 
apply(rule conjI)  | 
|
629  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
630  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
631  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
632  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
| 62042 | 633  | 
\<comment>\<open>3 subgoals left\<close>  | 
| 13020 | 634  | 
apply clarify  | 
635  | 
apply(disjE_tac)  | 
|
636  | 
apply(simp_all add:Graph6)  | 
|
637  | 
apply (rule impI)  | 
|
638  | 
apply(rule conjI)  | 
|
639  | 
apply(rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
640  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
641  | 
apply(simp add:nth_list_update)  | 
|
642  | 
apply(simp add:nth_list_update)  | 
|
643  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
644  | 
apply(simp add:nth_list_update)  | 
|
645  | 
apply(simp add:nth_list_update)  | 
|
646  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
647  | 
apply(rule conjI)  | 
|
648  | 
apply(rule impI)  | 
|
649  | 
apply(rule conjI)  | 
|
650  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
651  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
652  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
653  | 
apply(simp add:nth_list_update)  | 
|
654  | 
apply(simp add:nth_list_update)  | 
|
655  | 
apply(rule impI)  | 
|
656  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
657  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
658  | 
apply(rule conjI)  | 
|
659  | 
apply(rule impI)  | 
|
660  | 
apply(rule conjI)  | 
|
661  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
662  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
663  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
664  | 
apply(simp add:nth_list_update)  | 
|
665  | 
apply(simp add:nth_list_update)  | 
|
666  | 
apply(rule impI)  | 
|
667  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
668  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
669  | 
apply(erule conjE)  | 
|
670  | 
apply(rule conjI)  | 
|
671  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
672  | 
apply(rule impI,rule conjI,(rule disjI2)+,rule conjI)  | 
|
673  | 
apply clarify  | 
|
674  | 
apply(case_tac "R (Muts x! j)=i")  | 
|
675  | 
apply (force simp add: nth_list_update BtoW_def)  | 
|
676  | 
apply (force simp add: nth_list_update)  | 
|
677  | 
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
678  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
679  | 
apply(simp add:nth_list_update)  | 
|
680  | 
apply(simp add:nth_list_update)  | 
|
681  | 
apply(rule impI,rule conjI)  | 
|
682  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
683  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
684  | 
apply(case_tac "R (Muts x! j)=ind x")  | 
|
685  | 
apply (force simp add: nth_list_update)  | 
|
686  | 
apply (force simp add: nth_list_update)  | 
|
687  | 
apply(rule impI, (rule disjI2)+, erule le_trans)  | 
|
688  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
| 62042 | 689  | 
\<comment>\<open>2 subgoals left\<close>  | 
| 13020 | 690  | 
apply clarify  | 
691  | 
apply(rule conjI)  | 
|
692  | 
apply(disjE_tac)  | 
|
693  | 
apply(simp_all add:Mul_Auxk_def Graph6)  | 
|
694  | 
apply (rule impI)  | 
|
695  | 
apply(rule conjI)  | 
|
696  | 
apply(rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
697  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
698  | 
apply(simp add:nth_list_update)  | 
|
699  | 
apply(simp add:nth_list_update)  | 
|
700  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
701  | 
apply(simp add:nth_list_update)  | 
|
702  | 
apply(simp add:nth_list_update)  | 
|
703  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
704  | 
apply(rule impI)  | 
|
705  | 
apply(rule conjI)  | 
|
706  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
707  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
708  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
709  | 
apply(simp add:nth_list_update)  | 
|
710  | 
apply(simp add:nth_list_update)  | 
|
711  | 
apply(rule impI)  | 
|
712  | 
apply(rule conjI)  | 
|
713  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
714  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
715  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
716  | 
apply(simp add:nth_list_update)  | 
|
717  | 
apply(simp add:nth_list_update)  | 
|
718  | 
apply(rule impI)  | 
|
719  | 
apply(rule conjI)  | 
|
720  | 
apply(erule conjE)+  | 
|
721  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
722  | 
apply((rule disjI2)+,rule conjI)  | 
|
723  | 
apply clarify  | 
|
724  | 
apply(case_tac "R (Muts x! j)=i")  | 
|
725  | 
apply (force simp add: nth_list_update BtoW_def)  | 
|
726  | 
apply (force simp add: nth_list_update)  | 
|
727  | 
apply(rule conjI)  | 
|
728  | 
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
729  | 
apply(rule impI)  | 
|
730  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
731  | 
apply(simp add:nth_list_update BtoW_def)  | 
|
732  | 
apply (simp add:nth_list_update)  | 
|
733  | 
apply(rule impI)  | 
|
734  | 
apply simp  | 
|
735  | 
apply(disjE_tac)  | 
|
736  | 
apply(rule disjI1, erule less_le_trans)  | 
|
737  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
738  | 
apply force  | 
|
739  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
740  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
741  | 
apply(case_tac "R (Muts x ! j)= ind x")  | 
|
742  | 
apply(simp add:nth_list_update)  | 
|
743  | 
apply(simp add:nth_list_update)  | 
|
| 59189 | 744  | 
apply(disjE_tac)  | 
| 13020 | 745  | 
apply simp_all  | 
746  | 
apply(conjI_tac)  | 
|
747  | 
apply(rule impI)  | 
|
748  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
749  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
750  | 
apply(erule conjE)+  | 
|
751  | 
apply(rule impI,(rule disjI2)+,rule conjI)  | 
|
752  | 
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
753  | 
apply(rule impI)+  | 
|
754  | 
apply simp  | 
|
755  | 
apply(disjE_tac)  | 
|
756  | 
apply(rule disjI1, erule less_le_trans)  | 
|
757  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
758  | 
apply force  | 
|
| 62042 | 759  | 
\<comment>\<open>1 subgoal left\<close>  | 
| 13020 | 760  | 
apply clarify  | 
761  | 
apply(disjE_tac)  | 
|
762  | 
apply(simp_all add:Graph6)  | 
|
763  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
764  | 
apply(rule conjI)  | 
|
765  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
766  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
767  | 
apply(erule conjE)  | 
|
768  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
769  | 
apply(rule conjI)  | 
|
770  | 
apply(rule impI,(rule disjI2)+,rule conjI)  | 
|
771  | 
apply clarify  | 
|
772  | 
apply(case_tac "R (Muts x! j)=i")  | 
|
773  | 
apply (force simp add: nth_list_update BtoW_def)  | 
|
774  | 
apply (force simp add: nth_list_update)  | 
|
775  | 
apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
776  | 
apply(rule impI,(rule disjI2)+, erule le_trans)  | 
|
777  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
778  | 
apply(rule conjI)  | 
|
779  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
780  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
781  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans)  | 
|
782  | 
apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update)  | 
|
783  | 
done  | 
|
784  | 
||
| 59189 | 785  | 
lemma Mul_interfree_Redirect_Edge_Propagate_Black: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 786  | 
  interfree_aux (Some(Mul_Redirect_Edge j n ),{},Some (Mul_Propagate_Black n))"
 | 
787  | 
apply (unfold mul_modules)  | 
|
788  | 
apply interfree_aux  | 
|
789  | 
apply safe  | 
|
790  | 
apply(simp_all add:mul_mutator_defs nth_list_update)  | 
|
791  | 
done  | 
|
792  | 
||
| 59189 | 793  | 
lemma Mul_interfree_Propagate_Black_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 794  | 
  interfree_aux (Some(Mul_Propagate_Black n),{},Some (Mul_Color_Target j n ))"
 | 
795  | 
apply (unfold mul_modules)  | 
|
796  | 
apply interfree_aux  | 
|
797  | 
apply(simp_all add: mul_collector_defs mul_mutator_defs)  | 
|
| 62042 | 798  | 
\<comment>\<open>7 subgoals left\<close>  | 
| 13020 | 799  | 
apply clarify  | 
800  | 
apply (simp add:Graph7 Graph8 Graph12)  | 
|
801  | 
apply(disjE_tac)  | 
|
802  | 
apply(simp add:Graph7 Graph8 Graph12)  | 
|
803  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
804  | 
apply(rule disjI2,rule disjI1, erule le_trans)  | 
|
805  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
| 59189 | 806  | 
apply((rule disjI2)+,erule subset_psubset_trans, erule Graph11, simp)  | 
| 13020 | 807  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
| 62042 | 808  | 
\<comment>\<open>6 subgoals left\<close>  | 
| 13020 | 809  | 
apply clarify  | 
810  | 
apply (simp add:Graph7 Graph8 Graph12)  | 
|
811  | 
apply(disjE_tac)  | 
|
812  | 
apply(simp add:Graph7 Graph8 Graph12)  | 
|
813  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
814  | 
apply(rule disjI2,rule disjI1, erule le_trans)  | 
|
815  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
| 59189 | 816  | 
apply((rule disjI2)+,erule subset_psubset_trans, erule Graph11, simp)  | 
| 13020 | 817  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
| 62042 | 818  | 
\<comment>\<open>5 subgoals left\<close>  | 
| 13020 | 819  | 
apply clarify  | 
820  | 
apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12)  | 
|
821  | 
apply(disjE_tac)  | 
|
| 59189 | 822  | 
apply(simp add:Graph7 Graph8 Graph12)  | 
| 13020 | 823  | 
apply(rule disjI2,rule disjI1, erule psubset_subset_trans,simp add:Graph9)  | 
824  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
825  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
826  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
827  | 
apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp)  | 
|
828  | 
apply(erule conjE)  | 
|
829  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
830  | 
apply((rule disjI2)+)  | 
|
831  | 
apply (rule conjI)  | 
|
832  | 
apply(simp add:Graph10)  | 
|
833  | 
apply(erule le_trans)  | 
|
834  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
| 59189 | 835  | 
apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp)  | 
| 62042 | 836  | 
\<comment>\<open>4 subgoals left\<close>  | 
| 13020 | 837  | 
apply clarify  | 
838  | 
apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12)  | 
|
839  | 
apply(disjE_tac)  | 
|
840  | 
apply(simp add:Graph7 Graph8 Graph12)  | 
|
841  | 
apply(rule disjI2,rule disjI1, erule psubset_subset_trans,simp add:Graph9)  | 
|
842  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
843  | 
apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans)  | 
|
844  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
845  | 
apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp)  | 
|
846  | 
apply(erule conjE)  | 
|
847  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
848  | 
apply((rule disjI2)+)  | 
|
849  | 
apply (rule conjI)  | 
|
850  | 
apply(simp add:Graph10)  | 
|
851  | 
apply(erule le_trans)  | 
|
852  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
| 59189 | 853  | 
apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp)  | 
| 62042 | 854  | 
\<comment>\<open>3 subgoals left\<close>  | 
| 13020 | 855  | 
apply clarify  | 
856  | 
apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12)  | 
|
857  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
858  | 
apply(simp add:Graph10)  | 
|
859  | 
apply(disjE_tac)  | 
|
860  | 
apply simp_all  | 
|
861  | 
apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans)  | 
|
862  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
863  | 
apply(erule conjE)  | 
|
864  | 
apply((rule disjI2)+,erule le_trans)  | 
|
865  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
866  | 
apply(rule conjI)  | 
|
| 59189 | 867  | 
apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11)  | 
| 13020 | 868  | 
apply (force simp add:nth_list_update)  | 
| 62042 | 869  | 
\<comment>\<open>2 subgoals left\<close>  | 
| 59189 | 870  | 
apply clarify  | 
| 13020 | 871  | 
apply(simp add:Mul_Auxk_def Graph7 Graph8 Graph12)  | 
872  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
873  | 
apply(simp add:Graph10)  | 
|
874  | 
apply(disjE_tac)  | 
|
875  | 
apply simp_all  | 
|
876  | 
apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans)  | 
|
877  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
878  | 
apply(erule conjE)+  | 
|
879  | 
apply((rule disjI2)+,rule conjI, erule le_trans)  | 
|
880  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
881  | 
apply((rule impI)+)  | 
|
882  | 
apply simp  | 
|
883  | 
apply(erule disjE)  | 
|
| 59189 | 884  | 
apply(rule disjI1, erule less_le_trans)  | 
| 13020 | 885  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
886  | 
apply force  | 
|
887  | 
apply(rule conjI)  | 
|
| 59189 | 888  | 
apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11)  | 
| 13020 | 889  | 
apply (force simp add:nth_list_update)  | 
| 62042 | 890  | 
\<comment>\<open>1 subgoal left\<close>  | 
| 13020 | 891  | 
apply clarify  | 
892  | 
apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12)  | 
|
893  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
894  | 
apply(simp add:Graph10)  | 
|
895  | 
apply(disjE_tac)  | 
|
896  | 
apply simp_all  | 
|
897  | 
apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans)  | 
|
898  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
899  | 
apply(erule conjE)  | 
|
900  | 
apply((rule disjI2)+,erule le_trans)  | 
|
901  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
| 59189 | 902  | 
apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11)  | 
| 13020 | 903  | 
done  | 
904  | 
||
| 59189 | 905  | 
lemma Mul_interfree_Color_Target_Propagate_Black: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 906  | 
  interfree_aux (Some(Mul_Color_Target j n),{},Some(Mul_Propagate_Black n ))"
 | 
907  | 
apply (unfold mul_modules)  | 
|
908  | 
apply interfree_aux  | 
|
909  | 
apply safe  | 
|
910  | 
apply(simp_all add:mul_mutator_defs nth_list_update)  | 
|
911  | 
done  | 
|
912  | 
||
| 59189 | 913  | 
lemma Mul_interfree_Count_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 914  | 
  interfree_aux (Some(Mul_Count n ),{},Some(Mul_Redirect_Edge j n))"
 | 
915  | 
apply (unfold mul_modules)  | 
|
916  | 
apply interfree_aux  | 
|
| 62042 | 917  | 
\<comment>\<open>9 subgoals left\<close>  | 
| 13020 | 918  | 
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def Graph6)  | 
919  | 
apply clarify  | 
|
920  | 
apply disjE_tac  | 
|
921  | 
apply(simp add:Graph6)  | 
|
922  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
923  | 
apply(simp add:Graph6)  | 
|
924  | 
apply clarify  | 
|
925  | 
apply disjE_tac  | 
|
926  | 
apply(simp add:Graph6)  | 
|
927  | 
apply(rule conjI)  | 
|
928  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
929  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
930  | 
apply(simp add:Graph6)  | 
|
| 62042 | 931  | 
\<comment>\<open>8 subgoals left\<close>  | 
| 13020 | 932  | 
apply(simp add:mul_mutator_defs nth_list_update)  | 
| 62042 | 933  | 
\<comment>\<open>7 subgoals left\<close>  | 
| 13020 | 934  | 
apply(simp add:mul_mutator_defs mul_collector_defs)  | 
935  | 
apply clarify  | 
|
936  | 
apply disjE_tac  | 
|
937  | 
apply(simp add:Graph6)  | 
|
938  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
939  | 
apply(simp add:Graph6)  | 
|
940  | 
apply clarify  | 
|
941  | 
apply disjE_tac  | 
|
942  | 
apply(simp add:Graph6)  | 
|
943  | 
apply(rule conjI)  | 
|
944  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
945  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
946  | 
apply(simp add:Graph6)  | 
|
| 62042 | 947  | 
\<comment>\<open>6 subgoals left\<close>  | 
| 13020 | 948  | 
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def)  | 
949  | 
apply clarify  | 
|
950  | 
apply disjE_tac  | 
|
951  | 
apply(simp add:Graph6 Queue_def)  | 
|
952  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
953  | 
apply(simp add:Graph6)  | 
|
954  | 
apply clarify  | 
|
955  | 
apply disjE_tac  | 
|
956  | 
apply(simp add:Graph6)  | 
|
957  | 
apply(rule conjI)  | 
|
958  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
959  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
960  | 
apply(simp add:Graph6)  | 
|
| 62042 | 961  | 
\<comment>\<open>5 subgoals left\<close>  | 
| 13020 | 962  | 
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def)  | 
963  | 
apply clarify  | 
|
964  | 
apply disjE_tac  | 
|
965  | 
apply(simp add:Graph6)  | 
|
966  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
967  | 
apply(simp add:Graph6)  | 
|
968  | 
apply clarify  | 
|
969  | 
apply disjE_tac  | 
|
970  | 
apply(simp add:Graph6)  | 
|
971  | 
apply(rule conjI)  | 
|
972  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
973  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
974  | 
apply(simp add:Graph6)  | 
|
| 62042 | 975  | 
\<comment>\<open>4 subgoals left\<close>  | 
| 13020 | 976  | 
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def)  | 
977  | 
apply clarify  | 
|
978  | 
apply disjE_tac  | 
|
979  | 
apply(simp add:Graph6)  | 
|
980  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
981  | 
apply(simp add:Graph6)  | 
|
982  | 
apply clarify  | 
|
983  | 
apply disjE_tac  | 
|
984  | 
apply(simp add:Graph6)  | 
|
985  | 
apply(rule conjI)  | 
|
986  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
987  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
988  | 
apply(simp add:Graph6)  | 
|
| 62042 | 989  | 
\<comment>\<open>3 subgoals left\<close>  | 
| 13020 | 990  | 
apply(simp add:mul_mutator_defs nth_list_update)  | 
| 62042 | 991  | 
\<comment>\<open>2 subgoals left\<close>  | 
| 13020 | 992  | 
apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def)  | 
993  | 
apply clarify  | 
|
994  | 
apply disjE_tac  | 
|
995  | 
apply(simp add:Graph6)  | 
|
996  | 
apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp)  | 
|
997  | 
apply(simp add:Graph6)  | 
|
998  | 
apply clarify  | 
|
999  | 
apply disjE_tac  | 
|
1000  | 
apply(simp add:Graph6)  | 
|
1001  | 
apply(rule conjI)  | 
|
1002  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
1003  | 
apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
1004  | 
apply(simp add:Graph6)  | 
|
| 62042 | 1005  | 
\<comment>\<open>1 subgoal left\<close>  | 
| 13020 | 1006  | 
apply(simp add:mul_mutator_defs nth_list_update)  | 
1007  | 
done  | 
|
1008  | 
||
| 59189 | 1009  | 
lemma Mul_interfree_Redirect_Edge_Count: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 1010  | 
  interfree_aux (Some(Mul_Redirect_Edge j n),{},Some(Mul_Count n ))"
 | 
1011  | 
apply (unfold mul_modules)  | 
|
1012  | 
apply interfree_aux  | 
|
1013  | 
apply safe  | 
|
1014  | 
apply(simp_all add:mul_mutator_defs nth_list_update)  | 
|
1015  | 
done  | 
|
1016  | 
||
| 59189 | 1017  | 
lemma Mul_interfree_Count_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 1018  | 
  interfree_aux (Some(Mul_Count n ),{},Some(Mul_Color_Target j n))"
 | 
1019  | 
apply (unfold mul_modules)  | 
|
1020  | 
apply interfree_aux  | 
|
1021  | 
apply(simp_all add:mul_collector_defs mul_mutator_defs Mul_CountInv_def)  | 
|
| 62042 | 1022  | 
\<comment>\<open>6 subgoals left\<close>  | 
| 13020 | 1023  | 
apply clarify  | 
1024  | 
apply disjE_tac  | 
|
1025  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1026  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1027  | 
apply clarify  | 
|
1028  | 
apply disjE_tac  | 
|
1029  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1030  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
1031  | 
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans)  | 
|
1032  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
1033  | 
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11)  | 
|
1034  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1035  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
| 62042 | 1036  | 
\<comment>\<open>5 subgoals left\<close>  | 
| 13020 | 1037  | 
apply clarify  | 
1038  | 
apply disjE_tac  | 
|
1039  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1040  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1041  | 
apply clarify  | 
|
1042  | 
apply disjE_tac  | 
|
1043  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1044  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
1045  | 
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans)  | 
|
1046  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
1047  | 
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11)  | 
|
1048  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1049  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
| 62042 | 1050  | 
\<comment>\<open>4 subgoals left\<close>  | 
| 13020 | 1051  | 
apply clarify  | 
1052  | 
apply disjE_tac  | 
|
1053  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1054  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1055  | 
apply clarify  | 
|
1056  | 
apply disjE_tac  | 
|
1057  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1058  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
1059  | 
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans)  | 
|
1060  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
1061  | 
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11)  | 
|
1062  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1063  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
| 62042 | 1064  | 
\<comment>\<open>3 subgoals left\<close>  | 
| 13020 | 1065  | 
apply clarify  | 
1066  | 
apply disjE_tac  | 
|
1067  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1068  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1069  | 
apply clarify  | 
|
1070  | 
apply disjE_tac  | 
|
1071  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1072  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
1073  | 
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans)  | 
|
1074  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
1075  | 
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11)  | 
|
1076  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1077  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
| 62042 | 1078  | 
\<comment>\<open>2 subgoals left\<close>  | 
| 13020 | 1079  | 
apply clarify  | 
1080  | 
apply disjE_tac  | 
|
1081  | 
apply (simp add: Graph7 Graph8 Graph12 nth_list_update)  | 
|
1082  | 
apply (simp add: Graph7 Graph8 Graph12 nth_list_update)  | 
|
1083  | 
apply clarify  | 
|
1084  | 
apply disjE_tac  | 
|
1085  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1086  | 
apply(rule conjI)  | 
|
1087  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
1088  | 
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans)  | 
|
1089  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
1090  | 
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11)  | 
|
1091  | 
apply (simp add: nth_list_update)  | 
|
1092  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1093  | 
apply(rule conjI)  | 
|
1094  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
1095  | 
apply (simp add: nth_list_update)  | 
|
| 62042 | 1096  | 
\<comment>\<open>1 subgoal left\<close>  | 
| 13020 | 1097  | 
apply clarify  | 
1098  | 
apply disjE_tac  | 
|
1099  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1100  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1101  | 
apply clarify  | 
|
1102  | 
apply disjE_tac  | 
|
1103  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1104  | 
apply(case_tac "M x!(T (Muts x!j))=Black")  | 
|
1105  | 
apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans)  | 
|
1106  | 
apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10)  | 
|
1107  | 
apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11)  | 
|
1108  | 
apply (simp add: Graph7 Graph8 Graph12)  | 
|
1109  | 
apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9)  | 
|
1110  | 
done  | 
|
1111  | 
||
| 59189 | 1112  | 
lemma Mul_interfree_Color_Target_Count: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 1113  | 
  interfree_aux (Some(Mul_Color_Target j n),{}, Some(Mul_Count n ))"
 | 
1114  | 
apply (unfold mul_modules)  | 
|
1115  | 
apply interfree_aux  | 
|
1116  | 
apply safe  | 
|
1117  | 
apply(simp_all add:mul_mutator_defs nth_list_update)  | 
|
1118  | 
done  | 
|
1119  | 
||
| 59189 | 1120  | 
lemma Mul_interfree_Append_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 1121  | 
  interfree_aux (Some(Mul_Append n),{}, Some(Mul_Redirect_Edge j n))"
 | 
1122  | 
apply (unfold mul_modules)  | 
|
1123  | 
apply interfree_aux  | 
|
| 59189 | 1124  | 
apply(tactic \<open>ALLGOALS (clarify_tac @{context})\<close>)
 | 
| 13020 | 1125  | 
apply(simp_all add:Graph6 Append_to_free0 Append_to_free1 mul_collector_defs mul_mutator_defs Mul_AppendInv_def)  | 
1126  | 
apply(erule_tac x=j in allE, force dest:Graph3)+  | 
|
1127  | 
done  | 
|
1128  | 
||
| 59189 | 1129  | 
lemma Mul_interfree_Redirect_Edge_Append: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 1130  | 
  interfree_aux (Some(Mul_Redirect_Edge j n),{},Some(Mul_Append n))"
 | 
1131  | 
apply (unfold mul_modules)  | 
|
1132  | 
apply interfree_aux  | 
|
| 59189 | 1133  | 
apply(tactic \<open>ALLGOALS (clarify_tac @{context})\<close>)
 | 
| 13020 | 1134  | 
apply(simp_all add:mul_collector_defs Append_to_free0 Mul_AppendInv_def mul_mutator_defs nth_list_update)  | 
1135  | 
done  | 
|
1136  | 
||
| 59189 | 1137  | 
lemma Mul_interfree_Append_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 1138  | 
  interfree_aux (Some(Mul_Append n),{}, Some(Mul_Color_Target j n))"
 | 
1139  | 
apply (unfold mul_modules)  | 
|
1140  | 
apply interfree_aux  | 
|
| 59189 | 1141  | 
apply(tactic \<open>ALLGOALS (clarify_tac @{context})\<close>)
 | 
1142  | 
apply(simp_all add:mul_mutator_defs mul_collector_defs Mul_AppendInv_def Graph7 Graph8 Append_to_free0 Append_to_free1  | 
|
| 13020 | 1143  | 
Graph12 nth_list_update)  | 
1144  | 
done  | 
|
1145  | 
||
| 59189 | 1146  | 
lemma Mul_interfree_Color_Target_Append: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow>  | 
| 13020 | 1147  | 
  interfree_aux (Some(Mul_Color_Target j n),{}, Some(Mul_Append n))"
 | 
1148  | 
apply (unfold mul_modules)  | 
|
1149  | 
apply interfree_aux  | 
|
| 59189 | 1150  | 
apply(tactic \<open>ALLGOALS (clarify_tac @{context})\<close>)
 | 
| 13020 | 1151  | 
apply(simp_all add: mul_mutator_defs nth_list_update)  | 
1152  | 
apply(simp add:Mul_AppendInv_def Append_to_free0)  | 
|
1153  | 
done  | 
|
1154  | 
||
| 59189 | 1155  | 
subsubsection \<open>Interference freedom Collector-Mutator\<close>  | 
| 13020 | 1156  | 
|
| 59189 | 1157  | 
lemmas mul_collector_mutator_interfree =  | 
1158  | 
Mul_interfree_Blacken_Roots_Redirect_Edge Mul_interfree_Blacken_Roots_Color_Target  | 
|
1159  | 
Mul_interfree_Propagate_Black_Redirect_Edge Mul_interfree_Propagate_Black_Color_Target  | 
|
1160  | 
Mul_interfree_Count_Redirect_Edge Mul_interfree_Count_Color_Target  | 
|
1161  | 
Mul_interfree_Append_Redirect_Edge Mul_interfree_Append_Color_Target  | 
|
1162  | 
Mul_interfree_Redirect_Edge_Blacken_Roots Mul_interfree_Color_Target_Blacken_Roots  | 
|
1163  | 
Mul_interfree_Redirect_Edge_Propagate_Black Mul_interfree_Color_Target_Propagate_Black  | 
|
1164  | 
Mul_interfree_Redirect_Edge_Count Mul_interfree_Color_Target_Count  | 
|
| 13020 | 1165  | 
Mul_interfree_Redirect_Edge_Append Mul_interfree_Color_Target_Append  | 
1166  | 
||
| 59189 | 1167  | 
lemma Mul_interfree_Collector_Mutator: "j<n \<Longrightarrow>  | 
| 13020 | 1168  | 
  interfree_aux (Some (Mul_Collector n), {}, Some (Mul_Mutator j n))"
 | 
1169  | 
apply(unfold Mul_Collector_def Mul_Mutator_def)  | 
|
1170  | 
apply interfree_aux  | 
|
1171  | 
apply(simp_all add:mul_collector_mutator_interfree)  | 
|
1172  | 
apply(unfold mul_modules mul_collector_defs mul_mutator_defs)  | 
|
| 59189 | 1173  | 
apply(tactic  \<open>TRYALL (interfree_aux_tac @{context})\<close>)
 | 
| 62042 | 1174  | 
\<comment>\<open>42 subgoals left\<close>  | 
| 13020 | 1175  | 
apply (clarify,simp add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)+  | 
| 62042 | 1176  | 
\<comment>\<open>24 subgoals left\<close>  | 
| 13020 | 1177  | 
apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)  | 
| 62042 | 1178  | 
\<comment>\<open>14 subgoals left\<close>  | 
| 59189 | 1179  | 
apply(tactic \<open>TRYALL (clarify_tac @{context})\<close>)
 | 
| 13020 | 1180  | 
apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)  | 
| 60754 | 1181  | 
apply(tactic \<open>TRYALL (resolve_tac @{context} [conjI])\<close>)
 | 
1182  | 
apply(tactic \<open>TRYALL (resolve_tac @{context} [impI])\<close>)
 | 
|
1183  | 
apply(tactic \<open>TRYALL (eresolve_tac @{context} [disjE])\<close>)
 | 
|
1184  | 
apply(tactic \<open>TRYALL (eresolve_tac @{context} [conjE])\<close>)
 | 
|
1185  | 
apply(tactic \<open>TRYALL (eresolve_tac @{context} [disjE])\<close>)
 | 
|
1186  | 
apply(tactic \<open>TRYALL (eresolve_tac @{context} [disjE])\<close>)
 | 
|
| 62042 | 1187  | 
\<comment>\<open>72 subgoals left\<close>  | 
| 13020 | 1188  | 
apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)  | 
| 62042 | 1189  | 
\<comment>\<open>35 subgoals left\<close>  | 
| 60754 | 1190  | 
apply(tactic \<open>TRYALL(EVERY'[resolve_tac @{context} [disjI1],
 | 
1191  | 
    resolve_tac @{context} [subset_trans],
 | 
|
1192  | 
    eresolve_tac @{context} @{thms Graph3},
 | 
|
1193  | 
    force_tac @{context},
 | 
|
1194  | 
    assume_tac @{context}])\<close>)
 | 
|
| 62042 | 1195  | 
\<comment>\<open>28 subgoals left\<close>  | 
| 60754 | 1196  | 
apply(tactic \<open>TRYALL (eresolve_tac @{context} [conjE])\<close>)
 | 
1197  | 
apply(tactic \<open>TRYALL (eresolve_tac @{context} [disjE])\<close>)
 | 
|
| 62042 | 1198  | 
\<comment>\<open>34 subgoals left\<close>  | 
| 13020 | 1199  | 
apply(rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
1200  | 
apply(rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update)  | 
|
| 27095 | 1201  | 
apply(case_tac [!] "M x!(T (Muts x ! j))=Black")  | 
| 13020 | 1202  | 
apply(simp_all add:Graph10)  | 
| 62042 | 1203  | 
\<comment>\<open>47 subgoals left\<close>  | 
| 60754 | 1204  | 
apply(tactic \<open>TRYALL(EVERY'[REPEAT o resolve_tac @{context} [disjI2],
 | 
1205  | 
    eresolve_tac @{context} @{thms subset_psubset_trans},
 | 
|
1206  | 
    eresolve_tac @{context} @{thms Graph11},
 | 
|
1207  | 
    force_tac @{context}])\<close>)
 | 
|
| 62042 | 1208  | 
\<comment>\<open>41 subgoals left\<close>  | 
| 60754 | 1209  | 
apply(tactic \<open>TRYALL(EVERY'[resolve_tac @{context} [disjI2],
 | 
1210  | 
    resolve_tac @{context} [disjI1],
 | 
|
1211  | 
    eresolve_tac @{context} @{thms le_trans},
 | 
|
1212  | 
    force_tac (@{context} addsimps @{thms Queue_def less_Suc_eq_le le_length_filter_update})])\<close>)
 | 
|
| 62042 | 1213  | 
\<comment>\<open>35 subgoals left\<close>  | 
| 60754 | 1214  | 
apply(tactic \<open>TRYALL(EVERY'[resolve_tac @{context} [disjI2],
 | 
1215  | 
    resolve_tac @{context} [disjI1],
 | 
|
1216  | 
    eresolve_tac @{context} @{thms psubset_subset_trans},
 | 
|
1217  | 
    resolve_tac @{context} @{thms Graph9},
 | 
|
1218  | 
    force_tac @{context}])\<close>)
 | 
|
| 62042 | 1219  | 
\<comment>\<open>31 subgoals left\<close>  | 
| 60754 | 1220  | 
apply(tactic \<open>TRYALL(EVERY'[resolve_tac @{context} [disjI2],
 | 
1221  | 
    resolve_tac @{context} [disjI1],
 | 
|
1222  | 
    eresolve_tac @{context} @{thms subset_psubset_trans},
 | 
|
1223  | 
    eresolve_tac @{context} @{thms Graph11},
 | 
|
1224  | 
    force_tac @{context}])\<close>)
 | 
|
| 62042 | 1225  | 
\<comment>\<open>29 subgoals left\<close>  | 
| 60754 | 1226  | 
apply(tactic \<open>TRYALL(EVERY'[REPEAT o resolve_tac @{context} [disjI2],
 | 
1227  | 
    eresolve_tac @{context} @{thms subset_psubset_trans},
 | 
|
1228  | 
    eresolve_tac @{context} @{thms subset_psubset_trans},
 | 
|
1229  | 
    eresolve_tac @{context} @{thms Graph11},
 | 
|
1230  | 
    force_tac @{context}])\<close>)
 | 
|
| 62042 | 1231  | 
\<comment>\<open>25 subgoals left\<close>  | 
| 60754 | 1232  | 
apply(tactic \<open>TRYALL(EVERY'[resolve_tac @{context} [disjI2],
 | 
1233  | 
    resolve_tac @{context} [disjI2],
 | 
|
1234  | 
    resolve_tac @{context} [disjI1],
 | 
|
1235  | 
    eresolve_tac @{context} @{thms le_trans},
 | 
|
1236  | 
    force_tac (@{context} addsimps @{thms Queue_def less_Suc_eq_le le_length_filter_update})])\<close>)
 | 
|
| 62042 | 1237  | 
\<comment>\<open>10 subgoals left\<close>  | 
| 13020 | 1238  | 
apply(rule disjI2,rule disjI2,rule conjI,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update, rule disjI1, rule less_imp_le, erule less_le_trans, force simp add:Queue_def less_Suc_eq_le le_length_filter_update)+  | 
1239  | 
done  | 
|
1240  | 
||
| 59189 | 1241  | 
subsubsection \<open>Interference freedom Mutator-Collector\<close>  | 
| 13020 | 1242  | 
|
| 59189 | 1243  | 
lemma Mul_interfree_Mutator_Collector: " j < n \<Longrightarrow>  | 
| 13020 | 1244  | 
  interfree_aux (Some (Mul_Mutator j n), {}, Some (Mul_Collector n))"
 | 
1245  | 
apply(unfold Mul_Collector_def Mul_Mutator_def)  | 
|
1246  | 
apply interfree_aux  | 
|
1247  | 
apply(simp_all add:mul_collector_mutator_interfree)  | 
|
1248  | 
apply(unfold mul_modules mul_collector_defs mul_mutator_defs)  | 
|
| 59189 | 1249  | 
apply(tactic  \<open>TRYALL (interfree_aux_tac @{context})\<close>)
 | 
| 62042 | 1250  | 
\<comment>\<open>76 subgoals left\<close>  | 
| 
32687
 
27530efec97a
tuned proofs; be more cautios wrt. default simp rules
 
haftmann 
parents: 
32621 
diff
changeset
 | 
1251  | 
apply (clarsimp simp add: nth_list_update)+  | 
| 62042 | 1252  | 
\<comment>\<open>56 subgoals left\<close>  | 
| 
32687
 
27530efec97a
tuned proofs; be more cautios wrt. default simp rules
 
haftmann 
parents: 
32621 
diff
changeset
 | 
1253  | 
apply (clarsimp simp add: Mul_AppendInv_def Append_to_free0 nth_list_update)+  | 
| 13020 | 1254  | 
done  | 
1255  | 
||
| 59189 | 1256  | 
subsubsection \<open>The Multi-Mutator Garbage Collection Algorithm\<close>  | 
| 13020 | 1257  | 
|
| 59189 | 1258  | 
text \<open>The total number of verification conditions is 328\<close>  | 
| 13020 | 1259  | 
|
| 59189 | 1260  | 
lemma Mul_Gar_Coll:  | 
1261  | 
"\<parallel>- \<lbrace>\<acute>Mul_Proper n \<and> \<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))\<rbrace>  | 
|
1262  | 
COBEGIN  | 
|
| 13020 | 1263  | 
Mul_Collector n  | 
| 53241 | 1264  | 
\<lbrace>False\<rbrace>  | 
| 59189 | 1265  | 
\<parallel>  | 
| 13020 | 1266  | 
SCHEME [0\<le> j< n]  | 
1267  | 
Mul_Mutator j n  | 
|
| 59189 | 1268  | 
\<lbrace>False\<rbrace>  | 
1269  | 
COEND  | 
|
| 53241 | 1270  | 
\<lbrace>False\<rbrace>"  | 
| 13020 | 1271  | 
apply oghoare  | 
| 62042 | 1272  | 
\<comment>\<open>Strengthening the precondition\<close>  | 
| 13020 | 1273  | 
apply(rule Int_greatest)  | 
1274  | 
apply (case_tac n)  | 
|
1275  | 
apply(force simp add: Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append)  | 
|
1276  | 
apply(simp add: Mul_Mutator_def mul_collector_defs mul_mutator_defs nth_append)  | 
|
1277  | 
apply force  | 
|
1278  | 
apply clarify  | 
|
| 32133 | 1279  | 
apply(case_tac i)  | 
| 13020 | 1280  | 
apply(simp add:Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append)  | 
1281  | 
apply(simp add: Mul_Mutator_def mul_mutator_defs mul_collector_defs nth_append nth_map_upt)  | 
|
| 62042 | 1282  | 
\<comment>\<open>Collector\<close>  | 
| 13020 | 1283  | 
apply(rule Mul_Collector)  | 
| 62042 | 1284  | 
\<comment>\<open>Mutator\<close>  | 
| 13020 | 1285  | 
apply(erule Mul_Mutator)  | 
| 62042 | 1286  | 
\<comment>\<open>Interference freedom\<close>  | 
| 13020 | 1287  | 
apply(simp add:Mul_interfree_Collector_Mutator)  | 
1288  | 
apply(simp add:Mul_interfree_Mutator_Collector)  | 
|
1289  | 
apply(simp add:Mul_interfree_Mutator_Mutator)  | 
|
| 62042 | 1290  | 
\<comment>\<open>Weakening of the postcondition\<close>  | 
| 13020 | 1291  | 
apply(case_tac n)  | 
1292  | 
apply(simp add:Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append)  | 
|
1293  | 
apply(simp add:Mul_Mutator_def mul_mutator_defs mul_collector_defs nth_append)  | 
|
1294  | 
done  | 
|
1295  | 
||
| 13187 | 1296  | 
end  |