author | haftmann |
Tue, 30 Sep 2008 12:49:14 +0200 | |
changeset 28420 | 293b166c45c5 |
parent 28073 | 5e9f00f4f209 |
child 29138 | 661a8db7e647 |
permissions | -rw-r--r-- |
16697 | 1 |
(* Title: HOLCF/Pcpodef.thy |
2 |
ID: $Id$ |
|
3 |
Author: Brian Huffman |
|
4 |
*) |
|
5 |
||
6 |
header {* Subtypes of pcpos *} |
|
7 |
||
8 |
theory Pcpodef |
|
9 |
imports Adm |
|
23152 | 10 |
uses ("Tools/pcpodef_package.ML") |
16697 | 11 |
begin |
12 |
||
13 |
subsection {* Proving a subtype is a partial order *} |
|
14 |
||
15 |
text {* |
|
16 |
A subtype of a partial order is itself a partial order, |
|
17 |
if the ordering is defined in the standard way. |
|
18 |
*} |
|
19 |
||
28073 | 20 |
setup {* Sign.add_const_constraint (@{const_name Porder.sq_le}, NONE) *} |
21 |
||
16697 | 22 |
theorem typedef_po: |
28073 | 23 |
fixes Abs :: "'a::po \<Rightarrow> 'b::type" |
16697 | 24 |
assumes type: "type_definition Rep Abs A" |
25 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
26 |
shows "OFCLASS('b, po_class)" |
|
27 |
apply (intro_classes, unfold less) |
|
28 |
apply (rule refl_less) |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26027
diff
changeset
|
29 |
apply (erule (1) trans_less) |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26027
diff
changeset
|
30 |
apply (rule type_definition.Rep_inject [OF type, THEN iffD1]) |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26027
diff
changeset
|
31 |
apply (erule (1) antisym_less) |
16697 | 32 |
done |
33 |
||
28073 | 34 |
setup {* Sign.add_const_constraint (@{const_name Porder.sq_le}, |
35 |
SOME @{typ "'a::sq_ord \<Rightarrow> 'a::sq_ord \<Rightarrow> bool"}) *} |
|
36 |
||
25827
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
37 |
subsection {* Proving a subtype is finite *} |
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
38 |
|
27296
eec7a1889ca5
moved Abs_image to Typedef.thy; prove finite_UNIV outside the locale
huffman
parents:
26420
diff
changeset
|
39 |
lemma typedef_finite_UNIV: |
eec7a1889ca5
moved Abs_image to Typedef.thy; prove finite_UNIV outside the locale
huffman
parents:
26420
diff
changeset
|
40 |
fixes Abs :: "'a::type \<Rightarrow> 'b::type" |
eec7a1889ca5
moved Abs_image to Typedef.thy; prove finite_UNIV outside the locale
huffman
parents:
26420
diff
changeset
|
41 |
assumes type: "type_definition Rep Abs A" |
eec7a1889ca5
moved Abs_image to Typedef.thy; prove finite_UNIV outside the locale
huffman
parents:
26420
diff
changeset
|
42 |
shows "finite A \<Longrightarrow> finite (UNIV :: 'b set)" |
25827
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
43 |
proof - |
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
44 |
assume "finite A" |
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
45 |
hence "finite (Abs ` A)" by (rule finite_imageI) |
27296
eec7a1889ca5
moved Abs_image to Typedef.thy; prove finite_UNIV outside the locale
huffman
parents:
26420
diff
changeset
|
46 |
thus "finite (UNIV :: 'b set)" |
eec7a1889ca5
moved Abs_image to Typedef.thy; prove finite_UNIV outside the locale
huffman
parents:
26420
diff
changeset
|
47 |
by (simp only: type_definition.Abs_image [OF type]) |
25827
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
48 |
qed |
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
49 |
|
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
50 |
theorem typedef_finite_po: |
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
51 |
fixes Abs :: "'a::finite_po \<Rightarrow> 'b::po" |
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
52 |
assumes type: "type_definition Rep Abs A" |
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
53 |
shows "OFCLASS('b, finite_po_class)" |
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
54 |
apply (intro_classes) |
27296
eec7a1889ca5
moved Abs_image to Typedef.thy; prove finite_UNIV outside the locale
huffman
parents:
26420
diff
changeset
|
55 |
apply (rule typedef_finite_UNIV [OF type]) |
25827
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
56 |
apply (rule finite) |
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
57 |
done |
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
huffman
parents:
23152
diff
changeset
|
58 |
|
17812 | 59 |
subsection {* Proving a subtype is chain-finite *} |
60 |
||
61 |
lemma monofun_Rep: |
|
62 |
assumes less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
63 |
shows "monofun Rep" |
|
64 |
by (rule monofunI, unfold less) |
|
65 |
||
66 |
lemmas ch2ch_Rep = ch2ch_monofun [OF monofun_Rep] |
|
67 |
lemmas ub2ub_Rep = ub2ub_monofun [OF monofun_Rep] |
|
68 |
||
69 |
theorem typedef_chfin: |
|
70 |
fixes Abs :: "'a::chfin \<Rightarrow> 'b::po" |
|
71 |
assumes type: "type_definition Rep Abs A" |
|
72 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
73 |
shows "OFCLASS('b, chfin_class)" |
|
25921 | 74 |
apply intro_classes |
17812 | 75 |
apply (drule ch2ch_Rep [OF less]) |
25921 | 76 |
apply (drule chfin) |
17812 | 77 |
apply (unfold max_in_chain_def) |
78 |
apply (simp add: type_definition.Rep_inject [OF type]) |
|
79 |
done |
|
80 |
||
16697 | 81 |
subsection {* Proving a subtype is complete *} |
82 |
||
83 |
text {* |
|
84 |
A subtype of a cpo is itself a cpo if the ordering is |
|
85 |
defined in the standard way, and the defining subset |
|
86 |
is closed with respect to limits of chains. A set is |
|
87 |
closed if and only if membership in the set is an |
|
88 |
admissible predicate. |
|
89 |
*} |
|
90 |
||
16918 | 91 |
lemma Abs_inverse_lub_Rep: |
16697 | 92 |
fixes Abs :: "'a::cpo \<Rightarrow> 'b::po" |
93 |
assumes type: "type_definition Rep Abs A" |
|
94 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
95 |
and adm: "adm (\<lambda>x. x \<in> A)" |
|
16918 | 96 |
shows "chain S \<Longrightarrow> Rep (Abs (\<Squnion>i. Rep (S i))) = (\<Squnion>i. Rep (S i))" |
97 |
apply (rule type_definition.Abs_inverse [OF type]) |
|
25925 | 98 |
apply (erule admD [OF adm ch2ch_Rep [OF less]]) |
16697 | 99 |
apply (rule type_definition.Rep [OF type]) |
100 |
done |
|
101 |
||
16918 | 102 |
theorem typedef_lub: |
16697 | 103 |
fixes Abs :: "'a::cpo \<Rightarrow> 'b::po" |
104 |
assumes type: "type_definition Rep Abs A" |
|
105 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
106 |
and adm: "adm (\<lambda>x. x \<in> A)" |
|
16918 | 107 |
shows "chain S \<Longrightarrow> range S <<| Abs (\<Squnion>i. Rep (S i))" |
108 |
apply (frule ch2ch_Rep [OF less]) |
|
16697 | 109 |
apply (rule is_lubI) |
110 |
apply (rule ub_rangeI) |
|
16918 | 111 |
apply (simp only: less Abs_inverse_lub_Rep [OF type less adm]) |
112 |
apply (erule is_ub_thelub) |
|
113 |
apply (simp only: less Abs_inverse_lub_Rep [OF type less adm]) |
|
114 |
apply (erule is_lub_thelub) |
|
115 |
apply (erule ub2ub_Rep [OF less]) |
|
16697 | 116 |
done |
117 |
||
16918 | 118 |
lemmas typedef_thelub = typedef_lub [THEN thelubI, standard] |
119 |
||
16697 | 120 |
theorem typedef_cpo: |
121 |
fixes Abs :: "'a::cpo \<Rightarrow> 'b::po" |
|
122 |
assumes type: "type_definition Rep Abs A" |
|
123 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
124 |
and adm: "adm (\<lambda>x. x \<in> A)" |
|
125 |
shows "OFCLASS('b, cpo_class)" |
|
16918 | 126 |
proof |
127 |
fix S::"nat \<Rightarrow> 'b" assume "chain S" |
|
128 |
hence "range S <<| Abs (\<Squnion>i. Rep (S i))" |
|
129 |
by (rule typedef_lub [OF type less adm]) |
|
130 |
thus "\<exists>x. range S <<| x" .. |
|
131 |
qed |
|
16697 | 132 |
|
133 |
subsubsection {* Continuity of @{term Rep} and @{term Abs} *} |
|
134 |
||
135 |
text {* For any sub-cpo, the @{term Rep} function is continuous. *} |
|
136 |
||
137 |
theorem typedef_cont_Rep: |
|
138 |
fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo" |
|
139 |
assumes type: "type_definition Rep Abs A" |
|
140 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
141 |
and adm: "adm (\<lambda>x. x \<in> A)" |
|
142 |
shows "cont Rep" |
|
143 |
apply (rule contI) |
|
16918 | 144 |
apply (simp only: typedef_thelub [OF type less adm]) |
145 |
apply (simp only: Abs_inverse_lub_Rep [OF type less adm]) |
|
26027 | 146 |
apply (rule cpo_lubI) |
16918 | 147 |
apply (erule ch2ch_Rep [OF less]) |
16697 | 148 |
done |
149 |
||
150 |
text {* |
|
151 |
For a sub-cpo, we can make the @{term Abs} function continuous |
|
152 |
only if we restrict its domain to the defining subset by |
|
153 |
composing it with another continuous function. |
|
154 |
*} |
|
155 |
||
16918 | 156 |
theorem typedef_is_lubI: |
157 |
assumes less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
158 |
shows "range (\<lambda>i. Rep (S i)) <<| Rep x \<Longrightarrow> range S <<| x" |
|
159 |
apply (rule is_lubI) |
|
160 |
apply (rule ub_rangeI) |
|
161 |
apply (subst less) |
|
162 |
apply (erule is_ub_lub) |
|
163 |
apply (subst less) |
|
164 |
apply (erule is_lub_lub) |
|
165 |
apply (erule ub2ub_Rep [OF less]) |
|
166 |
done |
|
167 |
||
16697 | 168 |
theorem typedef_cont_Abs: |
169 |
fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo" |
|
170 |
fixes f :: "'c::cpo \<Rightarrow> 'a::cpo" |
|
171 |
assumes type: "type_definition Rep Abs A" |
|
172 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
16918 | 173 |
and adm: "adm (\<lambda>x. x \<in> A)" (* not used *) |
16697 | 174 |
and f_in_A: "\<And>x. f x \<in> A" |
175 |
and cont_f: "cont f" |
|
176 |
shows "cont (\<lambda>x. Abs (f x))" |
|
177 |
apply (rule contI) |
|
16918 | 178 |
apply (rule typedef_is_lubI [OF less]) |
179 |
apply (simp only: type_definition.Abs_inverse [OF type f_in_A]) |
|
180 |
apply (erule cont_f [THEN contE]) |
|
16697 | 181 |
done |
182 |
||
17833 | 183 |
subsection {* Proving subtype elements are compact *} |
184 |
||
185 |
theorem typedef_compact: |
|
186 |
fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo" |
|
187 |
assumes type: "type_definition Rep Abs A" |
|
188 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
189 |
and adm: "adm (\<lambda>x. x \<in> A)" |
|
190 |
shows "compact (Rep k) \<Longrightarrow> compact k" |
|
191 |
proof (unfold compact_def) |
|
192 |
have cont_Rep: "cont Rep" |
|
193 |
by (rule typedef_cont_Rep [OF type less adm]) |
|
194 |
assume "adm (\<lambda>x. \<not> Rep k \<sqsubseteq> x)" |
|
195 |
with cont_Rep have "adm (\<lambda>x. \<not> Rep k \<sqsubseteq> Rep x)" by (rule adm_subst) |
|
196 |
thus "adm (\<lambda>x. \<not> k \<sqsubseteq> x)" by (unfold less) |
|
197 |
qed |
|
198 |
||
16697 | 199 |
subsection {* Proving a subtype is pointed *} |
200 |
||
201 |
text {* |
|
202 |
A subtype of a cpo has a least element if and only if |
|
203 |
the defining subset has a least element. |
|
204 |
*} |
|
205 |
||
16918 | 206 |
theorem typedef_pcpo_generic: |
16697 | 207 |
fixes Abs :: "'a::cpo \<Rightarrow> 'b::cpo" |
208 |
assumes type: "type_definition Rep Abs A" |
|
209 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
210 |
and z_in_A: "z \<in> A" |
|
211 |
and z_least: "\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x" |
|
212 |
shows "OFCLASS('b, pcpo_class)" |
|
213 |
apply (intro_classes) |
|
214 |
apply (rule_tac x="Abs z" in exI, rule allI) |
|
215 |
apply (unfold less) |
|
216 |
apply (subst type_definition.Abs_inverse [OF type z_in_A]) |
|
217 |
apply (rule z_least [OF type_definition.Rep [OF type]]) |
|
218 |
done |
|
219 |
||
220 |
text {* |
|
221 |
As a special case, a subtype of a pcpo has a least element |
|
222 |
if the defining subset contains @{term \<bottom>}. |
|
223 |
*} |
|
224 |
||
16918 | 225 |
theorem typedef_pcpo: |
16697 | 226 |
fixes Abs :: "'a::pcpo \<Rightarrow> 'b::cpo" |
227 |
assumes type: "type_definition Rep Abs A" |
|
228 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
229 |
and UU_in_A: "\<bottom> \<in> A" |
|
230 |
shows "OFCLASS('b, pcpo_class)" |
|
16918 | 231 |
by (rule typedef_pcpo_generic [OF type less UU_in_A], rule minimal) |
16697 | 232 |
|
233 |
subsubsection {* Strictness of @{term Rep} and @{term Abs} *} |
|
234 |
||
235 |
text {* |
|
236 |
For a sub-pcpo where @{term \<bottom>} is a member of the defining |
|
237 |
subset, @{term Rep} and @{term Abs} are both strict. |
|
238 |
*} |
|
239 |
||
240 |
theorem typedef_Abs_strict: |
|
241 |
assumes type: "type_definition Rep Abs A" |
|
242 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
243 |
and UU_in_A: "\<bottom> \<in> A" |
|
244 |
shows "Abs \<bottom> = \<bottom>" |
|
245 |
apply (rule UU_I, unfold less) |
|
246 |
apply (simp add: type_definition.Abs_inverse [OF type UU_in_A]) |
|
247 |
done |
|
248 |
||
249 |
theorem typedef_Rep_strict: |
|
250 |
assumes type: "type_definition Rep Abs A" |
|
251 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
252 |
and UU_in_A: "\<bottom> \<in> A" |
|
253 |
shows "Rep \<bottom> = \<bottom>" |
|
254 |
apply (rule typedef_Abs_strict [OF type less UU_in_A, THEN subst]) |
|
255 |
apply (rule type_definition.Abs_inverse [OF type UU_in_A]) |
|
256 |
done |
|
257 |
||
25926 | 258 |
theorem typedef_Abs_strict_iff: |
259 |
assumes type: "type_definition Rep Abs A" |
|
260 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
261 |
and UU_in_A: "\<bottom> \<in> A" |
|
262 |
shows "x \<in> A \<Longrightarrow> (Abs x = \<bottom>) = (x = \<bottom>)" |
|
263 |
apply (rule typedef_Abs_strict [OF type less UU_in_A, THEN subst]) |
|
264 |
apply (simp add: type_definition.Abs_inject [OF type] UU_in_A) |
|
265 |
done |
|
266 |
||
267 |
theorem typedef_Rep_strict_iff: |
|
268 |
assumes type: "type_definition Rep Abs A" |
|
269 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
270 |
and UU_in_A: "\<bottom> \<in> A" |
|
271 |
shows "(Rep x = \<bottom>) = (x = \<bottom>)" |
|
272 |
apply (rule typedef_Rep_strict [OF type less UU_in_A, THEN subst]) |
|
273 |
apply (simp add: type_definition.Rep_inject [OF type]) |
|
274 |
done |
|
275 |
||
16697 | 276 |
theorem typedef_Abs_defined: |
277 |
assumes type: "type_definition Rep Abs A" |
|
278 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
279 |
and UU_in_A: "\<bottom> \<in> A" |
|
280 |
shows "\<lbrakk>x \<noteq> \<bottom>; x \<in> A\<rbrakk> \<Longrightarrow> Abs x \<noteq> \<bottom>" |
|
25926 | 281 |
by (simp add: typedef_Abs_strict_iff [OF type less UU_in_A]) |
16697 | 282 |
|
283 |
theorem typedef_Rep_defined: |
|
284 |
assumes type: "type_definition Rep Abs A" |
|
285 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
286 |
and UU_in_A: "\<bottom> \<in> A" |
|
287 |
shows "x \<noteq> \<bottom> \<Longrightarrow> Rep x \<noteq> \<bottom>" |
|
25926 | 288 |
by (simp add: typedef_Rep_strict_iff [OF type less UU_in_A]) |
16697 | 289 |
|
19519 | 290 |
subsection {* Proving a subtype is flat *} |
291 |
||
292 |
theorem typedef_flat: |
|
293 |
fixes Abs :: "'a::flat \<Rightarrow> 'b::pcpo" |
|
294 |
assumes type: "type_definition Rep Abs A" |
|
295 |
and less: "op \<sqsubseteq> \<equiv> \<lambda>x y. Rep x \<sqsubseteq> Rep y" |
|
296 |
and UU_in_A: "\<bottom> \<in> A" |
|
297 |
shows "OFCLASS('b, flat_class)" |
|
298 |
apply (intro_classes) |
|
299 |
apply (unfold less) |
|
300 |
apply (simp add: type_definition.Rep_inject [OF type, symmetric]) |
|
301 |
apply (simp add: typedef_Rep_strict [OF type less UU_in_A]) |
|
302 |
apply (simp add: ax_flat) |
|
303 |
done |
|
304 |
||
16697 | 305 |
subsection {* HOLCF type definition package *} |
306 |
||
23152 | 307 |
use "Tools/pcpodef_package.ML" |
16697 | 308 |
|
309 |
end |