| 33366 |      1 | (* Author: Various *)
 | 
|  |      2 | 
 | 
|  |      3 | header {* Combination and Cancellation Simprocs for Numeral Expressions *}
 | 
|  |      4 | 
 | 
|  |      5 | theory Numeral_Simprocs
 | 
|  |      6 | imports Divides
 | 
|  |      7 | uses
 | 
|  |      8 |   "~~/src/Provers/Arith/assoc_fold.ML"
 | 
|  |      9 |   "~~/src/Provers/Arith/cancel_numerals.ML"
 | 
|  |     10 |   "~~/src/Provers/Arith/combine_numerals.ML"
 | 
|  |     11 |   "~~/src/Provers/Arith/cancel_numeral_factor.ML"
 | 
|  |     12 |   "~~/src/Provers/Arith/extract_common_term.ML"
 | 
|  |     13 |   ("Tools/numeral_simprocs.ML")
 | 
|  |     14 |   ("Tools/nat_numeral_simprocs.ML")
 | 
|  |     15 | begin
 | 
|  |     16 | 
 | 
|  |     17 | declare split_div [of _ _ "number_of k", standard, arith_split]
 | 
|  |     18 | declare split_mod [of _ _ "number_of k", standard, arith_split]
 | 
|  |     19 | 
 | 
|  |     20 | text {* For @{text combine_numerals} *}
 | 
|  |     21 | 
 | 
|  |     22 | lemma left_add_mult_distrib: "i*u + (j*u + k) = (i+j)*u + (k::nat)"
 | 
|  |     23 | by (simp add: add_mult_distrib)
 | 
|  |     24 | 
 | 
|  |     25 | text {* For @{text cancel_numerals} *}
 | 
|  |     26 | 
 | 
|  |     27 | lemma nat_diff_add_eq1:
 | 
|  |     28 |      "j <= (i::nat) ==> ((i*u + m) - (j*u + n)) = (((i-j)*u + m) - n)"
 | 
|  |     29 | by (simp split add: nat_diff_split add: add_mult_distrib)
 | 
|  |     30 | 
 | 
|  |     31 | lemma nat_diff_add_eq2:
 | 
|  |     32 |      "i <= (j::nat) ==> ((i*u + m) - (j*u + n)) = (m - ((j-i)*u + n))"
 | 
|  |     33 | by (simp split add: nat_diff_split add: add_mult_distrib)
 | 
|  |     34 | 
 | 
|  |     35 | lemma nat_eq_add_iff1:
 | 
|  |     36 |      "j <= (i::nat) ==> (i*u + m = j*u + n) = ((i-j)*u + m = n)"
 | 
|  |     37 | by (auto split add: nat_diff_split simp add: add_mult_distrib)
 | 
|  |     38 | 
 | 
|  |     39 | lemma nat_eq_add_iff2:
 | 
|  |     40 |      "i <= (j::nat) ==> (i*u + m = j*u + n) = (m = (j-i)*u + n)"
 | 
|  |     41 | by (auto split add: nat_diff_split simp add: add_mult_distrib)
 | 
|  |     42 | 
 | 
|  |     43 | lemma nat_less_add_iff1:
 | 
|  |     44 |      "j <= (i::nat) ==> (i*u + m < j*u + n) = ((i-j)*u + m < n)"
 | 
|  |     45 | by (auto split add: nat_diff_split simp add: add_mult_distrib)
 | 
|  |     46 | 
 | 
|  |     47 | lemma nat_less_add_iff2:
 | 
|  |     48 |      "i <= (j::nat) ==> (i*u + m < j*u + n) = (m < (j-i)*u + n)"
 | 
|  |     49 | by (auto split add: nat_diff_split simp add: add_mult_distrib)
 | 
|  |     50 | 
 | 
|  |     51 | lemma nat_le_add_iff1:
 | 
|  |     52 |      "j <= (i::nat) ==> (i*u + m <= j*u + n) = ((i-j)*u + m <= n)"
 | 
|  |     53 | by (auto split add: nat_diff_split simp add: add_mult_distrib)
 | 
|  |     54 | 
 | 
|  |     55 | lemma nat_le_add_iff2:
 | 
|  |     56 |      "i <= (j::nat) ==> (i*u + m <= j*u + n) = (m <= (j-i)*u + n)"
 | 
|  |     57 | by (auto split add: nat_diff_split simp add: add_mult_distrib)
 | 
|  |     58 | 
 | 
|  |     59 | text {* For @{text cancel_numeral_factors} *}
 | 
|  |     60 | 
 | 
|  |     61 | lemma nat_mult_le_cancel1: "(0::nat) < k ==> (k*m <= k*n) = (m<=n)"
 | 
|  |     62 | by auto
 | 
|  |     63 | 
 | 
|  |     64 | lemma nat_mult_less_cancel1: "(0::nat) < k ==> (k*m < k*n) = (m<n)"
 | 
|  |     65 | by auto
 | 
|  |     66 | 
 | 
|  |     67 | lemma nat_mult_eq_cancel1: "(0::nat) < k ==> (k*m = k*n) = (m=n)"
 | 
|  |     68 | by auto
 | 
|  |     69 | 
 | 
|  |     70 | lemma nat_mult_div_cancel1: "(0::nat) < k ==> (k*m) div (k*n) = (m div n)"
 | 
|  |     71 | by auto
 | 
|  |     72 | 
 | 
|  |     73 | lemma nat_mult_dvd_cancel_disj[simp]:
 | 
|  |     74 |   "(k*m) dvd (k*n) = (k=0 | m dvd (n::nat))"
 | 
|  |     75 | by(auto simp: dvd_eq_mod_eq_0 mod_mult_distrib2[symmetric])
 | 
|  |     76 | 
 | 
|  |     77 | lemma nat_mult_dvd_cancel1: "0 < k \<Longrightarrow> (k*m) dvd (k*n::nat) = (m dvd n)"
 | 
|  |     78 | by(auto)
 | 
|  |     79 | 
 | 
|  |     80 | text {* For @{text cancel_factor} *}
 | 
|  |     81 | 
 | 
|  |     82 | lemma nat_mult_le_cancel_disj: "(k*m <= k*n) = ((0::nat) < k --> m<=n)"
 | 
|  |     83 | by auto
 | 
|  |     84 | 
 | 
|  |     85 | lemma nat_mult_less_cancel_disj: "(k*m < k*n) = ((0::nat) < k & m<n)"
 | 
|  |     86 | by auto
 | 
|  |     87 | 
 | 
|  |     88 | lemma nat_mult_eq_cancel_disj: "(k*m = k*n) = (k = (0::nat) | m=n)"
 | 
|  |     89 | by auto
 | 
|  |     90 | 
 | 
|  |     91 | lemma nat_mult_div_cancel_disj[simp]:
 | 
|  |     92 |      "(k*m) div (k*n) = (if k = (0::nat) then 0 else m div n)"
 | 
|  |     93 | by (simp add: nat_mult_div_cancel1)
 | 
|  |     94 | 
 | 
|  |     95 | 
 | 
|  |     96 | use "Tools/numeral_simprocs.ML"
 | 
|  |     97 | 
 | 
|  |     98 | use "Tools/nat_numeral_simprocs.ML"
 | 
|  |     99 | 
 | 
|  |    100 | declaration {* 
 | 
|  |    101 |   K (Lin_Arith.add_simps (@{thms neg_simps} @ [@{thm Suc_nat_number_of}, @{thm int_nat_number_of}])
 | 
|  |    102 |   #> Lin_Arith.add_simps (@{thms ring_distribs} @ [@{thm Let_number_of}, @{thm Let_0}, @{thm Let_1},
 | 
|  |    103 |      @{thm nat_0}, @{thm nat_1},
 | 
|  |    104 |      @{thm add_nat_number_of}, @{thm diff_nat_number_of}, @{thm mult_nat_number_of},
 | 
|  |    105 |      @{thm eq_nat_number_of}, @{thm less_nat_number_of}, @{thm le_number_of_eq_not_less},
 | 
|  |    106 |      @{thm le_Suc_number_of}, @{thm le_number_of_Suc},
 | 
|  |    107 |      @{thm less_Suc_number_of}, @{thm less_number_of_Suc},
 | 
|  |    108 |      @{thm Suc_eq_number_of}, @{thm eq_number_of_Suc},
 | 
|  |    109 |      @{thm mult_Suc}, @{thm mult_Suc_right},
 | 
|  |    110 |      @{thm add_Suc}, @{thm add_Suc_right},
 | 
|  |    111 |      @{thm eq_number_of_0}, @{thm eq_0_number_of}, @{thm less_0_number_of},
 | 
|  |    112 |      @{thm of_int_number_of_eq}, @{thm of_nat_number_of_eq}, @{thm nat_number_of},
 | 
|  |    113 |      @{thm if_True}, @{thm if_False}])
 | 
|  |    114 |   #> Lin_Arith.add_simprocs (Numeral_Simprocs.assoc_fold_simproc
 | 
|  |    115 |       :: Numeral_Simprocs.combine_numerals
 | 
|  |    116 |       :: Numeral_Simprocs.cancel_numerals)
 | 
|  |    117 |   #> Lin_Arith.add_simprocs (Nat_Numeral_Simprocs.combine_numerals :: Nat_Numeral_Simprocs.cancel_numerals))
 | 
|  |    118 | *}
 | 
|  |    119 | 
 | 
|  |    120 | end |