| 
13262
 | 
     1  | 
(*<*)theory Sets = Main:(*>*)
  | 
| 
 | 
     2  | 
  | 
| 
 | 
     3  | 
section{*Sets, Functions and Relations*}
 | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
subsection{*Set Notation*}
 | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
text{*
 | 
| 
 | 
     8  | 
\begin{center}
 | 
| 
 | 
     9  | 
\begin{tabular}{ccc}
 | 
| 
 | 
    10  | 
@{term "A \<union> B"} & @{term "A \<inter> B"} & @{term "A - B"} \\
 | 
| 
 | 
    11  | 
@{term "a \<in> A"} & @{term "b \<notin> A"} \\
 | 
| 
 | 
    12  | 
@{term "{a,b}"} & @{text "{x. P x}"} \\
 | 
| 
 | 
    13  | 
@{term "\<Union> M"} & @{text "\<Union>a \<in> A. F a"}
 | 
| 
 | 
    14  | 
\end{tabular}
 | 
| 
 | 
    15  | 
\end{center}*}
 | 
| 
 | 
    16  | 
(*<*)term "A \<union> B" term "A \<inter> B" term "A - B"
  | 
| 
 | 
    17  | 
term "a \<in> A" term "b \<notin> A"
  | 
| 
 | 
    18  | 
term "{a,b}" term "{x. P x}"
 | 
| 
 | 
    19  | 
term "\<Union> M"  term "\<Union>a \<in> A. F a"(*>*)
  | 
| 
 | 
    20  | 
  | 
| 
13489
 | 
    21  | 
  | 
| 
13262
 | 
    22  | 
subsection{*Some Functions*}
 | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
text{*
 | 
| 
 | 
    25  | 
\begin{tabular}{l}
 | 
| 
 | 
    26  | 
@{thm id_def}\\
 | 
| 
 | 
    27  | 
@{thm o_def[no_vars]}\\
 | 
| 
 | 
    28  | 
@{thm image_def[no_vars]}\\
 | 
| 
 | 
    29  | 
@{thm vimage_def[no_vars]}
 | 
| 
 | 
    30  | 
\end{tabular}*}
 | 
| 
 | 
    31  | 
(*<*)thm id_def o_def[no_vars] image_def[no_vars] vimage_def[no_vars](*>*)
  | 
| 
 | 
    32  | 
  | 
| 
13489
 | 
    33  | 
  | 
| 
13262
 | 
    34  | 
subsection{*Some Relations*}
 | 
| 
 | 
    35  | 
  | 
| 
 | 
    36  | 
text{*
 | 
| 
 | 
    37  | 
\begin{tabular}{l}
 | 
| 
 | 
    38  | 
@{thm Id_def}\\
 | 
| 
 | 
    39  | 
@{thm converse_def[no_vars]}\\
 | 
| 
 | 
    40  | 
@{thm Image_def[no_vars]}\\
 | 
| 
 | 
    41  | 
@{thm rtrancl_refl[no_vars]}\\
 | 
| 
14138
 | 
    42  | 
@{thm rtrancl_into_rtrancl[no_vars]}
 | 
| 
13262
 | 
    43  | 
\end{tabular}*}
 | 
| 
 | 
    44  | 
(*<*)thm Id_def
  | 
| 
14138
 | 
    45  | 
thm converse_def[no_vars] Image_def[no_vars]
  | 
| 
13262
 | 
    46  | 
thm relpow.simps[no_vars]
  | 
| 
14138
 | 
    47  | 
thm rtrancl.intros[no_vars](*>*)
  | 
| 
13262
 | 
    48  | 
  | 
| 
13489
 | 
    49  | 
  | 
| 
13262
 | 
    50  | 
subsection{*Wellfoundedness*}
 | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
text{*
 | 
| 
 | 
    53  | 
\begin{tabular}{l}
 | 
| 
 | 
    54  | 
@{thm wf_def[no_vars]}\\
 | 
| 
 | 
    55  | 
@{thm wf_iff_no_infinite_down_chain[no_vars]}
 | 
| 
 | 
    56  | 
\end{tabular}*}
 | 
| 
 | 
    57  | 
(*<*)thm wf_def[no_vars]
  | 
| 
 | 
    58  | 
thm wf_iff_no_infinite_down_chain[no_vars](*>*)
  | 
| 
 | 
    59  | 
  | 
| 
13489
 | 
    60  | 
  | 
| 
13262
 | 
    61  | 
subsection{*Fixed Point Operators*}
 | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
text{*
 | 
| 
 | 
    64  | 
\begin{tabular}{l}
 | 
| 
 | 
    65  | 
@{thm lfp_def[no_vars]}\\
 | 
| 
 | 
    66  | 
@{thm lfp_unfold[no_vars]}\\
 | 
| 
 | 
    67  | 
@{thm lfp_induct[no_vars]}
 | 
| 
 | 
    68  | 
\end{tabular}*}
 | 
| 
14138
 | 
    69  | 
(*<*)thm lfp_def[no_vars] gfp_def[no_vars]
  | 
| 
 | 
    70  | 
thm lfp_unfold[no_vars]
  | 
| 
 | 
    71  | 
thm lfp_induct[no_vars](*>*)
  | 
| 
13262
 | 
    72  | 
  | 
| 
13489
 | 
    73  | 
  | 
| 
13262
 | 
    74  | 
subsection{*Case Study: Verified Model Checking*}
 | 
| 
 | 
    75  | 
  | 
| 
 | 
    76  | 
typedecl state
  | 
| 
 | 
    77  | 
  | 
| 
 | 
    78  | 
consts M :: "(state \<times> state)set"
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
typedecl atom
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
consts L :: "state \<Rightarrow> atom set"
  | 
| 
 | 
    83  | 
  | 
| 
 | 
    84  | 
datatype formula = Atom atom
  | 
| 
13489
 | 
    85  | 
                 | Neg formula
  | 
| 
 | 
    86  | 
                 | And formula formula
  | 
| 
 | 
    87  | 
                 | AX formula
  | 
| 
 | 
    88  | 
                 | EF formula
  | 
| 
13262
 | 
    89  | 
  | 
| 
 | 
    90  | 
consts valid :: "state \<Rightarrow> formula \<Rightarrow> bool"   ("(_ \<Turnstile> _)" [80,80] 80)
 | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
primrec
  | 
| 
 | 
    93  | 
"s \<Turnstile> Atom a  = (a \<in> L s)"
  | 
| 
 | 
    94  | 
"s \<Turnstile> Neg f   = (\<not>(s \<Turnstile> f))"
  | 
| 
 | 
    95  | 
"s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
  | 
| 
 | 
    96  | 
"s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
  | 
| 
 | 
    97  | 
"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)"
  | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
consts mc :: "formula \<Rightarrow> state set"
  | 
| 
 | 
   100  | 
primrec
  | 
| 
 | 
   101  | 
"mc(Atom a)  = {s. a \<in> L s}"
 | 
| 
 | 
   102  | 
"mc(Neg f)   = -mc f"
  | 
| 
 | 
   103  | 
"mc(And f g) = mc f \<inter> mc g"
  | 
| 
 | 
   104  | 
"mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
 | 
| 
 | 
   105  | 
"mc(EF f)    = lfp(\<lambda>T. mc f \<union> (M\<inverse> `` T))"
  | 
| 
 | 
   106  | 
  | 
| 
 | 
   107  | 
lemma mono_ef: "mono(\<lambda>T. A \<union> (M\<inverse> `` T))"
  | 
| 
 | 
   108  | 
apply(rule monoI)
  | 
| 
 | 
   109  | 
apply blast
  | 
| 
 | 
   110  | 
done
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
lemma EF_lemma:
  | 
| 
 | 
   113  | 
  "lfp(\<lambda>T. A \<union> (M\<inverse> `` T)) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
 | 
| 
 | 
   114  | 
apply(rule equalityI)
  | 
| 
 | 
   115  | 
 thm lfp_lowerbound
  | 
| 
 | 
   116  | 
 apply(rule lfp_lowerbound)
  | 
| 
 | 
   117  | 
 apply(blast intro: rtrancl_trans)
  | 
| 
 | 
   118  | 
apply(rule subsetI)
  | 
| 
 | 
   119  | 
apply clarsimp
  | 
| 
 | 
   120  | 
apply(erule converse_rtrancl_induct)
  | 
| 
 | 
   121  | 
thm lfp_unfold[OF mono_ef]
  | 
| 
 | 
   122  | 
 apply(subst lfp_unfold[OF mono_ef])
  | 
| 
 | 
   123  | 
 apply(blast)
  | 
| 
 | 
   124  | 
apply(subst lfp_unfold[OF mono_ef])
  | 
| 
 | 
   125  | 
apply(blast)
  | 
| 
 | 
   126  | 
done
  | 
| 
 | 
   127  | 
  | 
| 
 | 
   128  | 
theorem "mc f = {s. s \<Turnstile> f}"
 | 
| 
 | 
   129  | 
apply(induct_tac f)
  | 
| 
 | 
   130  | 
apply(auto simp add: EF_lemma)
  | 
| 
 | 
   131  | 
done
  | 
| 
 | 
   132  | 
  | 
| 
14138
 | 
   133  | 
text{*Preview of coming attractions: a structured proof of the
 | 
| 
 | 
   134  | 
@{thm[source]EF_lemma}.*}
 | 
| 
 | 
   135  | 
lemma EF_lemma:
  | 
| 
 | 
   136  | 
  "lfp(\<lambda>T. A \<union> (M\<inverse> `` T)) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
 | 
| 
 | 
   137  | 
  (is "lfp ?F = ?R") 
  | 
| 
 | 
   138  | 
proof
  | 
| 
 | 
   139  | 
  show "lfp ?F \<subseteq> ?R"
  | 
| 
 | 
   140  | 
  proof (rule lfp_lowerbound)
  | 
| 
 | 
   141  | 
    show "?F ?R \<subseteq> ?R" by(blast intro: rtrancl_trans)
  | 
| 
 | 
   142  | 
  qed
  | 
| 
 | 
   143  | 
next
  | 
| 
 | 
   144  | 
  show "?R \<subseteq> lfp ?F"
  | 
| 
 | 
   145  | 
  proof
  | 
| 
 | 
   146  | 
    fix s assume "s \<in> ?R"
  | 
| 
 | 
   147  | 
    then obtain t where st: "(s,t) \<in> M\<^sup>*" and tA: "t \<in> A" by blast
  | 
| 
 | 
   148  | 
    from st show "s \<in> lfp ?F"
  | 
| 
 | 
   149  | 
    proof (rule converse_rtrancl_induct)
  | 
| 
 | 
   150  | 
      show "t \<in> lfp ?F"
  | 
| 
 | 
   151  | 
      proof (subst lfp_unfold[OF mono_ef])
  | 
| 
 | 
   152  | 
	show "t \<in> ?F(lfp ?F)" using tA by blast
  | 
| 
 | 
   153  | 
      qed
  | 
| 
 | 
   154  | 
    next
  | 
| 
 | 
   155  | 
      fix s s'
  | 
| 
 | 
   156  | 
      assume ss': "(s,s') \<in> M" and s't: "(s',t) \<in> M\<^sup>*"
  | 
| 
 | 
   157  | 
         and IH: "s' \<in> lfp ?F"
  | 
| 
 | 
   158  | 
      show "s \<in> lfp ?F"
  | 
| 
 | 
   159  | 
      proof (subst lfp_unfold[OF mono_ef])
  | 
| 
 | 
   160  | 
	show "s \<in> ?F(lfp ?F)" using prems by blast
  | 
| 
 | 
   161  | 
      qed
  | 
| 
 | 
   162  | 
    qed
  | 
| 
 | 
   163  | 
  qed
  | 
| 
 | 
   164  | 
qed
  | 
| 
 | 
   165  | 
  | 
| 
13262
 | 
   166  | 
text{*
 | 
| 
 | 
   167  | 
\begin{exercise}
 | 
| 
 | 
   168  | 
@{term AX} has a dual operator @{term EN}\footnote{We cannot use the customary @{text EX}
 | 
| 
 | 
   169  | 
as that is the \textsc{ascii}-equivalent of @{text"\<exists>"}}
 | 
| 
 | 
   170  | 
(``there exists a next state such that'') with the intended semantics
  | 
| 
 | 
   171  | 
@{prop[display]"(s \<Turnstile> EN f) = (EX t. (s,t) : M & t \<Turnstile> f)"}
 | 
| 
 | 
   172  | 
Fortunately, @{term"EN f"} can already be expressed as a PDL formula. How?
 | 
| 
 | 
   173  | 
  | 
| 
 | 
   174  | 
Show that the semantics for @{term EF} satisfies the following recursion equation:
 | 
| 
 | 
   175  | 
@{prop[display]"(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> EN(EF f))"}
 | 
| 
 | 
   176  | 
\end{exercise}*}
 | 
| 
 | 
   177  | 
(*<*)end(*>*)
  |