| author | haftmann | 
| Tue, 09 Nov 2010 14:02:13 +0100 | |
| changeset 40465 | 2989f9f3aa10 | 
| parent 40327 | 1dfdbd66093a | 
| child 40502 | 8e92772bc0e8 | 
| permissions | -rw-r--r-- | 
| 15600 | 1 | (* Title: HOLCF/Ssum.thy | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 2 | Author: Franz Regensburger and Brian Huffman | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 3 | *) | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 4 | |
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 5 | header {* The type of strict sums *}
 | 
| 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 6 | |
| 15577 | 7 | theory Ssum | 
| 31115 | 8 | imports Tr | 
| 15577 | 9 | begin | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 10 | |
| 36452 | 11 | default_sort pcpo | 
| 16083 
fca38c55c8fa
added defaultsort declaration, moved cpair_less to Cprod.thy
 huffman parents: 
16070diff
changeset | 12 | |
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 13 | subsection {* Definition of strict sum type *}
 | 
| 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 14 | |
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 15 | pcpodef ('a, 'b) ssum (infixr "++" 10) = 
 | 
| 40080 | 16 |   "{p :: tr \<times> ('a \<times> 'b). p = \<bottom> \<or>
 | 
| 17 | (fst p = TT \<and> fst (snd p) \<noteq> \<bottom> \<and> snd (snd p) = \<bottom>) \<or> | |
| 18 | (fst p = FF \<and> fst (snd p) = \<bottom> \<and> snd (snd p) \<noteq> \<bottom>) }" | |
| 29063 
7619f0561cd7
pcpodef package: state two goals, instead of encoded conjunction;
 wenzelm parents: 
27310diff
changeset | 19 | by simp_all | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 20 | |
| 35525 | 21 | instance ssum :: ("{chfin,pcpo}", "{chfin,pcpo}") chfin
 | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 22 | by (rule typedef_chfin [OF type_definition_ssum below_ssum_def]) | 
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 23 | |
| 35427 | 24 | type_notation (xsymbols) | 
| 35547 | 25 |   ssum  ("(_ \<oplus>/ _)" [21, 20] 20)
 | 
| 35427 | 26 | type_notation (HTML output) | 
| 35547 | 27 |   ssum  ("(_ \<oplus>/ _)" [21, 20] 20)
 | 
| 28 | ||
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 29 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 30 | subsection {* Definitions of constructors *}
 | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 31 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 32 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 33 |   sinl :: "'a \<rightarrow> ('a ++ 'b)" where
 | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 34 | "sinl = (\<Lambda> a. Abs_ssum (strict\<cdot>a\<cdot>TT, a, \<bottom>))" | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 35 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 36 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 37 |   sinr :: "'b \<rightarrow> ('a ++ 'b)" where
 | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 38 | "sinr = (\<Lambda> b. Abs_ssum (strict\<cdot>b\<cdot>FF, \<bottom>, b))" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 39 | |
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 40 | lemma sinl_ssum: "(strict\<cdot>a\<cdot>TT, a, \<bottom>) \<in> ssum" | 
| 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 41 | by (simp add: ssum_def strict_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 42 | |
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 43 | lemma sinr_ssum: "(strict\<cdot>b\<cdot>FF, \<bottom>, b) \<in> ssum" | 
| 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 44 | by (simp add: ssum_def strict_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 45 | |
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 46 | lemma Rep_ssum_sinl: "Rep_ssum (sinl\<cdot>a) = (strict\<cdot>a\<cdot>TT, a, \<bottom>)" | 
| 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 47 | by (simp add: sinl_def cont_Abs_ssum Abs_ssum_inverse sinl_ssum) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 48 | |
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 49 | lemma Rep_ssum_sinr: "Rep_ssum (sinr\<cdot>b) = (strict\<cdot>b\<cdot>FF, \<bottom>, b)" | 
| 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 50 | by (simp add: sinr_def cont_Abs_ssum Abs_ssum_inverse sinr_ssum) | 
| 40092 
baf5953615da
do proofs using Rep_Sprod_simps, Rep_Ssum_simps; remove unused lemmas
 huffman parents: 
40089diff
changeset | 51 | |
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 52 | lemmas Rep_ssum_simps = | 
| 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 53 | Rep_ssum_inject [symmetric] below_ssum_def | 
| 40092 
baf5953615da
do proofs using Rep_Sprod_simps, Rep_Ssum_simps; remove unused lemmas
 huffman parents: 
40089diff
changeset | 54 | Pair_fst_snd_eq below_prod_def | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 55 | Rep_ssum_strict Rep_ssum_sinl Rep_ssum_sinr | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 56 | |
| 35900 
aa5dfb03eb1e
remove LaTeX hyperref warnings by avoiding antiquotations within section headings
 huffman parents: 
35783diff
changeset | 57 | subsection {* Properties of \emph{sinl} and \emph{sinr} *}
 | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 58 | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 59 | text {* Ordering *}
 | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 60 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 61 | lemma sinl_below [simp]: "(sinl\<cdot>x \<sqsubseteq> sinl\<cdot>y) = (x \<sqsubseteq> y)" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 62 | by (simp add: Rep_ssum_simps strict_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 63 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 64 | lemma sinr_below [simp]: "(sinr\<cdot>x \<sqsubseteq> sinr\<cdot>y) = (x \<sqsubseteq> y)" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 65 | by (simp add: Rep_ssum_simps strict_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 66 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 67 | lemma sinl_below_sinr [simp]: "(sinl\<cdot>x \<sqsubseteq> sinr\<cdot>y) = (x = \<bottom>)" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 68 | by (simp add: Rep_ssum_simps strict_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 69 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 70 | lemma sinr_below_sinl [simp]: "(sinr\<cdot>x \<sqsubseteq> sinl\<cdot>y) = (x = \<bottom>)" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 71 | by (simp add: Rep_ssum_simps strict_conv_if) | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 72 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 73 | text {* Equality *}
 | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 74 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 75 | lemma sinl_eq [simp]: "(sinl\<cdot>x = sinl\<cdot>y) = (x = y)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 76 | by (simp add: po_eq_conv) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 77 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 78 | lemma sinr_eq [simp]: "(sinr\<cdot>x = sinr\<cdot>y) = (x = y)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 79 | by (simp add: po_eq_conv) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 80 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 81 | lemma sinl_eq_sinr [simp]: "(sinl\<cdot>x = sinr\<cdot>y) = (x = \<bottom> \<and> y = \<bottom>)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 82 | by (subst po_eq_conv, simp) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 83 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 84 | lemma sinr_eq_sinl [simp]: "(sinr\<cdot>x = sinl\<cdot>y) = (x = \<bottom> \<and> y = \<bottom>)" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 85 | by (subst po_eq_conv, simp) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 86 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 87 | lemma sinl_inject: "sinl\<cdot>x = sinl\<cdot>y \<Longrightarrow> x = y" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 88 | by (rule sinl_eq [THEN iffD1]) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 89 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 90 | lemma sinr_inject: "sinr\<cdot>x = sinr\<cdot>y \<Longrightarrow> x = y" | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 91 | by (rule sinr_eq [THEN iffD1]) | 
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 92 | |
| 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 93 | text {* Strictness *}
 | 
| 17837 | 94 | |
| 16211 
faa9691da2bc
changed to use new contI; renamed strict, defined, and inject lemmas
 huffman parents: 
16083diff
changeset | 95 | lemma sinl_strict [simp]: "sinl\<cdot>\<bottom> = \<bottom>" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 96 | by (simp add: Rep_ssum_simps) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 97 | |
| 16211 
faa9691da2bc
changed to use new contI; renamed strict, defined, and inject lemmas
 huffman parents: 
16083diff
changeset | 98 | lemma sinr_strict [simp]: "sinr\<cdot>\<bottom> = \<bottom>" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 99 | by (simp add: Rep_ssum_simps) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 100 | |
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40098diff
changeset | 101 | lemma sinl_bottom_iff [simp]: "(sinl\<cdot>x = \<bottom>) = (x = \<bottom>)" | 
| 40080 | 102 | using sinl_eq [of "x" "\<bottom>"] by simp | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 103 | |
| 40321 
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
 huffman parents: 
40098diff
changeset | 104 | lemma sinr_bottom_iff [simp]: "(sinr\<cdot>x = \<bottom>) = (x = \<bottom>)" | 
| 40080 | 105 | using sinr_eq [of "x" "\<bottom>"] by simp | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 106 | |
| 40081 | 107 | lemma sinl_defined: "x \<noteq> \<bottom> \<Longrightarrow> sinl\<cdot>x \<noteq> \<bottom>" | 
| 16752 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 108 | by simp | 
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 109 | |
| 40081 | 110 | lemma sinr_defined: "x \<noteq> \<bottom> \<Longrightarrow> sinr\<cdot>x \<noteq> \<bottom>" | 
| 16752 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 111 | by simp | 
| 
270ec60cc9e8
added lemmas sinl_defined_iff sinr_defined_iff, sinl_eq_sinr, sinr_eq_sinl; added more simp rules; cleaned up
 huffman parents: 
16742diff
changeset | 112 | |
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 113 | text {* Compactness *}
 | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 114 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 115 | lemma compact_sinl: "compact x \<Longrightarrow> compact (sinl\<cdot>x)" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 116 | by (rule compact_ssum, simp add: Rep_ssum_sinl) | 
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 117 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 118 | lemma compact_sinr: "compact x \<Longrightarrow> compact (sinr\<cdot>x)" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 119 | by (rule compact_ssum, simp add: Rep_ssum_sinr) | 
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 120 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 121 | lemma compact_sinlD: "compact (sinl\<cdot>x) \<Longrightarrow> compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 122 | unfolding compact_def | 
| 40327 | 123 | by (drule adm_subst [OF cont_Rep_cfun2 [where f=sinl]], simp) | 
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 124 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 125 | lemma compact_sinrD: "compact (sinr\<cdot>x) \<Longrightarrow> compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 126 | unfolding compact_def | 
| 40327 | 127 | by (drule adm_subst [OF cont_Rep_cfun2 [where f=sinr]], simp) | 
| 25882 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 128 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 129 | lemma compact_sinl_iff [simp]: "compact (sinl\<cdot>x) = compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 130 | by (safe elim!: compact_sinl compact_sinlD) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 131 | |
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 132 | lemma compact_sinr_iff [simp]: "compact (sinr\<cdot>x) = compact x" | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 133 | by (safe elim!: compact_sinr compact_sinrD) | 
| 
c58e380d9f7d
new compactness lemmas; removed duplicated flat_less_iff
 huffman parents: 
25827diff
changeset | 134 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 135 | subsection {* Case analysis *}
 | 
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 136 | |
| 35783 | 137 | lemma ssumE [case_names bottom sinl sinr, cases type: ssum]: | 
| 40080 | 138 | obtains "p = \<bottom>" | 
| 139 | | x where "p = sinl\<cdot>x" and "x \<noteq> \<bottom>" | |
| 140 | | y where "p = sinr\<cdot>y" and "y \<noteq> \<bottom>" | |
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 141 | using Rep_ssum [of p] by (auto simp add: ssum_def Rep_ssum_simps) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 142 | |
| 35783 | 143 | lemma ssum_induct [case_names bottom sinl sinr, induct type: ssum]: | 
| 25756 | 144 | "\<lbrakk>P \<bottom>; | 
| 145 | \<And>x. x \<noteq> \<bottom> \<Longrightarrow> P (sinl\<cdot>x); | |
| 146 | \<And>y. y \<noteq> \<bottom> \<Longrightarrow> P (sinr\<cdot>y)\<rbrakk> \<Longrightarrow> P x" | |
| 147 | by (cases x, simp_all) | |
| 148 | ||
| 35783 | 149 | lemma ssumE2 [case_names sinl sinr]: | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 150 | "\<lbrakk>\<And>x. p = sinl\<cdot>x \<Longrightarrow> Q; \<And>y. p = sinr\<cdot>y \<Longrightarrow> Q\<rbrakk> \<Longrightarrow> Q" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 151 | by (cases p, simp only: sinl_strict [symmetric], simp, simp) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 152 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 153 | lemma below_sinlD: "p \<sqsubseteq> sinl\<cdot>x \<Longrightarrow> \<exists>y. p = sinl\<cdot>y \<and> y \<sqsubseteq> x" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 154 | by (cases p, rule_tac x="\<bottom>" in exI, simp_all) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 155 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
29530diff
changeset | 156 | lemma below_sinrD: "p \<sqsubseteq> sinr\<cdot>x \<Longrightarrow> \<exists>y. p = sinr\<cdot>y \<and> y \<sqsubseteq> x" | 
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 157 | by (cases p, rule_tac x="\<bottom>" in exI, simp_all) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 158 | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 159 | subsection {* Case analysis combinator *}
 | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 160 | |
| 25131 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 161 | definition | 
| 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 wenzelm parents: 
19440diff
changeset | 162 |   sscase :: "('a \<rightarrow> 'c) \<rightarrow> ('b \<rightarrow> 'c) \<rightarrow> ('a ++ 'b) \<rightarrow> 'c" where
 | 
| 40322 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
40321diff
changeset | 163 | "sscase = (\<Lambda> f g s. (\<lambda>(t, x, y). If t then f\<cdot>x else g\<cdot>y) (Rep_ssum s))" | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 164 | |
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 165 | translations | 
| 26046 | 166 | "case s of XCONST sinl\<cdot>x \<Rightarrow> t1 | XCONST sinr\<cdot>y \<Rightarrow> t2" == "CONST sscase\<cdot>(\<Lambda> x. t1)\<cdot>(\<Lambda> y. t2)\<cdot>s" | 
| 18078 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 huffman parents: 
17837diff
changeset | 167 | |
| 
20e5a6440790
change syntax for LAM to use expressions as patterns; define LAM pattern syntax for cpair, spair, sinl, sinr, up
 huffman parents: 
17837diff
changeset | 168 | translations | 
| 26046 | 169 | "\<Lambda>(XCONST sinl\<cdot>x). t" == "CONST sscase\<cdot>(\<Lambda> x. t)\<cdot>\<bottom>" | 
| 170 | "\<Lambda>(XCONST sinr\<cdot>y). t" == "CONST sscase\<cdot>\<bottom>\<cdot>(\<Lambda> y. t)" | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 171 | |
| 25740 
de65baf89106
changed type definition to make Iwhen and reasoning about chains unnecessary;
 huffman parents: 
25131diff
changeset | 172 | lemma beta_sscase: | 
| 40322 
707eb30e8a53
make syntax of continuous if-then-else consistent with HOL if-then-else
 huffman parents: 
40321diff
changeset | 173 | "sscase\<cdot>f\<cdot>g\<cdot>s = (\<lambda>(t, x, y). If t then f\<cdot>x else g\<cdot>y) (Rep_ssum s)" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 174 | unfolding sscase_def by (simp add: cont_Rep_ssum [THEN cont_compose]) | 
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 175 | |
| 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 176 | lemma sscase1 [simp]: "sscase\<cdot>f\<cdot>g\<cdot>\<bottom> = \<bottom>" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 177 | unfolding beta_sscase by (simp add: Rep_ssum_strict) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 178 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 179 | lemma sscase2 [simp]: "x \<noteq> \<bottom> \<Longrightarrow> sscase\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = f\<cdot>x" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 180 | unfolding beta_sscase by (simp add: Rep_ssum_sinl) | 
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 181 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 182 | lemma sscase3 [simp]: "y \<noteq> \<bottom> \<Longrightarrow> sscase\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>y) = g\<cdot>y" | 
| 40098 
9dbb01456031
use default names sprod/Rep_sprod/Abs_sprod from pcpodef instead of Sprod/Rep_Sprod/Abs_Sprod; similarly for ssum
 huffman parents: 
40092diff
changeset | 183 | unfolding beta_sscase by (simp add: Rep_ssum_sinr) | 
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 184 | |
| 16060 
833be7f71ecd
Simplified version of strict sum theory, using TypedefPcpo
 huffman parents: 
15606diff
changeset | 185 | lemma sscase4 [simp]: "sscase\<cdot>sinl\<cdot>sinr\<cdot>z = z" | 
| 25756 | 186 | by (cases z, simp_all) | 
| 15593 
24d770bbc44a
reordered and arranged for document generation, cleaned up some proofs
 huffman parents: 
15577diff
changeset | 187 | |
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 188 | subsection {* Strict sum preserves flatness *}
 | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 189 | |
| 35525 | 190 | instance ssum :: (flat, flat) flat | 
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 191 | apply (intro_classes, clarify) | 
| 31115 | 192 | apply (case_tac x, simp) | 
| 193 | apply (case_tac y, simp_all add: flat_below_iff) | |
| 194 | apply (case_tac y, simp_all add: flat_below_iff) | |
| 25827 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 195 | done | 
| 
c2adeb1bae5c
new instance proofs for classes finite_po, chfin, flat
 huffman parents: 
25756diff
changeset | 196 | |
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 197 | subsection {* Map function for strict sums *}
 | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 198 | |
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 199 | definition | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 200 |   ssum_map :: "('a \<rightarrow> 'b) \<rightarrow> ('c \<rightarrow> 'd) \<rightarrow> 'a \<oplus> 'c \<rightarrow> 'b \<oplus> 'd"
 | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 201 | where | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 202 | "ssum_map = (\<Lambda> f g. sscase\<cdot>(sinl oo f)\<cdot>(sinr oo g))" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 203 | |
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 204 | lemma ssum_map_strict [simp]: "ssum_map\<cdot>f\<cdot>g\<cdot>\<bottom> = \<bottom>" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 205 | unfolding ssum_map_def by simp | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 206 | |
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 207 | lemma ssum_map_sinl [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = sinl\<cdot>(f\<cdot>x)" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 208 | unfolding ssum_map_def by simp | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 209 | |
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 210 | lemma ssum_map_sinr [simp]: "x \<noteq> \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>x) = sinr\<cdot>(g\<cdot>x)" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 211 | unfolding ssum_map_def by simp | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 212 | |
| 35491 | 213 | lemma ssum_map_sinl': "f\<cdot>\<bottom> = \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinl\<cdot>x) = sinl\<cdot>(f\<cdot>x)" | 
| 214 | by (cases "x = \<bottom>") simp_all | |
| 215 | ||
| 216 | lemma ssum_map_sinr': "g\<cdot>\<bottom> = \<bottom> \<Longrightarrow> ssum_map\<cdot>f\<cdot>g\<cdot>(sinr\<cdot>x) = sinr\<cdot>(g\<cdot>x)" | |
| 217 | by (cases "x = \<bottom>") simp_all | |
| 218 | ||
| 33808 | 219 | lemma ssum_map_ID: "ssum_map\<cdot>ID\<cdot>ID = ID" | 
| 40002 
c5b5f7a3a3b1
new theorem names: fun_below_iff, fun_belowI, cfun_eq_iff, cfun_eqI, cfun_below_iff, cfun_belowI
 huffman parents: 
39987diff
changeset | 220 | unfolding ssum_map_def by (simp add: cfun_eq_iff eta_cfun) | 
| 33808 | 221 | |
| 33587 | 222 | lemma ssum_map_map: | 
| 223 | "\<lbrakk>f1\<cdot>\<bottom> = \<bottom>; g1\<cdot>\<bottom> = \<bottom>\<rbrakk> \<Longrightarrow> | |
| 224 | ssum_map\<cdot>f1\<cdot>g1\<cdot>(ssum_map\<cdot>f2\<cdot>g2\<cdot>p) = | |
| 225 | ssum_map\<cdot>(\<Lambda> x. f1\<cdot>(f2\<cdot>x))\<cdot>(\<Lambda> x. g1\<cdot>(g2\<cdot>x))\<cdot>p" | |
| 226 | apply (induct p, simp) | |
| 227 | apply (case_tac "f2\<cdot>x = \<bottom>", simp, simp) | |
| 228 | apply (case_tac "g2\<cdot>y = \<bottom>", simp, simp) | |
| 229 | done | |
| 230 | ||
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 231 | lemma ep_pair_ssum_map: | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 232 | assumes "ep_pair e1 p1" and "ep_pair e2 p2" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 233 | shows "ep_pair (ssum_map\<cdot>e1\<cdot>e2) (ssum_map\<cdot>p1\<cdot>p2)" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 234 | proof | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 235 | interpret e1p1: pcpo_ep_pair e1 p1 unfolding pcpo_ep_pair_def by fact | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 236 | interpret e2p2: pcpo_ep_pair e2 p2 unfolding pcpo_ep_pair_def by fact | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 237 | fix x show "ssum_map\<cdot>p1\<cdot>p2\<cdot>(ssum_map\<cdot>e1\<cdot>e2\<cdot>x) = x" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 238 | by (induct x) simp_all | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 239 | fix y show "ssum_map\<cdot>e1\<cdot>e2\<cdot>(ssum_map\<cdot>p1\<cdot>p2\<cdot>y) \<sqsubseteq> y" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 240 | apply (induct y, simp) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 241 | apply (case_tac "p1\<cdot>x = \<bottom>", simp, simp add: e1p1.e_p_below) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 242 | apply (case_tac "p2\<cdot>y = \<bottom>", simp, simp add: e2p2.e_p_below) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 243 | done | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 244 | qed | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 245 | |
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 246 | lemma deflation_ssum_map: | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 247 | assumes "deflation d1" and "deflation d2" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 248 | shows "deflation (ssum_map\<cdot>d1\<cdot>d2)" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 249 | proof | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 250 | interpret d1: deflation d1 by fact | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 251 | interpret d2: deflation d2 by fact | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 252 | fix x | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 253 | show "ssum_map\<cdot>d1\<cdot>d2\<cdot>(ssum_map\<cdot>d1\<cdot>d2\<cdot>x) = ssum_map\<cdot>d1\<cdot>d2\<cdot>x" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 254 | apply (induct x, simp) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 255 | apply (case_tac "d1\<cdot>x = \<bottom>", simp, simp add: d1.idem) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 256 | apply (case_tac "d2\<cdot>y = \<bottom>", simp, simp add: d2.idem) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 257 | done | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 258 | show "ssum_map\<cdot>d1\<cdot>d2\<cdot>x \<sqsubseteq> x" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 259 | apply (induct x, simp) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 260 | apply (case_tac "d1\<cdot>x = \<bottom>", simp, simp add: d1.below) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 261 | apply (case_tac "d2\<cdot>y = \<bottom>", simp, simp add: d2.below) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 262 | done | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 263 | qed | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 264 | |
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 265 | lemma finite_deflation_ssum_map: | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 266 | assumes "finite_deflation d1" and "finite_deflation d2" | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 267 | shows "finite_deflation (ssum_map\<cdot>d1\<cdot>d2)" | 
| 39973 
c62b4ff97bfc
add lemma finite_deflation_intro
 Brian Huffman <brianh@cs.pdx.edu> parents: 
36452diff
changeset | 268 | proof (rule finite_deflation_intro) | 
| 33504 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 269 | interpret d1: finite_deflation d1 by fact | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 270 | interpret d2: finite_deflation d2 by fact | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 271 | have "deflation d1" and "deflation d2" by fact+ | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 272 | thus "deflation (ssum_map\<cdot>d1\<cdot>d2)" by (rule deflation_ssum_map) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 273 |   have "{x. ssum_map\<cdot>d1\<cdot>d2\<cdot>x = x} \<subseteq>
 | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 274 |         (\<lambda>x. sinl\<cdot>x) ` {x. d1\<cdot>x = x} \<union>
 | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 275 |         (\<lambda>x. sinr\<cdot>x) ` {x. d2\<cdot>x = x} \<union> {\<bottom>}"
 | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 276 | by (rule subsetI, case_tac x, simp_all) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 277 |   thus "finite {x. ssum_map\<cdot>d1\<cdot>d2\<cdot>x = x}"
 | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 278 | by (rule finite_subset, simp add: d1.finite_fixes d2.finite_fixes) | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 279 | qed | 
| 
b4210cc3ac97
map functions for various types, with ep_pair/deflation/finite_deflation lemmas
 huffman parents: 
32960diff
changeset | 280 | |
| 15576 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 huffman parents: diff
changeset | 281 | end |