author | haftmann |
Wed, 21 Jan 2009 23:40:23 +0100 | |
changeset 29609 | a010aab5bed0 |
parent 29337 | 450805a4a91f |
child 29652 | f4c6e546b7fe |
child 29667 | 53103fc8ffa3 |
permissions | -rw-r--r-- |
11355 | 1 |
(* Title: HOL/Library/Nat_Infinity.thy |
27110 | 2 |
Author: David von Oheimb, TU Muenchen; Florian Haftmann, TU Muenchen |
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
3 |
*) |
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
4 |
|
14706 | 5 |
header {* Natural numbers with infinity *} |
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
6 |
|
15131 | 7 |
theory Nat_Infinity |
27487 | 8 |
imports Plain "~~/src/HOL/Presburger" |
15131 | 9 |
begin |
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
10 |
|
29337 | 11 |
text {* FIXME: move to Nat.thy *} |
12 |
||
13 |
instantiation nat :: bot |
|
14 |
begin |
|
15 |
||
16 |
definition bot_nat :: nat where |
|
17 |
"bot_nat = 0" |
|
18 |
||
19 |
instance proof |
|
20 |
qed (simp add: bot_nat_def) |
|
21 |
||
27110 | 22 |
subsection {* Type definition *} |
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
23 |
|
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
24 |
text {* |
11355 | 25 |
We extend the standard natural numbers by a special value indicating |
27110 | 26 |
infinity. |
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
27 |
*} |
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
28 |
|
29337 | 29 |
end |
30 |
||
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
31 |
datatype inat = Fin nat | Infty |
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
32 |
|
21210 | 33 |
notation (xsymbols) |
19736 | 34 |
Infty ("\<infinity>") |
35 |
||
21210 | 36 |
notation (HTML output) |
19736 | 37 |
Infty ("\<infinity>") |
38 |
||
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
39 |
|
27110 | 40 |
subsection {* Constructors and numbers *} |
41 |
||
42 |
instantiation inat :: "{zero, one, number}" |
|
25594 | 43 |
begin |
44 |
||
45 |
definition |
|
27110 | 46 |
"0 = Fin 0" |
25594 | 47 |
|
48 |
definition |
|
27110 | 49 |
[code inline]: "1 = Fin 1" |
25594 | 50 |
|
51 |
definition |
|
28562 | 52 |
[code inline, code del]: "number_of k = Fin (number_of k)" |
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
53 |
|
25594 | 54 |
instance .. |
55 |
||
56 |
end |
|
57 |
||
27110 | 58 |
definition iSuc :: "inat \<Rightarrow> inat" where |
59 |
"iSuc i = (case i of Fin n \<Rightarrow> Fin (Suc n) | \<infinity> \<Rightarrow> \<infinity>)" |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
60 |
|
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
61 |
lemma Fin_0: "Fin 0 = 0" |
27110 | 62 |
by (simp add: zero_inat_def) |
63 |
||
64 |
lemma Fin_1: "Fin 1 = 1" |
|
65 |
by (simp add: one_inat_def) |
|
66 |
||
67 |
lemma Fin_number: "Fin (number_of k) = number_of k" |
|
68 |
by (simp add: number_of_inat_def) |
|
69 |
||
70 |
lemma one_iSuc: "1 = iSuc 0" |
|
71 |
by (simp add: zero_inat_def one_inat_def iSuc_def) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
72 |
|
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
73 |
lemma Infty_ne_i0 [simp]: "\<infinity> \<noteq> 0" |
27110 | 74 |
by (simp add: zero_inat_def) |
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
75 |
|
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
76 |
lemma i0_ne_Infty [simp]: "0 \<noteq> \<infinity>" |
27110 | 77 |
by (simp add: zero_inat_def) |
78 |
||
79 |
lemma zero_inat_eq [simp]: |
|
80 |
"number_of k = (0\<Colon>inat) \<longleftrightarrow> number_of k = (0\<Colon>nat)" |
|
81 |
"(0\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (0\<Colon>nat)" |
|
82 |
unfolding zero_inat_def number_of_inat_def by simp_all |
|
83 |
||
84 |
lemma one_inat_eq [simp]: |
|
85 |
"number_of k = (1\<Colon>inat) \<longleftrightarrow> number_of k = (1\<Colon>nat)" |
|
86 |
"(1\<Colon>inat) = number_of k \<longleftrightarrow> number_of k = (1\<Colon>nat)" |
|
87 |
unfolding one_inat_def number_of_inat_def by simp_all |
|
88 |
||
89 |
lemma zero_one_inat_neq [simp]: |
|
90 |
"\<not> 0 = (1\<Colon>inat)" |
|
91 |
"\<not> 1 = (0\<Colon>inat)" |
|
92 |
unfolding zero_inat_def one_inat_def by simp_all |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
93 |
|
27110 | 94 |
lemma Infty_ne_i1 [simp]: "\<infinity> \<noteq> 1" |
95 |
by (simp add: one_inat_def) |
|
96 |
||
97 |
lemma i1_ne_Infty [simp]: "1 \<noteq> \<infinity>" |
|
98 |
by (simp add: one_inat_def) |
|
99 |
||
100 |
lemma Infty_ne_number [simp]: "\<infinity> \<noteq> number_of k" |
|
101 |
by (simp add: number_of_inat_def) |
|
102 |
||
103 |
lemma number_ne_Infty [simp]: "number_of k \<noteq> \<infinity>" |
|
104 |
by (simp add: number_of_inat_def) |
|
105 |
||
106 |
lemma iSuc_Fin: "iSuc (Fin n) = Fin (Suc n)" |
|
107 |
by (simp add: iSuc_def) |
|
108 |
||
109 |
lemma iSuc_number_of: "iSuc (number_of k) = Fin (Suc (number_of k))" |
|
110 |
by (simp add: iSuc_Fin number_of_inat_def) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
111 |
|
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
112 |
lemma iSuc_Infty [simp]: "iSuc \<infinity> = \<infinity>" |
27110 | 113 |
by (simp add: iSuc_def) |
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
114 |
|
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
115 |
lemma iSuc_ne_0 [simp]: "iSuc n \<noteq> 0" |
27110 | 116 |
by (simp add: iSuc_def zero_inat_def split: inat.splits) |
117 |
||
118 |
lemma zero_ne_iSuc [simp]: "0 \<noteq> iSuc n" |
|
119 |
by (rule iSuc_ne_0 [symmetric]) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
120 |
|
27110 | 121 |
lemma iSuc_inject [simp]: "iSuc m = iSuc n \<longleftrightarrow> m = n" |
122 |
by (simp add: iSuc_def split: inat.splits) |
|
123 |
||
124 |
lemma number_of_inat_inject [simp]: |
|
125 |
"(number_of k \<Colon> inat) = number_of l \<longleftrightarrow> (number_of k \<Colon> nat) = number_of l" |
|
126 |
by (simp add: number_of_inat_def) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
127 |
|
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
128 |
|
27110 | 129 |
subsection {* Addition *} |
130 |
||
131 |
instantiation inat :: comm_monoid_add |
|
132 |
begin |
|
133 |
||
134 |
definition |
|
135 |
[code del]: "m + n = (case m of \<infinity> \<Rightarrow> \<infinity> | Fin m \<Rightarrow> (case n of \<infinity> \<Rightarrow> \<infinity> | Fin n \<Rightarrow> Fin (m + n)))" |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
136 |
|
27110 | 137 |
lemma plus_inat_simps [simp, code]: |
138 |
"Fin m + Fin n = Fin (m + n)" |
|
139 |
"\<infinity> + q = \<infinity>" |
|
140 |
"q + \<infinity> = \<infinity>" |
|
141 |
by (simp_all add: plus_inat_def split: inat.splits) |
|
142 |
||
143 |
instance proof |
|
144 |
fix n m q :: inat |
|
145 |
show "n + m + q = n + (m + q)" |
|
146 |
by (cases n, auto, cases m, auto, cases q, auto) |
|
147 |
show "n + m = m + n" |
|
148 |
by (cases n, auto, cases m, auto) |
|
149 |
show "0 + n = n" |
|
150 |
by (cases n) (simp_all add: zero_inat_def) |
|
26089 | 151 |
qed |
152 |
||
27110 | 153 |
end |
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
154 |
|
27110 | 155 |
lemma plus_inat_0 [simp]: |
156 |
"0 + (q\<Colon>inat) = q" |
|
157 |
"(q\<Colon>inat) + 0 = q" |
|
158 |
by (simp_all add: plus_inat_def zero_inat_def split: inat.splits) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
159 |
|
27110 | 160 |
lemma plus_inat_number [simp]: |
29012 | 161 |
"(number_of k \<Colon> inat) + number_of l = (if k < Int.Pls then number_of l |
162 |
else if l < Int.Pls then number_of k else number_of (k + l))" |
|
27110 | 163 |
unfolding number_of_inat_def plus_inat_simps nat_arith(1) if_distrib [symmetric, of _ Fin] .. |
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
164 |
|
27110 | 165 |
lemma iSuc_number [simp]: |
166 |
"iSuc (number_of k) = (if neg (number_of k \<Colon> int) then 1 else number_of (Int.succ k))" |
|
167 |
unfolding iSuc_number_of |
|
168 |
unfolding one_inat_def number_of_inat_def Suc_nat_number_of if_distrib [symmetric] .. |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
169 |
|
27110 | 170 |
lemma iSuc_plus_1: |
171 |
"iSuc n = n + 1" |
|
172 |
by (cases n) (simp_all add: iSuc_Fin one_inat_def) |
|
173 |
||
174 |
lemma plus_1_iSuc: |
|
175 |
"1 + q = iSuc q" |
|
176 |
"q + 1 = iSuc q" |
|
177 |
unfolding iSuc_plus_1 by (simp_all add: add_ac) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
178 |
|
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
179 |
|
29014 | 180 |
subsection {* Multiplication *} |
181 |
||
182 |
instantiation inat :: comm_semiring_1 |
|
183 |
begin |
|
184 |
||
185 |
definition |
|
186 |
times_inat_def [code del]: |
|
187 |
"m * n = (case m of \<infinity> \<Rightarrow> if n = 0 then 0 else \<infinity> | Fin m \<Rightarrow> |
|
188 |
(case n of \<infinity> \<Rightarrow> if m = 0 then 0 else \<infinity> | Fin n \<Rightarrow> Fin (m * n)))" |
|
189 |
||
190 |
lemma times_inat_simps [simp, code]: |
|
191 |
"Fin m * Fin n = Fin (m * n)" |
|
192 |
"\<infinity> * \<infinity> = \<infinity>" |
|
193 |
"\<infinity> * Fin n = (if n = 0 then 0 else \<infinity>)" |
|
194 |
"Fin m * \<infinity> = (if m = 0 then 0 else \<infinity>)" |
|
195 |
unfolding times_inat_def zero_inat_def |
|
196 |
by (simp_all split: inat.split) |
|
197 |
||
198 |
instance proof |
|
199 |
fix a b c :: inat |
|
200 |
show "(a * b) * c = a * (b * c)" |
|
201 |
unfolding times_inat_def zero_inat_def |
|
202 |
by (simp split: inat.split) |
|
203 |
show "a * b = b * a" |
|
204 |
unfolding times_inat_def zero_inat_def |
|
205 |
by (simp split: inat.split) |
|
206 |
show "1 * a = a" |
|
207 |
unfolding times_inat_def zero_inat_def one_inat_def |
|
208 |
by (simp split: inat.split) |
|
209 |
show "(a + b) * c = a * c + b * c" |
|
210 |
unfolding times_inat_def zero_inat_def |
|
211 |
by (simp split: inat.split add: left_distrib) |
|
212 |
show "0 * a = 0" |
|
213 |
unfolding times_inat_def zero_inat_def |
|
214 |
by (simp split: inat.split) |
|
215 |
show "a * 0 = 0" |
|
216 |
unfolding times_inat_def zero_inat_def |
|
217 |
by (simp split: inat.split) |
|
218 |
show "(0::inat) \<noteq> 1" |
|
219 |
unfolding zero_inat_def one_inat_def |
|
220 |
by simp |
|
221 |
qed |
|
222 |
||
223 |
end |
|
224 |
||
225 |
lemma mult_iSuc: "iSuc m * n = n + m * n" |
|
226 |
unfolding iSuc_plus_1 by (simp add: ring_simps) |
|
227 |
||
228 |
lemma mult_iSuc_right: "m * iSuc n = m + m * n" |
|
229 |
unfolding iSuc_plus_1 by (simp add: ring_simps) |
|
230 |
||
29023 | 231 |
lemma of_nat_eq_Fin: "of_nat n = Fin n" |
232 |
apply (induct n) |
|
233 |
apply (simp add: Fin_0) |
|
234 |
apply (simp add: plus_1_iSuc iSuc_Fin) |
|
235 |
done |
|
236 |
||
237 |
instance inat :: semiring_char_0 |
|
238 |
by default (simp add: of_nat_eq_Fin) |
|
239 |
||
29014 | 240 |
|
27110 | 241 |
subsection {* Ordering *} |
242 |
||
243 |
instantiation inat :: ordered_ab_semigroup_add |
|
244 |
begin |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
245 |
|
27110 | 246 |
definition |
247 |
[code del]: "m \<le> n = (case n of Fin n1 \<Rightarrow> (case m of Fin m1 \<Rightarrow> m1 \<le> n1 | \<infinity> \<Rightarrow> False) |
|
248 |
| \<infinity> \<Rightarrow> True)" |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
249 |
|
27110 | 250 |
definition |
251 |
[code del]: "m < n = (case m of Fin m1 \<Rightarrow> (case n of Fin n1 \<Rightarrow> m1 < n1 | \<infinity> \<Rightarrow> True) |
|
252 |
| \<infinity> \<Rightarrow> False)" |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
253 |
|
27110 | 254 |
lemma inat_ord_simps [simp]: |
255 |
"Fin m \<le> Fin n \<longleftrightarrow> m \<le> n" |
|
256 |
"Fin m < Fin n \<longleftrightarrow> m < n" |
|
257 |
"q \<le> \<infinity>" |
|
258 |
"q < \<infinity> \<longleftrightarrow> q \<noteq> \<infinity>" |
|
259 |
"\<infinity> \<le> q \<longleftrightarrow> q = \<infinity>" |
|
260 |
"\<infinity> < q \<longleftrightarrow> False" |
|
261 |
by (simp_all add: less_eq_inat_def less_inat_def split: inat.splits) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
262 |
|
27110 | 263 |
lemma inat_ord_code [code]: |
264 |
"Fin m \<le> Fin n \<longleftrightarrow> m \<le> n" |
|
265 |
"Fin m < Fin n \<longleftrightarrow> m < n" |
|
266 |
"q \<le> \<infinity> \<longleftrightarrow> True" |
|
267 |
"Fin m < \<infinity> \<longleftrightarrow> True" |
|
268 |
"\<infinity> \<le> Fin n \<longleftrightarrow> False" |
|
269 |
"\<infinity> < q \<longleftrightarrow> False" |
|
270 |
by simp_all |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
271 |
|
27110 | 272 |
instance by default |
273 |
(auto simp add: less_eq_inat_def less_inat_def plus_inat_def split: inat.splits) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
274 |
|
27110 | 275 |
end |
276 |
||
29014 | 277 |
instance inat :: pordered_comm_semiring |
278 |
proof |
|
279 |
fix a b c :: inat |
|
280 |
assume "a \<le> b" and "0 \<le> c" |
|
281 |
thus "c * a \<le> c * b" |
|
282 |
unfolding times_inat_def less_eq_inat_def zero_inat_def |
|
283 |
by (simp split: inat.splits) |
|
284 |
qed |
|
285 |
||
27110 | 286 |
lemma inat_ord_number [simp]: |
287 |
"(number_of m \<Colon> inat) \<le> number_of n \<longleftrightarrow> (number_of m \<Colon> nat) \<le> number_of n" |
|
288 |
"(number_of m \<Colon> inat) < number_of n \<longleftrightarrow> (number_of m \<Colon> nat) < number_of n" |
|
289 |
by (simp_all add: number_of_inat_def) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
290 |
|
27110 | 291 |
lemma i0_lb [simp]: "(0\<Colon>inat) \<le> n" |
292 |
by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
293 |
|
27110 | 294 |
lemma i0_neq [simp]: "n \<le> (0\<Colon>inat) \<longleftrightarrow> n = 0" |
295 |
by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) |
|
296 |
||
297 |
lemma Infty_ileE [elim!]: "\<infinity> \<le> Fin m \<Longrightarrow> R" |
|
298 |
by (simp add: zero_inat_def less_eq_inat_def split: inat.splits) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
299 |
|
27110 | 300 |
lemma Infty_ilessE [elim!]: "\<infinity> < Fin m \<Longrightarrow> R" |
301 |
by simp |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
302 |
|
27110 | 303 |
lemma not_ilessi0 [simp]: "\<not> n < (0\<Colon>inat)" |
304 |
by (simp add: zero_inat_def less_inat_def split: inat.splits) |
|
305 |
||
306 |
lemma i0_eq [simp]: "(0\<Colon>inat) < n \<longleftrightarrow> n \<noteq> 0" |
|
307 |
by (simp add: zero_inat_def less_inat_def split: inat.splits) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
308 |
|
27110 | 309 |
lemma iSuc_ile_mono [simp]: "iSuc n \<le> iSuc m \<longleftrightarrow> n \<le> m" |
310 |
by (simp add: iSuc_def less_eq_inat_def split: inat.splits) |
|
311 |
||
312 |
lemma iSuc_mono [simp]: "iSuc n < iSuc m \<longleftrightarrow> n < m" |
|
313 |
by (simp add: iSuc_def less_inat_def split: inat.splits) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
314 |
|
27110 | 315 |
lemma ile_iSuc [simp]: "n \<le> iSuc n" |
316 |
by (simp add: iSuc_def less_eq_inat_def split: inat.splits) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
317 |
|
11355 | 318 |
lemma not_iSuc_ilei0 [simp]: "\<not> iSuc n \<le> 0" |
27110 | 319 |
by (simp add: zero_inat_def iSuc_def less_eq_inat_def split: inat.splits) |
320 |
||
321 |
lemma i0_iless_iSuc [simp]: "0 < iSuc n" |
|
322 |
by (simp add: zero_inat_def iSuc_def less_inat_def split: inat.splits) |
|
323 |
||
324 |
lemma ileI1: "m < n \<Longrightarrow> iSuc m \<le> n" |
|
325 |
by (simp add: iSuc_def less_eq_inat_def less_inat_def split: inat.splits) |
|
326 |
||
327 |
lemma Suc_ile_eq: "Fin (Suc m) \<le> n \<longleftrightarrow> Fin m < n" |
|
328 |
by (cases n) auto |
|
329 |
||
330 |
lemma iless_Suc_eq [simp]: "Fin m < iSuc n \<longleftrightarrow> Fin m \<le> n" |
|
331 |
by (auto simp add: iSuc_def less_inat_def split: inat.splits) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
332 |
|
27110 | 333 |
lemma min_inat_simps [simp]: |
334 |
"min (Fin m) (Fin n) = Fin (min m n)" |
|
335 |
"min q 0 = 0" |
|
336 |
"min 0 q = 0" |
|
337 |
"min q \<infinity> = q" |
|
338 |
"min \<infinity> q = q" |
|
339 |
by (auto simp add: min_def) |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
340 |
|
27110 | 341 |
lemma max_inat_simps [simp]: |
342 |
"max (Fin m) (Fin n) = Fin (max m n)" |
|
343 |
"max q 0 = q" |
|
344 |
"max 0 q = q" |
|
345 |
"max q \<infinity> = \<infinity>" |
|
346 |
"max \<infinity> q = \<infinity>" |
|
347 |
by (simp_all add: max_def) |
|
348 |
||
349 |
lemma Fin_ile: "n \<le> Fin m \<Longrightarrow> \<exists>k. n = Fin k" |
|
350 |
by (cases n) simp_all |
|
351 |
||
352 |
lemma Fin_iless: "n < Fin m \<Longrightarrow> \<exists>k. n = Fin k" |
|
353 |
by (cases n) simp_all |
|
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
354 |
|
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
355 |
lemma chain_incr: "\<forall>i. \<exists>j. Y i < Y j ==> \<exists>j. Fin k < Y j" |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
356 |
apply (induct_tac k) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
357 |
apply (simp (no_asm) only: Fin_0) |
27110 | 358 |
apply (fast intro: le_less_trans [OF i0_lb]) |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
359 |
apply (erule exE) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
360 |
apply (drule spec) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
361 |
apply (erule exE) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
362 |
apply (drule ileI1) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
363 |
apply (rule iSuc_Fin [THEN subst]) |
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
364 |
apply (rule exI) |
27110 | 365 |
apply (erule (1) le_less_trans) |
25134
3d4953e88449
Eliminated most of the neq0_conv occurrences. As a result, many
nipkow
parents:
25112
diff
changeset
|
366 |
done |
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
367 |
|
29337 | 368 |
instantiation inat :: "{bot, top}" |
369 |
begin |
|
370 |
||
371 |
definition bot_inat :: inat where |
|
372 |
"bot_inat = 0" |
|
373 |
||
374 |
definition top_inat :: inat where |
|
375 |
"top_inat = \<infinity>" |
|
376 |
||
377 |
instance proof |
|
378 |
qed (simp_all add: bot_inat_def top_inat_def) |
|
379 |
||
380 |
end |
|
381 |
||
26089 | 382 |
|
27110 | 383 |
subsection {* Well-ordering *} |
26089 | 384 |
|
385 |
lemma less_FinE: |
|
386 |
"[| n < Fin m; !!k. n = Fin k ==> k < m ==> P |] ==> P" |
|
387 |
by (induct n) auto |
|
388 |
||
389 |
lemma less_InftyE: |
|
390 |
"[| n < Infty; !!k. n = Fin k ==> P |] ==> P" |
|
391 |
by (induct n) auto |
|
392 |
||
393 |
lemma inat_less_induct: |
|
394 |
assumes prem: "!!n. \<forall>m::inat. m < n --> P m ==> P n" shows "P n" |
|
395 |
proof - |
|
396 |
have P_Fin: "!!k. P (Fin k)" |
|
397 |
apply (rule nat_less_induct) |
|
398 |
apply (rule prem, clarify) |
|
399 |
apply (erule less_FinE, simp) |
|
400 |
done |
|
401 |
show ?thesis |
|
402 |
proof (induct n) |
|
403 |
fix nat |
|
404 |
show "P (Fin nat)" by (rule P_Fin) |
|
405 |
next |
|
406 |
show "P Infty" |
|
407 |
apply (rule prem, clarify) |
|
408 |
apply (erule less_InftyE) |
|
409 |
apply (simp add: P_Fin) |
|
410 |
done |
|
411 |
qed |
|
412 |
qed |
|
413 |
||
414 |
instance inat :: wellorder |
|
415 |
proof |
|
27823 | 416 |
fix P and n |
417 |
assume hyp: "(\<And>n\<Colon>inat. (\<And>m\<Colon>inat. m < n \<Longrightarrow> P m) \<Longrightarrow> P n)" |
|
418 |
show "P n" by (blast intro: inat_less_induct hyp) |
|
26089 | 419 |
qed |
420 |
||
27110 | 421 |
|
422 |
subsection {* Traditional theorem names *} |
|
423 |
||
424 |
lemmas inat_defs = zero_inat_def one_inat_def number_of_inat_def iSuc_def |
|
425 |
plus_inat_def less_eq_inat_def less_inat_def |
|
426 |
||
427 |
lemmas inat_splits = inat.splits |
|
428 |
||
11351
c5c403d30c77
added Library/Nat_Infinity.thy and Library/Continuity.thy
oheimb
parents:
diff
changeset
|
429 |
end |