| author | nipkow | 
| Wed, 22 Jul 2009 10:49:26 +0200 | |
| changeset 32130 | 2a0645733185 | 
| parent 31952 | 40501bb2d57c | 
| permissions | -rw-r--r-- | 
| 26126 | 1 | (* Title: HOL/Library/Pocklington.thy | 
| 30488 | 2 | Author: Amine Chaieb | 
| 26126 | 3 | *) | 
| 4 | ||
| 5 | header {* Pocklington's Theorem for Primes *}
 | |
| 6 | ||
| 7 | theory Pocklington | |
| 30738 | 8 | imports Main Primes | 
| 26126 | 9 | begin | 
| 10 | ||
| 11 | definition modeq:: "nat => nat => nat => bool"    ("(1[_ = _] '(mod _'))")
 | |
| 12 | where "[a = b] (mod p) == ((a mod p) = (b mod p))" | |
| 13 | ||
| 14 | definition modneq:: "nat => nat => nat => bool"    ("(1[_ \<noteq> _] '(mod _'))")
 | |
| 15 | where "[a \<noteq> b] (mod p) == ((a mod p) \<noteq> (b mod p))" | |
| 16 | ||
| 17 | lemma modeq_trans: | |
| 18 | "\<lbrakk> [a = b] (mod p); [b = c] (mod p) \<rbrakk> \<Longrightarrow> [a = c] (mod p)" | |
| 19 | by (simp add:modeq_def) | |
| 20 | ||
| 21 | ||
| 22 | lemma nat_mod_lemma: assumes xyn: "[x = y] (mod n)" and xy:"y \<le> x" | |
| 23 | shows "\<exists>q. x = y + n * q" | |
| 27668 | 24 | using xyn xy unfolding modeq_def using nat_mod_eq_lemma by blast | 
| 26126 | 25 | |
| 30488 | 26 | lemma nat_mod[algebra]: "[x = y] (mod n) \<longleftrightarrow> (\<exists>q1 q2. x + n * q1 = y + n * q2)" | 
| 27668 | 27 | unfolding modeq_def nat_mod_eq_iff .. | 
| 26126 | 28 | |
| 29 | (* Lemmas about previously defined terms. *) | |
| 30 | ||
| 30488 | 31 | lemma prime: "prime p \<longleftrightarrow> p \<noteq> 0 \<and> p\<noteq>1 \<and> (\<forall>m. 0 < m \<and> m < p \<longrightarrow> coprime p m)" | 
| 32 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 26126 | 33 | proof- | 
| 34 |   {assume "p=0 \<or> p=1" hence ?thesis using prime_0 prime_1 by (cases "p=0", simp_all)}
 | |
| 35 | moreover | |
| 36 |   {assume p0: "p\<noteq>0" "p\<noteq>1"
 | |
| 37 |     {assume H: "?lhs"
 | |
| 38 |       {fix m assume m: "m > 0" "m < p"
 | |
| 39 | 	{assume "m=1" hence "coprime p m" by simp}
 | |
| 40 | moreover | |
| 30488 | 41 | 	{assume "p dvd m" hence "p \<le> m" using dvd_imp_le m by blast with m(2)
 | 
| 26126 | 42 | have "coprime p m" by simp} | 
| 43 | ultimately have "coprime p m" using prime_coprime[OF H, of m] by blast} | |
| 44 | hence ?rhs using p0 by auto} | |
| 45 | moreover | |
| 46 |     { assume H: "\<forall>m. 0 < m \<and> m < p \<longrightarrow> coprime p m"
 | |
| 47 | from prime_factor[OF p0(2)] obtain q where q: "prime q" "q dvd p" by blast | |
| 48 | from prime_ge_2[OF q(1)] have q0: "q > 0" by arith | |
| 49 | from dvd_imp_le[OF q(2)] p0 have qp: "q \<le> p" by arith | |
| 50 |       {assume "q = p" hence ?lhs using q(1) by blast}
 | |
| 51 | moreover | |
| 52 |       {assume "q\<noteq>p" with qp have qplt: "q < p" by arith
 | |
| 53 | from H[rule_format, of q] qplt q0 have "coprime p q" by arith | |
| 54 | with coprime_prime[of p q q] q have False by simp hence ?lhs by blast} | |
| 55 | ultimately have ?lhs by blast} | |
| 56 | ultimately have ?thesis by blast} | |
| 57 | ultimately show ?thesis by (cases"p=0 \<or> p=1", auto) | |
| 58 | qed | |
| 59 | ||
| 60 | lemma finite_number_segment: "card { m. 0 < m \<and> m < n } = n - 1"
 | |
| 61 | proof- | |
| 62 |   have "{ m. 0 < m \<and> m < n } = {1..<n}" by auto
 | |
| 63 | thus ?thesis by simp | |
| 64 | qed | |
| 65 | ||
| 66 | lemma coprime_mod: assumes n: "n \<noteq> 0" shows "coprime (a mod n) n \<longleftrightarrow> coprime a n" | |
| 67 | using n dvd_mod_iff[of _ n a] by (auto simp add: coprime) | |
| 68 | ||
| 69 | (* Congruences. *) | |
| 70 | ||
| 30488 | 71 | lemma cong_mod_01[simp,presburger]: | 
| 26126 | 72 | "[x = y] (mod 0) \<longleftrightarrow> x = y" "[x = y] (mod 1)" "[x = 0] (mod n) \<longleftrightarrow> n dvd x" | 
| 73 | by (simp_all add: modeq_def, presburger) | |
| 74 | ||
| 30488 | 75 | lemma cong_sub_cases: | 
| 26126 | 76 | "[x = y] (mod n) \<longleftrightarrow> (if x <= y then [y - x = 0] (mod n) else [x - y = 0] (mod n))" | 
| 77 | apply (auto simp add: nat_mod) | |
| 78 | apply (rule_tac x="q2" in exI) | |
| 79 | apply (rule_tac x="q1" in exI, simp) | |
| 80 | apply (rule_tac x="q2" in exI) | |
| 81 | apply (rule_tac x="q1" in exI, simp) | |
| 82 | apply (rule_tac x="q1" in exI) | |
| 83 | apply (rule_tac x="q2" in exI, simp) | |
| 84 | apply (rule_tac x="q1" in exI) | |
| 85 | apply (rule_tac x="q2" in exI, simp) | |
| 86 | done | |
| 87 | ||
| 88 | lemma cong_mult_lcancel: assumes an: "coprime a n" and axy:"[a * x = a * y] (mod n)" | |
| 89 | shows "[x = y] (mod n)" | |
| 90 | proof- | |
| 91 |   {assume "a = 0" with an axy coprime_0'[of n] have ?thesis by (simp add: modeq_def) }
 | |
| 92 | moreover | |
| 93 |   {assume az: "a\<noteq>0"
 | |
| 94 |     {assume xy: "x \<le> y" hence axy': "a*x \<le> a*y" by simp
 | |
| 95 | with axy cong_sub_cases[of "a*x" "a*y" n] have "[a*(y - x) = 0] (mod n)" | |
| 30488 | 96 | by (simp only: if_True diff_mult_distrib2) | 
| 97 | hence th: "n dvd a*(y -x)" by simp | |
| 26126 | 98 | from coprime_divprod[OF th] an have "n dvd y - x" | 
| 99 | by (simp add: coprime_commute) | |
| 100 | hence ?thesis using xy cong_sub_cases[of x y n] by simp} | |
| 101 | moreover | |
| 30488 | 102 |     {assume H: "\<not>x \<le> y" hence xy: "y \<le> x"  by arith
 | 
| 26126 | 103 | from H az have axy': "\<not> a*x \<le> a*y" by auto | 
| 104 | with axy H cong_sub_cases[of "a*x" "a*y" n] have "[a*(x - y) = 0] (mod n)" | |
| 30488 | 105 | by (simp only: if_False diff_mult_distrib2) | 
| 106 | hence th: "n dvd a*(x - y)" by simp | |
| 26126 | 107 | from coprime_divprod[OF th] an have "n dvd x - y" | 
| 108 | by (simp add: coprime_commute) | |
| 109 | hence ?thesis using xy cong_sub_cases[of x y n] by simp} | |
| 110 | ultimately have ?thesis by blast} | |
| 111 | ultimately show ?thesis by blast | |
| 112 | qed | |
| 113 | ||
| 114 | lemma cong_mult_rcancel: assumes an: "coprime a n" and axy:"[x*a = y*a] (mod n)" | |
| 115 | shows "[x = y] (mod n)" | |
| 116 | using cong_mult_lcancel[OF an axy[unfolded mult_commute[of _a]]] . | |
| 117 | ||
| 118 | lemma cong_refl: "[x = x] (mod n)" by (simp add: modeq_def) | |
| 119 | ||
| 120 | lemma eq_imp_cong: "a = b \<Longrightarrow> [a = b] (mod n)" by (simp add: cong_refl) | |
| 121 | ||
| 30488 | 122 | lemma cong_commute: "[x = y] (mod n) \<longleftrightarrow> [y = x] (mod n)" | 
| 26126 | 123 | by (auto simp add: modeq_def) | 
| 124 | ||
| 125 | lemma cong_trans[trans]: "[x = y] (mod n) \<Longrightarrow> [y = z] (mod n) \<Longrightarrow> [x = z] (mod n)" | |
| 126 | by (simp add: modeq_def) | |
| 127 | ||
| 128 | lemma cong_add: assumes xx': "[x = x'] (mod n)" and yy':"[y = y'] (mod n)" | |
| 129 | shows "[x + y = x' + y'] (mod n)" | |
| 130 | proof- | |
| 131 | have "(x + y) mod n = (x mod n + y mod n) mod n" | |
| 132 | by (simp add: mod_add_left_eq[of x y n] mod_add_right_eq[of "x mod n" y n]) | |
| 30488 | 133 | also have "\<dots> = (x' mod n + y' mod n) mod n" using xx' yy' modeq_def by simp | 
| 26126 | 134 | also have "\<dots> = (x' + y') mod n" | 
| 135 | by (simp add: mod_add_left_eq[of x' y' n] mod_add_right_eq[of "x' mod n" y' n]) | |
| 30488 | 136 | finally show ?thesis unfolding modeq_def . | 
| 26126 | 137 | qed | 
| 138 | ||
| 139 | lemma cong_mult: assumes xx': "[x = x'] (mod n)" and yy':"[y = y'] (mod n)" | |
| 140 | shows "[x * y = x' * y'] (mod n)" | |
| 141 | proof- | |
| 30488 | 142 | have "(x * y) mod n = (x mod n) * (y mod n) mod n" | 
| 30224 | 143 | by (simp add: mod_mult_left_eq[of x y n] mod_mult_right_eq[of "x mod n" y n]) | 
| 30488 | 144 | also have "\<dots> = (x' mod n) * (y' mod n) mod n" using xx'[unfolded modeq_def] yy'[unfolded modeq_def] by simp | 
| 26126 | 145 | also have "\<dots> = (x' * y') mod n" | 
| 30224 | 146 | by (simp add: mod_mult_left_eq[of x' y' n] mod_mult_right_eq[of "x' mod n" y' n]) | 
| 30488 | 147 | finally show ?thesis unfolding modeq_def . | 
| 26126 | 148 | qed | 
| 149 | ||
| 150 | lemma cong_exp: "[x = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)" | |
| 151 | by (induct k, auto simp add: cong_refl cong_mult) | |
| 152 | lemma cong_sub: assumes xx': "[x = x'] (mod n)" and yy': "[y = y'] (mod n)" | |
| 153 | and yx: "y <= x" and yx': "y' <= x'" | |
| 154 | shows "[x - y = x' - y'] (mod n)" | |
| 155 | proof- | |
| 30488 | 156 |   { fix x a x' a' y b y' b'
 | 
| 26126 | 157 | have "(x::nat) + a = x' + a' \<Longrightarrow> y + b = y' + b' \<Longrightarrow> y <= x \<Longrightarrow> y' <= x' | 
| 158 | \<Longrightarrow> (x - y) + (a + b') = (x' - y') + (a' + b)" by arith} | |
| 159 | note th = this | |
| 30488 | 160 | from xx' yy' obtain q1 q2 q1' q2' where q12: "x + n*q1 = x'+n*q2" | 
| 26126 | 161 | and q12': "y + n*q1' = y'+n*q2'" unfolding nat_mod by blast+ | 
| 162 | from th[OF q12 q12' yx yx'] | |
| 30488 | 163 | have "(x - y) + n*(q1 + q2') = (x' - y') + n*(q2 + q1')" | 
| 26126 | 164 | by (simp add: right_distrib) | 
| 165 | thus ?thesis unfolding nat_mod by blast | |
| 166 | qed | |
| 167 | ||
| 30488 | 168 | lemma cong_mult_lcancel_eq: assumes an: "coprime a n" | 
| 26126 | 169 | shows "[a * x = a * y] (mod n) \<longleftrightarrow> [x = y] (mod n)" (is "?lhs \<longleftrightarrow> ?rhs") | 
| 170 | proof | |
| 171 | assume H: "?rhs" from cong_mult[OF cong_refl[of a n] H] show ?lhs . | |
| 172 | next | |
| 173 | assume H: "?lhs" hence H': "[x*a = y*a] (mod n)" by (simp add: mult_commute) | |
| 174 | from cong_mult_rcancel[OF an H'] show ?rhs . | |
| 175 | qed | |
| 176 | ||
| 30488 | 177 | lemma cong_mult_rcancel_eq: assumes an: "coprime a n" | 
| 26126 | 178 | shows "[x * a = y * a] (mod n) \<longleftrightarrow> [x = y] (mod n)" | 
| 179 | using cong_mult_lcancel_eq[OF an, of x y] by (simp add: mult_commute) | |
| 180 | ||
| 30488 | 181 | lemma cong_add_lcancel_eq: "[a + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)" | 
| 26126 | 182 | by (simp add: nat_mod) | 
| 183 | ||
| 184 | lemma cong_add_rcancel_eq: "[x + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)" | |
| 185 | by (simp add: nat_mod) | |
| 186 | ||
| 30488 | 187 | lemma cong_add_rcancel: "[x + a = y + a] (mod n) \<Longrightarrow> [x = y] (mod n)" | 
| 26126 | 188 | by (simp add: nat_mod) | 
| 189 | ||
| 190 | lemma cong_add_lcancel: "[a + x = a + y] (mod n) \<Longrightarrow> [x = y] (mod n)" | |
| 191 | by (simp add: nat_mod) | |
| 192 | ||
| 30488 | 193 | lemma cong_add_lcancel_eq_0: "[a + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" | 
| 26126 | 194 | by (simp add: nat_mod) | 
| 195 | ||
| 196 | lemma cong_add_rcancel_eq_0: "[x + a = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" | |
| 197 | by (simp add: nat_mod) | |
| 198 | ||
| 199 | lemma cong_imp_eq: assumes xn: "x < n" and yn: "y < n" and xy: "[x = y] (mod n)" | |
| 200 | shows "x = y" | |
| 30488 | 201 | using xy[unfolded modeq_def mod_less[OF xn] mod_less[OF yn]] . | 
| 26126 | 202 | |
| 203 | lemma cong_divides_modulus: "[x = y] (mod m) \<Longrightarrow> n dvd m ==> [x = y] (mod n)" | |
| 204 | apply (auto simp add: nat_mod dvd_def) | |
| 205 | apply (rule_tac x="k*q1" in exI) | |
| 206 | apply (rule_tac x="k*q2" in exI) | |
| 207 | by simp | |
| 30488 | 208 | |
| 26126 | 209 | lemma cong_0_divides: "[x = 0] (mod n) \<longleftrightarrow> n dvd x" by simp | 
| 210 | ||
| 211 | lemma cong_1_divides:"[x = 1] (mod n) ==> n dvd x - 1" | |
| 212 | apply (cases "x\<le>1", simp_all) | |
| 213 | using cong_sub_cases[of x 1 n] by auto | |
| 214 | ||
| 215 | lemma cong_divides: "[x = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y" | |
| 216 | apply (auto simp add: nat_mod dvd_def) | |
| 217 | apply (rule_tac x="k + q1 - q2" in exI, simp add: add_mult_distrib2 diff_mult_distrib2) | |
| 218 | apply (rule_tac x="k + q2 - q1" in exI, simp add: add_mult_distrib2 diff_mult_distrib2) | |
| 219 | done | |
| 220 | ||
| 30488 | 221 | lemma cong_coprime: assumes xy: "[x = y] (mod n)" | 
| 26126 | 222 | shows "coprime n x \<longleftrightarrow> coprime n y" | 
| 223 | proof- | |
| 224 |   {assume "n=0" hence ?thesis using xy by simp}
 | |
| 225 | moreover | |
| 226 |   {assume nz: "n \<noteq> 0"
 | |
| 30488 | 227 | have "coprime n x \<longleftrightarrow> coprime (x mod n) n" | 
| 26126 | 228 | by (simp add: coprime_mod[OF nz, of x] coprime_commute[of n x]) | 
| 229 | also have "\<dots> \<longleftrightarrow> coprime (y mod n) n" using xy[unfolded modeq_def] by simp | |
| 230 | also have "\<dots> \<longleftrightarrow> coprime y n" by (simp add: coprime_mod[OF nz, of y]) | |
| 231 | finally have ?thesis by (simp add: coprime_commute) } | |
| 232 | ultimately show ?thesis by blast | |
| 233 | qed | |
| 234 | ||
| 235 | lemma cong_mod: "~(n = 0) \<Longrightarrow> [a mod n = a] (mod n)" by (simp add: modeq_def) | |
| 236 | ||
| 30488 | 237 | lemma mod_mult_cong: "~(a = 0) \<Longrightarrow> ~(b = 0) | 
| 26126 | 238 | \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)" | 
| 239 | by (simp add: modeq_def mod_mult2_eq mod_add_left_eq) | |
| 240 | ||
| 241 | lemma cong_mod_mult: "[x = y] (mod n) \<Longrightarrow> m dvd n \<Longrightarrow> [x = y] (mod m)" | |
| 242 | apply (auto simp add: nat_mod dvd_def) | |
| 243 | apply (rule_tac x="k*q1" in exI) | |
| 244 | apply (rule_tac x="k*q2" in exI, simp) | |
| 245 | done | |
| 246 | ||
| 247 | (* Some things when we know more about the order. *) | |
| 248 | ||
| 249 | lemma cong_le: "y <= x \<Longrightarrow> [x = y] (mod n) \<longleftrightarrow> (\<exists>q. x = q * n + y)" | |
| 250 | using nat_mod_lemma[of x y n] | |
| 251 | apply auto | |
| 252 | apply (simp add: nat_mod) | |
| 253 | apply (rule_tac x="q" in exI) | |
| 254 | apply (rule_tac x="q + q" in exI) | |
| 29667 | 255 | by (auto simp: algebra_simps) | 
| 26126 | 256 | |
| 257 | lemma cong_to_1: "[a = 1] (mod n) \<longleftrightarrow> a = 0 \<and> n = 1 \<or> (\<exists>m. a = 1 + m * n)" | |
| 258 | proof- | |
| 30488 | 259 |   {assume "n = 0 \<or> n = 1\<or> a = 0 \<or> a = 1" hence ?thesis
 | 
| 26126 | 260 | apply (cases "n=0", simp_all add: cong_commute) | 
| 261 | apply (cases "n=1", simp_all add: cong_commute modeq_def) | |
| 30488 | 262 | apply arith | 
| 26126 | 263 | by (cases "a=1", simp_all add: modeq_def cong_commute)} | 
| 264 | moreover | |
| 265 |   {assume n: "n\<noteq>0" "n\<noteq>1" and a:"a\<noteq>0" "a \<noteq> 1" hence a': "a \<ge> 1" by simp
 | |
| 266 | hence ?thesis using cong_le[OF a', of n] by auto } | |
| 267 | ultimately show ?thesis by auto | |
| 268 | qed | |
| 269 | ||
| 270 | (* Some basic theorems about solving congruences. *) | |
| 271 | ||
| 272 | ||
| 273 | lemma cong_solve: assumes an: "coprime a n" shows "\<exists>x. [a * x = b] (mod n)" | |
| 274 | proof- | |
| 275 |   {assume "a=0" hence ?thesis using an by (simp add: modeq_def)}
 | |
| 276 | moreover | |
| 277 |   {assume az: "a\<noteq>0"
 | |
| 30488 | 278 | from bezout_add_strong[OF az, of n] | 
| 26126 | 279 | obtain d x y where dxy: "d dvd a" "d dvd n" "a*x = n*y + d" by blast | 
| 280 | from an[unfolded coprime, rule_format, of d] dxy(1,2) have d1: "d = 1" by blast | |
| 281 | hence "a*x*b = (n*y + 1)*b" using dxy(3) by simp | |
| 282 | hence "a*(x*b) = n*(y*b) + b" by algebra | |
| 283 | hence "a*(x*b) mod n = (n*(y*b) + b) mod n" by simp | |
| 284 | hence "a*(x*b) mod n = b mod n" by (simp add: mod_add_left_eq) | |
| 285 | hence "[a*(x*b) = b] (mod n)" unfolding modeq_def . | |
| 286 | hence ?thesis by blast} | |
| 287 | ultimately show ?thesis by blast | |
| 288 | qed | |
| 289 | ||
| 290 | lemma cong_solve_unique: assumes an: "coprime a n" and nz: "n \<noteq> 0" | |
| 291 | shows "\<exists>!x. x < n \<and> [a * x = b] (mod n)" | |
| 292 | proof- | |
| 293 | let ?P = "\<lambda>x. x < n \<and> [a * x = b] (mod n)" | |
| 294 | from cong_solve[OF an] obtain x where x: "[a*x = b] (mod n)" by blast | |
| 295 | let ?x = "x mod n" | |
| 296 | from x have th: "[a * ?x = b] (mod n)" | |
| 30224 | 297 | by (simp add: modeq_def mod_mult_right_eq[of a x n]) | 
| 26126 | 298 | from mod_less_divisor[ of n x] nz th have Px: "?P ?x" by simp | 
| 299 |   {fix y assume Py: "y < n" "[a * y = b] (mod n)"
 | |
| 300 | from Py(2) th have "[a * y = a*?x] (mod n)" by (simp add: modeq_def) | |
| 301 | hence "[y = ?x] (mod n)" by (simp add: cong_mult_lcancel_eq[OF an]) | |
| 302 | with mod_less[OF Py(1)] mod_less_divisor[ of n x] nz | |
| 303 | have "y = ?x" by (simp add: modeq_def)} | |
| 304 | with Px show ?thesis by blast | |
| 305 | qed | |
| 306 | ||
| 307 | lemma cong_solve_unique_nontrivial: | |
| 308 | assumes p: "prime p" and pa: "coprime p a" and x0: "0 < x" and xp: "x < p" | |
| 309 | shows "\<exists>!y. 0 < y \<and> y < p \<and> [x * y = a] (mod p)" | |
| 310 | proof- | |
| 311 | from p have p1: "p > 1" using prime_ge_2[OF p] by arith | |
| 312 | hence p01: "p \<noteq> 0" "p \<noteq> 1" by arith+ | |
| 313 | from pa have ap: "coprime a p" by (simp add: coprime_commute) | |
| 314 | from prime_coprime[OF p, of x] dvd_imp_le[of p x] x0 xp have px:"coprime x p" | |
| 315 | by (auto simp add: coprime_commute) | |
| 30488 | 316 | from cong_solve_unique[OF px p01(1)] | 
| 26126 | 317 | obtain y where y: "y < p" "[x * y = a] (mod p)" "\<forall>z. z < p \<and> [x * z = a] (mod p) \<longrightarrow> z = y" by blast | 
| 318 |   {assume y0: "y = 0"
 | |
| 319 | with y(2) have th: "p dvd a" by (simp add: cong_commute[of 0 a p]) | |
| 320 | with p coprime_prime[OF pa, of p] have False by simp} | |
| 30488 | 321 | with y show ?thesis unfolding Ex1_def using neq0_conv by blast | 
| 26126 | 322 | qed | 
| 323 | lemma cong_unique_inverse_prime: | |
| 324 | assumes p: "prime p" and x0: "0 < x" and xp: "x < p" | |
| 325 | shows "\<exists>!y. 0 < y \<and> y < p \<and> [x * y = 1] (mod p)" | |
| 326 | using cong_solve_unique_nontrivial[OF p coprime_1[of p] x0 xp] . | |
| 327 | ||
| 328 | (* Forms of the Chinese remainder theorem. *) | |
| 329 | ||
| 30488 | 330 | lemma cong_chinese: | 
| 331 | assumes ab: "coprime a b" and xya: "[x = y] (mod a)" | |
| 26126 | 332 | and xyb: "[x = y] (mod b)" | 
| 333 | shows "[x = y] (mod a*b)" | |
| 334 | using ab xya xyb | |
| 30488 | 335 | by (simp add: cong_sub_cases[of x y a] cong_sub_cases[of x y b] | 
| 336 | cong_sub_cases[of x y "a*b"]) | |
| 26126 | 337 | (cases "x \<le> y", simp_all add: divides_mul[of a _ b]) | 
| 338 | ||
| 339 | lemma chinese_remainder_unique: | |
| 340 | assumes ab: "coprime a b" and az: "a \<noteq> 0" and bz: "b\<noteq>0" | |
| 341 | shows "\<exists>!x. x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)" | |
| 342 | proof- | |
| 343 | from az bz have abpos: "a*b > 0" by simp | |
| 30488 | 344 | from chinese_remainder[OF ab az bz] obtain x q1 q2 where | 
| 26126 | 345 | xq12: "x = m + q1 * a" "x = n + q2 * b" by blast | 
| 30488 | 346 | let ?w = "x mod (a*b)" | 
| 26126 | 347 | have wab: "?w < a*b" by (simp add: mod_less_divisor[OF abpos]) | 
| 348 | from xq12(1) have "?w mod a = ((m + q1 * a) mod (a*b)) mod a" by simp | |
| 349 | also have "\<dots> = m mod a" apply (simp add: mod_mult2_eq) | |
| 350 | apply (subst mod_add_left_eq) | |
| 351 | by simp | |
| 352 | finally have th1: "[?w = m] (mod a)" by (simp add: modeq_def) | |
| 353 | from xq12(2) have "?w mod b = ((n + q2 * b) mod (a*b)) mod b" by simp | |
| 354 | also have "\<dots> = ((n + q2 * b) mod (b*a)) mod b" by (simp add: mult_commute) | |
| 355 | also have "\<dots> = n mod b" apply (simp add: mod_mult2_eq) | |
| 356 | apply (subst mod_add_left_eq) | |
| 357 | by simp | |
| 358 | finally have th2: "[?w = n] (mod b)" by (simp add: modeq_def) | |
| 359 |   {fix y assume H: "y < a*b" "[y = m] (mod a)" "[y = n] (mod b)"
 | |
| 360 | with th1 th2 have H': "[y = ?w] (mod a)" "[y = ?w] (mod b)" | |
| 361 | by (simp_all add: modeq_def) | |
| 30488 | 362 | from cong_chinese[OF ab H'] mod_less[OF H(1)] mod_less[OF wab] | 
| 26126 | 363 | have "y = ?w" by (simp add: modeq_def)} | 
| 364 | with th1 th2 wab show ?thesis by blast | |
| 365 | qed | |
| 366 | ||
| 367 | lemma chinese_remainder_coprime_unique: | |
| 30488 | 368 | assumes ab: "coprime a b" and az: "a \<noteq> 0" and bz: "b \<noteq> 0" | 
| 26126 | 369 | and ma: "coprime m a" and nb: "coprime n b" | 
| 370 | shows "\<exists>!x. coprime x (a * b) \<and> x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)" | |
| 371 | proof- | |
| 372 | let ?P = "\<lambda>x. x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)" | |
| 373 | from chinese_remainder_unique[OF ab az bz] | |
| 30488 | 374 | obtain x where x: "x < a * b" "[x = m] (mod a)" "[x = n] (mod b)" | 
| 26126 | 375 | "\<forall>y. ?P y \<longrightarrow> y = x" by blast | 
| 376 | from ma nb cong_coprime[OF x(2)] cong_coprime[OF x(3)] | |
| 377 | have "coprime x a" "coprime x b" by (simp_all add: coprime_commute) | |
| 378 | with coprime_mul[of x a b] have "coprime x (a*b)" by simp | |
| 379 | with x show ?thesis by blast | |
| 380 | qed | |
| 381 | ||
| 382 | (* Euler totient function. *) | |
| 383 | ||
| 384 | definition phi_def: "\<phi> n = card { m. 0 < m \<and> m <= n \<and> coprime m n }"
 | |
| 31197 
c1c163ec6c44
fine-tuned elimination of comprehensions involving x=t.
 nipkow parents: 
31021diff
changeset | 385 | |
| 26126 | 386 | lemma phi_0[simp]: "\<phi> 0 = 0" | 
| 31197 
c1c163ec6c44
fine-tuned elimination of comprehensions involving x=t.
 nipkow parents: 
31021diff
changeset | 387 | unfolding phi_def by auto | 
| 26126 | 388 | |
| 389 | lemma phi_finite[simp]: "finite ({ m. 0 < m \<and> m <= n \<and> coprime m n })"
 | |
| 390 | proof- | |
| 391 |   have "{ m. 0 < m \<and> m <= n \<and> coprime m n } \<subseteq> {0..n}" by auto
 | |
| 392 | thus ?thesis by (auto intro: finite_subset) | |
| 393 | qed | |
| 394 | ||
| 395 | declare coprime_1[presburger] | |
| 396 | lemma phi_1[simp]: "\<phi> 1 = 1" | |
| 397 | proof- | |
| 30488 | 398 |   {fix m
 | 
| 26126 | 399 | have "0 < m \<and> m <= 1 \<and> coprime m 1 \<longleftrightarrow> m = 1" by presburger } | 
| 400 | thus ?thesis by (simp add: phi_def) | |
| 401 | qed | |
| 402 | ||
| 403 | lemma [simp]: "\<phi> (Suc 0) = Suc 0" using phi_1 by simp | |
| 404 | ||
| 405 | lemma phi_alt: "\<phi>(n) = card { m. coprime m n \<and> m < n}"
 | |
| 406 | proof- | |
| 407 |   {assume "n=0 \<or> n=1" hence ?thesis by (cases "n=0", simp_all)}
 | |
| 408 | moreover | |
| 409 |   {assume n: "n\<noteq>0" "n\<noteq>1"
 | |
| 410 |     {fix m
 | |
| 411 | from n have "0 < m \<and> m <= n \<and> coprime m n \<longleftrightarrow> coprime m n \<and> m < n" | |
| 412 | apply (cases "m = 0", simp_all) | |
| 413 | apply (cases "m = 1", simp_all) | |
| 414 | apply (cases "m = n", auto) | |
| 415 | done } | |
| 416 | hence ?thesis unfolding phi_def by simp} | |
| 417 | ultimately show ?thesis by auto | |
| 418 | qed | |
| 419 | ||
| 420 | lemma phi_finite_lemma[simp]: "finite {m. coprime m n \<and>  m < n}" (is "finite ?S")
 | |
| 421 |   by (rule finite_subset[of "?S" "{0..n}"], auto)
 | |
| 422 | ||
| 423 | lemma phi_another: assumes n: "n\<noteq>1" | |
| 424 |   shows "\<phi> n = card {m. 0 < m \<and> m < n \<and> coprime m n }"
 | |
| 425 | proof- | |
| 30488 | 426 |   {fix m
 | 
| 26126 | 427 | from n have "0 < m \<and> m < n \<and> coprime m n \<longleftrightarrow> coprime m n \<and> m < n" | 
| 428 | by (cases "m=0", auto)} | |
| 429 | thus ?thesis unfolding phi_alt by auto | |
| 430 | qed | |
| 431 | ||
| 432 | lemma phi_limit: "\<phi> n \<le> n" | |
| 433 | proof- | |
| 434 |   have "{ m. coprime m n \<and> m < n} \<subseteq> {0 ..<n}" by auto
 | |
| 435 |   with card_mono[of "{0 ..<n}" "{ m. coprime m n \<and> m < n}"]
 | |
| 436 | show ?thesis unfolding phi_alt by auto | |
| 437 | qed | |
| 438 | ||
| 439 | lemma stupid[simp]: "{m. (0::nat) < m \<and> m < n} = {1..<n}"
 | |
| 440 | by auto | |
| 441 | ||
| 30488 | 442 | lemma phi_limit_strong: assumes n: "n\<noteq>1" | 
| 26126 | 443 | shows "\<phi>(n) \<le> n - 1" | 
| 444 | proof- | |
| 445 | show ?thesis | |
| 30488 | 446 | unfolding phi_another[OF n] finite_number_segment[of n, symmetric] | 
| 26126 | 447 |     by (rule card_mono[of "{m. 0 < m \<and> m < n}" "{m. 0 < m \<and> m < n \<and> coprime m n}"], auto)
 | 
| 448 | qed | |
| 449 | ||
| 450 | lemma phi_lowerbound_1_strong: assumes n: "n \<ge> 1" | |
| 451 | shows "\<phi>(n) \<ge> 1" | |
| 452 | proof- | |
| 453 |   let ?S = "{ m. 0 < m \<and> m <= n \<and> coprime m n }"
 | |
| 30488 | 454 | from card_0_eq[of ?S] n have "\<phi> n \<noteq> 0" unfolding phi_alt | 
| 26126 | 455 | apply auto | 
| 456 | apply (cases "n=1", simp_all) | |
| 457 | apply (rule exI[where x=1], simp) | |
| 458 | done | |
| 459 | thus ?thesis by arith | |
| 460 | qed | |
| 461 | ||
| 462 | lemma phi_lowerbound_1: "2 <= n ==> 1 <= \<phi>(n)" | |
| 463 | using phi_lowerbound_1_strong[of n] by auto | |
| 464 | ||
| 465 | lemma phi_lowerbound_2: assumes n: "3 <= n" shows "2 <= \<phi> (n)" | |
| 466 | proof- | |
| 467 |   let ?S = "{ m. 0 < m \<and> m <= n \<and> coprime m n }"
 | |
| 30488 | 468 |   have inS: "{1, n - 1} \<subseteq> ?S" using n coprime_plus1[of "n - 1"]
 | 
| 26126 | 469 | by (auto simp add: coprime_commute) | 
| 470 |   from n have c2: "card {1, n - 1} = 2" by (auto simp add: card_insert_if)
 | |
| 30488 | 471 |   from card_mono[of ?S "{1, n - 1}", simplified inS c2] show ?thesis
 | 
| 26126 | 472 | unfolding phi_def by auto | 
| 473 | qed | |
| 474 | ||
| 475 | lemma phi_prime: "\<phi> n = n - 1 \<and> n\<noteq>0 \<and> n\<noteq>1 \<longleftrightarrow> prime n" | |
| 476 | proof- | |
| 477 |   {assume "n=0 \<or> n=1" hence ?thesis by (cases "n=1", simp_all)}
 | |
| 478 | moreover | |
| 479 |   {assume n: "n\<noteq>0" "n\<noteq>1"
 | |
| 480 |     let ?S = "{m. 0 < m \<and> m < n}"
 | |
| 481 | have fS: "finite ?S" by simp | |
| 482 |     let ?S' = "{m. 0 < m \<and> m < n \<and> coprime m n}"
 | |
| 483 | have fS':"finite ?S'" apply (rule finite_subset[of ?S' ?S]) by auto | |
| 484 |     {assume H: "\<phi> n = n - 1 \<and> n\<noteq>0 \<and> n\<noteq>1"
 | |
| 30488 | 485 | hence ceq: "card ?S' = card ?S" | 
| 26126 | 486 | using n finite_number_segment[of n] phi_another[OF n(2)] by simp | 
| 487 |       {fix m assume m: "0 < m" "m < n" "\<not> coprime m n"
 | |
| 488 | hence mS': "m \<notin> ?S'" by auto | |
| 489 | have "insert m ?S' \<le> ?S" using m by auto | |
| 30488 | 490 | from m have "card (insert m ?S') \<le> card ?S" | 
| 26126 | 491 | by - (rule card_mono[of ?S "insert m ?S'"], auto) | 
| 492 | hence False | |
| 493 | unfolding card_insert_disjoint[of "?S'" m, OF fS' mS'] ceq | |
| 494 | by simp } | |
| 495 | hence "\<forall>m. 0 <m \<and> m < n \<longrightarrow> coprime m n" by blast | |
| 496 | hence "prime n" unfolding prime using n by (simp add: coprime_commute)} | |
| 497 | moreover | |
| 498 |     {assume H: "prime n"
 | |
| 30488 | 499 | hence "?S = ?S'" unfolding prime using n | 
| 26126 | 500 | by (auto simp add: coprime_commute) | 
| 501 | hence "card ?S = card ?S'" by simp | |
| 502 | hence "\<phi> n = n - 1" unfolding phi_another[OF n(2)] by simp} | |
| 503 | ultimately have ?thesis using n by blast} | |
| 504 | ultimately show ?thesis by (cases "n=0") blast+ | |
| 505 | qed | |
| 506 | ||
| 507 | (* Multiplicativity property. *) | |
| 508 | ||
| 509 | lemma phi_multiplicative: assumes ab: "coprime a b" | |
| 510 | shows "\<phi> (a * b) = \<phi> a * \<phi> b" | |
| 511 | proof- | |
| 30488 | 512 |   {assume "a = 0 \<or> b = 0 \<or> a = 1 \<or> b = 1"
 | 
| 26126 | 513 | hence ?thesis | 
| 514 | by (cases "a=0", simp, cases "b=0", simp, cases"a=1", simp_all) } | |
| 515 | moreover | |
| 516 |   {assume a: "a\<noteq>0" "a\<noteq>1" and b: "b\<noteq>0" "b\<noteq>1"
 | |
| 517 | hence ab0: "a*b \<noteq> 0" by simp | |
| 518 |     let ?S = "\<lambda>k. {m. coprime m k \<and> m < k}"
 | |
| 519 | let ?f = "\<lambda>x. (x mod a, x mod b)" | |
| 520 | have eq: "?f ` (?S (a*b)) = (?S a \<times> ?S b)" | |
| 521 | proof- | |
| 522 |       {fix x assume x:"x \<in> ?S (a*b)"
 | |
| 523 | hence x': "coprime x (a*b)" "x < a*b" by simp_all | |
| 524 | hence xab: "coprime x a" "coprime x b" by (simp_all add: coprime_mul_eq) | |
| 525 | from mod_less_divisor a b have xab':"x mod a < a" "x mod b < b" by auto | |
| 30488 | 526 | from xab xab' have "?f x \<in> (?S a \<times> ?S b)" | 
| 26126 | 527 | by (simp add: coprime_mod[OF a(1)] coprime_mod[OF b(1)])} | 
| 528 | moreover | |
| 529 |       {fix x y assume x: "x \<in> ?S a" and y: "y \<in> ?S b"
 | |
| 30488 | 530 | hence x': "coprime x a" "x < a" and y': "coprime y b" "y < b" by simp_all | 
| 26126 | 531 | from chinese_remainder_coprime_unique[OF ab a(1) b(1) x'(1) y'(1)] | 
| 532 | obtain z where z: "coprime z (a * b)" "z < a * b" "[z = x] (mod a)" | |
| 533 | "[z = y] (mod b)" by blast | |
| 534 | hence "(x,y) \<in> ?f ` (?S (a*b))" | |
| 535 | using y'(2) mod_less_divisor[of b y] x'(2) mod_less_divisor[of a x] | |
| 536 | by (auto simp add: image_iff modeq_def)} | |
| 537 | ultimately show ?thesis by auto | |
| 538 | qed | |
| 539 | have finj: "inj_on ?f (?S (a*b))" | |
| 540 | unfolding inj_on_def | |
| 541 | proof(clarify) | |
| 30488 | 542 | fix x y assume H: "coprime x (a * b)" "x < a * b" "coprime y (a * b)" | 
| 26126 | 543 | "y < a * b" "x mod a = y mod a" "x mod b = y mod b" | 
| 30488 | 544 | hence cp: "coprime x a" "coprime x b" "coprime y a" "coprime y b" | 
| 26126 | 545 | by (simp_all add: coprime_mul_eq) | 
| 546 | from chinese_remainder_coprime_unique[OF ab a(1) b(1) cp(3,4)] H | |
| 547 | show "x = y" unfolding modeq_def by blast | |
| 548 | qed | |
| 549 | from card_image[OF finj, unfolded eq] have ?thesis | |
| 550 | unfolding phi_alt by simp } | |
| 551 | ultimately show ?thesis by auto | |
| 552 | qed | |
| 553 | ||
| 554 | (* Fermat's Little theorem / Fermat-Euler theorem. *) | |
| 555 | ||
| 556 | ||
| 557 | lemma nproduct_mod: | |
| 558 | assumes fS: "finite S" and n0: "n \<noteq> 0" | |
| 559 | shows "[setprod (\<lambda>m. a(m) mod n) S = setprod a S] (mod n)" | |
| 560 | proof- | |
| 561 | have th1:"[1 = 1] (mod n)" by (simp add: modeq_def) | |
| 562 | from cong_mult | |
| 563 | have th3:"\<forall>x1 y1 x2 y2. | |
| 564 | [x1 = x2] (mod n) \<and> [y1 = y2] (mod n) \<longrightarrow> [x1 * y1 = x2 * y2] (mod n)" | |
| 565 | by blast | |
| 566 | have th4:"\<forall>x\<in>S. [a x mod n = a x] (mod n)" by (simp add: modeq_def) | |
| 28854 | 567 | from fold_image_related[where h="(\<lambda>m. a(m) mod n)" and g=a, OF th1 th3 fS, OF th4] show ?thesis unfolding setprod_def by (simp add: fS) | 
| 26126 | 568 | qed | 
| 569 | ||
| 570 | lemma nproduct_cmul: | |
| 571 | assumes fS:"finite S" | |
| 31021 | 572 |   shows "setprod (\<lambda>m. (c::'a::{comm_monoid_mult})* a(m)) S = c ^ (card S) * setprod a S"
 | 
| 26126 | 573 | unfolding setprod_timesf setprod_constant[OF fS, of c] .. | 
| 574 | ||
| 575 | lemma coprime_nproduct: | |
| 576 | assumes fS: "finite S" and Sn: "\<forall>x\<in>S. coprime n (a x)" | |
| 577 | shows "coprime n (setprod a S)" | |
| 27368 | 578 | using fS unfolding setprod_def by (rule finite_subset_induct) | 
| 579 | (insert Sn, auto simp add: coprime_mul) | |
| 26126 | 580 | |
| 581 | lemma fermat_little: assumes an: "coprime a n" | |
| 582 | shows "[a ^ (\<phi> n) = 1] (mod n)" | |
| 583 | proof- | |
| 584 |   {assume "n=0" hence ?thesis by simp}
 | |
| 585 | moreover | |
| 586 |   {assume "n=1" hence ?thesis by (simp add: modeq_def)}
 | |
| 587 | moreover | |
| 588 |   {assume nz: "n \<noteq> 0" and n1: "n \<noteq> 1"
 | |
| 589 |     let ?S = "{m. coprime m n \<and> m < n}"
 | |
| 590 | let ?P = "\<Prod> ?S" | |
| 591 | have fS: "finite ?S" by simp | |
| 592 | have cardfS: "\<phi> n = card ?S" unfolding phi_alt .. | |
| 593 |     {fix m assume m: "m \<in> ?S"
 | |
| 594 | hence "coprime m n" by simp | |
| 30488 | 595 | with coprime_mul[of n a m] an have "coprime (a*m) n" | 
| 26126 | 596 | by (simp add: coprime_commute)} | 
| 597 | hence Sn: "\<forall>m\<in> ?S. coprime (a*m) n " by blast | |
| 598 | from coprime_nproduct[OF fS, of n "\<lambda>m. m"] have nP:"coprime ?P n" | |
| 599 | by (simp add: coprime_commute) | |
| 600 | have Paphi: "[?P*a^ (\<phi> n) = ?P*1] (mod n)" | |
| 601 | proof- | |
| 602 | let ?h = "\<lambda>m. m mod n" | |
| 603 |       {fix m assume mS: "m\<in> ?S"
 | |
| 604 | hence "?h m \<in> ?S" by simp} | |
| 605 | hence hS: "?h ` ?S = ?S"by (auto simp add: image_iff) | |
| 606 | have "a\<noteq>0" using an n1 nz apply- apply (rule ccontr) by simp | |
| 607 | hence inj: "inj_on (op * a) ?S" unfolding inj_on_def by simp | |
| 30488 | 608 | |
| 28854 | 609 |       have eq0: "fold_image op * (?h \<circ> op * a) 1 {m. coprime m n \<and> m < n} =
 | 
| 610 |      fold_image op * (\<lambda>m. m) 1 {m. coprime m n \<and> m < n}"
 | |
| 611 | proof (rule fold_image_eq_general[where h="?h o (op * a)"]) | |
| 26126 | 612 | show "finite ?S" using fS . | 
| 613 | next | |
| 614 | 	{fix y assume yS: "y \<in> ?S" hence y: "coprime y n" "y < n" by simp_all
 | |
| 615 | from cong_solve_unique[OF an nz, of y] | |
| 30488 | 616 | obtain x where x:"x < n" "[a * x = y] (mod n)" "\<forall>z. z < n \<and> [a * z = y] (mod n) \<longrightarrow> z=x" by blast | 
| 26126 | 617 | from cong_coprime[OF x(2)] y(1) | 
| 618 | have xm: "coprime x n" by (simp add: coprime_mul_eq coprime_commute) | |
| 619 | 	  {fix z assume "z \<in> ?S" "(?h \<circ> op * a) z = y"
 | |
| 620 | hence z: "coprime z n" "z < n" "(?h \<circ> op * a) z = y" by simp_all | |
| 30488 | 621 | from x(3)[rule_format, of z] z(2,3) have "z=x" | 
| 26126 | 622 | unfolding modeq_def mod_less[OF y(2)] by simp} | 
| 623 | with xm x(1,2) have "\<exists>!x. x \<in> ?S \<and> (?h \<circ> op * a) x = y" | |
| 624 | unfolding modeq_def mod_less[OF y(2)] by auto } | |
| 625 | 	thus "\<forall>y\<in>{m. coprime m n \<and> m < n}.
 | |
| 626 |        \<exists>!x. x \<in> {m. coprime m n \<and> m < n} \<and> ((\<lambda>m. m mod n) \<circ> op * a) x = y" by blast
 | |
| 627 | next | |
| 628 | 	{fix x assume xS: "x\<in> ?S"
 | |
| 629 | hence x: "coprime x n" "x < n" by simp_all | |
| 630 | with an have "coprime (a*x) n" | |
| 631 | by (simp add: coprime_mul_eq[of n a x] coprime_commute) | |
| 30488 | 632 | hence "?h (a*x) \<in> ?S" using nz | 
| 26126 | 633 | by (simp add: coprime_mod[OF nz] mod_less_divisor)} | 
| 634 | 	thus " \<forall>x\<in>{m. coprime m n \<and> m < n}.
 | |
| 635 |        ((\<lambda>m. m mod n) \<circ> op * a) x \<in> {m. coprime m n \<and> m < n} \<and>
 | |
| 636 | ((\<lambda>m. m mod n) \<circ> op * a) x = ((\<lambda>m. m mod n) \<circ> op * a) x" by simp | |
| 637 | qed | |
| 638 | from nproduct_mod[OF fS nz, of "op * a"] | |
| 639 | have "[(setprod (op *a) ?S) = (setprod (?h o (op * a)) ?S)] (mod n)" | |
| 640 | unfolding o_def | |
| 641 | by (simp add: cong_commute) | |
| 642 | also have "[setprod (?h o (op * a)) ?S = ?P ] (mod n)" | |
| 643 | using eq0 fS an by (simp add: setprod_def modeq_def o_def) | |
| 644 | finally show "[?P*a^ (\<phi> n) = ?P*1] (mod n)" | |
| 30488 | 645 | unfolding cardfS mult_commute[of ?P "a^ (card ?S)"] | 
| 26126 | 646 | nproduct_cmul[OF fS, symmetric] mult_1_right by simp | 
| 647 | qed | |
| 648 | from cong_mult_lcancel[OF nP Paphi] have ?thesis . } | |
| 649 | ultimately show ?thesis by blast | |
| 650 | qed | |
| 651 | ||
| 652 | lemma fermat_little_prime: assumes p: "prime p" and ap: "coprime a p" | |
| 653 | shows "[a^ (p - 1) = 1] (mod p)" | |
| 654 | using fermat_little[OF ap] p[unfolded phi_prime[symmetric]] | |
| 655 | by simp | |
| 656 | ||
| 657 | ||
| 658 | (* Lucas's theorem. *) | |
| 659 | ||
| 660 | lemma lucas_coprime_lemma: | |
| 661 | assumes m: "m\<noteq>0" and am: "[a^m = 1] (mod n)" | |
| 662 | shows "coprime a n" | |
| 663 | proof- | |
| 664 |   {assume "n=1" hence ?thesis by simp}
 | |
| 665 | moreover | |
| 666 |   {assume "n = 0" hence ?thesis using am m exp_eq_1[of a m] by simp}
 | |
| 667 | moreover | |
| 668 |   {assume n: "n\<noteq>0" "n\<noteq>1"
 | |
| 669 | from m obtain m' where m': "m = Suc m'" by (cases m, blast+) | |
| 670 |     {fix d
 | |
| 671 | assume d: "d dvd a" "d dvd n" | |
| 30488 | 672 | from n have n1: "1 < n" by arith | 
| 26126 | 673 | from am mod_less[OF n1] have am1: "a^m mod n = 1" unfolding modeq_def by simp | 
| 674 | from dvd_mult2[OF d(1), of "a^m'"] have dam:"d dvd a^m" by (simp add: m') | |
| 675 | from dvd_mod_iff[OF d(2), of "a^m"] dam am1 | |
| 676 | have "d = 1" by simp } | |
| 677 | hence ?thesis unfolding coprime by auto | |
| 678 | } | |
| 30488 | 679 | ultimately show ?thesis by blast | 
| 26126 | 680 | qed | 
| 681 | ||
| 682 | lemma lucas_weak: | |
| 30488 | 683 | assumes n: "n \<ge> 2" and an:"[a^(n - 1) = 1] (mod n)" | 
| 26126 | 684 | and nm: "\<forall>m. 0 <m \<and> m < n - 1 \<longrightarrow> \<not> [a^m = 1] (mod n)" | 
| 685 | shows "prime n" | |
| 686 | proof- | |
| 687 | from n have n1: "n \<noteq> 1" "n\<noteq>0" "n - 1 \<noteq> 0" "n - 1 > 0" "n - 1 < n" by arith+ | |
| 688 | from lucas_coprime_lemma[OF n1(3) an] have can: "coprime a n" . | |
| 689 | from fermat_little[OF can] have afn: "[a ^ \<phi> n = 1] (mod n)" . | |
| 690 |   {assume "\<phi> n \<noteq> n - 1"
 | |
| 691 | with phi_limit_strong[OF n1(1)] phi_lowerbound_1[OF n] | |
| 692 | have c:"\<phi> n > 0 \<and> \<phi> n < n - 1" by arith | |
| 693 | from nm[rule_format, OF c] afn have False ..} | |
| 694 | hence "\<phi> n = n - 1" by blast | |
| 695 | with phi_prime[of n] n1(1,2) show ?thesis by simp | |
| 696 | qed | |
| 697 | ||
| 30488 | 698 | lemma nat_exists_least_iff: "(\<exists>(n::nat). P n) \<longleftrightarrow> (\<exists>n. P n \<and> (\<forall>m < n. \<not> P m))" | 
| 26126 | 699 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 700 | proof | |
| 701 | assume ?rhs thus ?lhs by blast | |
| 702 | next | |
| 703 | assume H: ?lhs then obtain n where n: "P n" by blast | |
| 704 | let ?x = "Least P" | |
| 705 |   {fix m assume m: "m < ?x"
 | |
| 706 | from not_less_Least[OF m] have "\<not> P m" .} | |
| 707 | with LeastI_ex[OF H] show ?rhs by blast | |
| 708 | qed | |
| 709 | ||
| 30488 | 710 | lemma nat_exists_least_iff': "(\<exists>(n::nat). P n) \<longleftrightarrow> (P (Least P) \<and> (\<forall>m < (Least P). \<not> P m))" | 
| 26126 | 711 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 712 | proof- | |
| 713 |   {assume ?rhs hence ?lhs by blast}
 | |
| 30488 | 714 | moreover | 
| 26126 | 715 |   { assume H: ?lhs then obtain n where n: "P n" by blast
 | 
| 716 | let ?x = "Least P" | |
| 717 |     {fix m assume m: "m < ?x"
 | |
| 718 | from not_less_Least[OF m] have "\<not> P m" .} | |
| 719 | with LeastI_ex[OF H] have ?rhs by blast} | |
| 720 | ultimately show ?thesis by blast | |
| 721 | qed | |
| 30488 | 722 | |
| 26126 | 723 | lemma power_mod: "((x::nat) mod m)^n mod m = x^n mod m" | 
| 724 | proof(induct n) | |
| 725 | case 0 thus ?case by simp | |
| 726 | next | |
| 30488 | 727 | case (Suc n) | 
| 728 | have "(x mod m)^(Suc n) mod m = ((x mod m) * (((x mod m) ^ n) mod m)) mod m" | |
| 30224 | 729 | by (simp add: mod_mult_right_eq[symmetric]) | 
| 26126 | 730 | also have "\<dots> = ((x mod m) * (x^n mod m)) mod m" using Suc.hyps by simp | 
| 731 | also have "\<dots> = x^(Suc n) mod m" | |
| 30224 | 732 | by (simp add: mod_mult_left_eq[symmetric] mod_mult_right_eq[symmetric]) | 
| 26126 | 733 | finally show ?case . | 
| 734 | qed | |
| 735 | ||
| 736 | lemma lucas: | |
| 30488 | 737 | assumes n2: "n \<ge> 2" and an1: "[a^(n - 1) = 1] (mod n)" | 
| 26126 | 738 | and pn: "\<forall>p. prime p \<and> p dvd n - 1 \<longrightarrow> \<not> [a^((n - 1) div p) = 1] (mod n)" | 
| 739 | shows "prime n" | |
| 740 | proof- | |
| 741 | from n2 have n01: "n\<noteq>0" "n\<noteq>1" "n - 1 \<noteq> 0" by arith+ | |
| 742 | from mod_less_divisor[of n 1] n01 have onen: "1 mod n = 1" by simp | |
| 30488 | 743 | from lucas_coprime_lemma[OF n01(3) an1] cong_coprime[OF an1] | 
| 26126 | 744 | have an: "coprime a n" "coprime (a^(n - 1)) n" by (simp_all add: coprime_commute) | 
| 745 |   {assume H0: "\<exists>m. 0 < m \<and> m < n - 1 \<and> [a ^ m = 1] (mod n)" (is "EX m. ?P m")
 | |
| 30488 | 746 | from H0[unfolded nat_exists_least_iff[of ?P]] obtain m where | 
| 26126 | 747 | m: "0 < m" "m < n - 1" "[a ^ m = 1] (mod n)" "\<forall>k <m. \<not>?P k" by blast | 
| 30488 | 748 |     {assume nm1: "(n - 1) mod m > 0"
 | 
| 749 | from mod_less_divisor[OF m(1)] have th0:"(n - 1) mod m < m" by blast | |
| 26126 | 750 | let ?y = "a^ ((n - 1) div m * m)" | 
| 751 | note mdeq = mod_div_equality[of "(n - 1)" m] | |
| 30488 | 752 | from coprime_exp[OF an(1)[unfolded coprime_commute[of a n]], | 
| 26126 | 753 | of "(n - 1) div m * m"] | 
| 30488 | 754 | have yn: "coprime ?y n" by (simp add: coprime_commute) | 
| 755 | have "?y mod n = (a^m)^((n - 1) div m) mod n" | |
| 29667 | 756 | by (simp add: algebra_simps power_mult) | 
| 30488 | 757 | also have "\<dots> = (a^m mod n)^((n - 1) div m) mod n" | 
| 26126 | 758 | using power_mod[of "a^m" n "(n - 1) div m"] by simp | 
| 30488 | 759 | also have "\<dots> = 1" using m(3)[unfolded modeq_def onen] onen | 
| 26158 | 760 | by (simp add: power_Suc0) | 
| 30488 | 761 | finally have th3: "?y mod n = 1" . | 
| 762 | have th2: "[?y * a ^ ((n - 1) mod m) = ?y* 1] (mod n)" | |
| 26126 | 763 | using an1[unfolded modeq_def onen] onen | 
| 764 | mod_div_equality[of "(n - 1)" m, symmetric] | |
| 765 | by (simp add:power_add[symmetric] modeq_def th3 del: One_nat_def) | |
| 766 | from cong_mult_lcancel[of ?y n "a^((n - 1) mod m)" 1, OF yn th2] | |
| 30488 | 767 | have th1: "[a ^ ((n - 1) mod m) = 1] (mod n)" . | 
| 768 | from m(4)[rule_format, OF th0] nm1 | |
| 26126 | 769 | less_trans[OF mod_less_divisor[OF m(1), of "n - 1"] m(2)] th1 | 
| 770 | have False by blast } | |
| 771 | hence "(n - 1) mod m = 0" by auto | |
| 772 | then have mn: "m dvd n - 1" by presburger | |
| 773 | then obtain r where r: "n - 1 = m*r" unfolding dvd_def by blast | |
| 774 | from n01 r m(2) have r01: "r\<noteq>0" "r\<noteq>1" by - (rule ccontr, simp)+ | |
| 775 | from prime_factor[OF r01(2)] obtain p where p: "prime p" "p dvd r" by blast | |
| 776 | hence th: "prime p \<and> p dvd n - 1" unfolding r by (auto intro: dvd_mult) | |
| 777 | have "(a ^ ((n - 1) div p)) mod n = (a^(m*r div p)) mod n" using r | |
| 778 | by (simp add: power_mult) | |
| 779 | also have "\<dots> = (a^(m*(r div p))) mod n" using div_mult1_eq[of m r p] p(2)[unfolded dvd_eq_mod_eq_0] by simp | |
| 780 | also have "\<dots> = ((a^m)^(r div p)) mod n" by (simp add: power_mult) | |
| 781 | also have "\<dots> = ((a^m mod n)^(r div p)) mod n" using power_mod[of "a^m" "n" "r div p" ] .. | |
| 26158 | 782 | also have "\<dots> = 1" using m(3) onen by (simp add: modeq_def power_Suc0) | 
| 30488 | 783 | finally have "[(a ^ ((n - 1) div p))= 1] (mod n)" | 
| 26126 | 784 | using onen by (simp add: modeq_def) | 
| 785 | with pn[rule_format, OF th] have False by blast} | |
| 786 | hence th: "\<forall>m. 0 < m \<and> m < n - 1 \<longrightarrow> \<not> [a ^ m = 1] (mod n)" by blast | |
| 787 | from lucas_weak[OF n2 an1 th] show ?thesis . | |
| 788 | qed | |
| 789 | ||
| 790 | (* Definition of the order of a number mod n (0 in non-coprime case). *) | |
| 791 | ||
| 792 | definition "ord n a = (if coprime n a then Least (\<lambda>d. d > 0 \<and> [a ^d = 1] (mod n)) else 0)" | |
| 793 | ||
| 794 | (* This has the expected properties. *) | |
| 795 | ||
| 796 | lemma coprime_ord: | |
| 30488 | 797 | assumes na: "coprime n a" | 
| 26126 | 798 | shows "ord n a > 0 \<and> [a ^(ord n a) = 1] (mod n) \<and> (\<forall>m. 0 < m \<and> m < ord n a \<longrightarrow> \<not> [a^ m = 1] (mod n))" | 
| 799 | proof- | |
| 800 | let ?P = "\<lambda>d. 0 < d \<and> [a ^ d = 1] (mod n)" | |
| 801 | from euclid[of a] obtain p where p: "prime p" "a < p" by blast | |
| 802 | from na have o: "ord n a = Least ?P" by (simp add: ord_def) | |
| 803 |   {assume "n=0 \<or> n=1" with na have "\<exists>m>0. ?P m" apply auto apply (rule exI[where x=1]) by (simp  add: modeq_def)}
 | |
| 804 | moreover | |
| 30488 | 805 |   {assume "n\<noteq>0 \<and> n\<noteq>1" hence n2:"n \<ge> 2" by arith
 | 
| 26126 | 806 | from na have na': "coprime a n" by (simp add: coprime_commute) | 
| 807 | from phi_lowerbound_1[OF n2] fermat_little[OF na'] | |
| 808 | have ex: "\<exists>m>0. ?P m" by - (rule exI[where x="\<phi> n"], auto) } | |
| 809 | ultimately have ex: "\<exists>m>0. ?P m" by blast | |
| 30488 | 810 | from nat_exists_least_iff'[of ?P] ex na show ?thesis | 
| 26126 | 811 | unfolding o[symmetric] by auto | 
| 812 | qed | |
| 813 | (* With the special value 0 for non-coprime case, it's more convenient. *) | |
| 814 | lemma ord_works: | |
| 815 | "[a ^ (ord n a) = 1] (mod n) \<and> (\<forall>m. 0 < m \<and> m < ord n a \<longrightarrow> ~[a^ m = 1] (mod n))" | |
| 816 | apply (cases "coprime n a") | |
| 817 | using coprime_ord[of n a] | |
| 818 | by (blast, simp add: ord_def modeq_def) | |
| 819 | ||
| 30488 | 820 | lemma ord: "[a^(ord n a) = 1] (mod n)" using ord_works by blast | 
| 821 | lemma ord_minimal: "0 < m \<Longrightarrow> m < ord n a \<Longrightarrow> ~[a^m = 1] (mod n)" | |
| 26126 | 822 | using ord_works by blast | 
| 823 | lemma ord_eq_0: "ord n a = 0 \<longleftrightarrow> ~coprime n a" | |
| 824 | by (cases "coprime n a", simp add: neq0_conv coprime_ord, simp add: neq0_conv ord_def) | |
| 825 | ||
| 826 | lemma ord_divides: | |
| 827 | "[a ^ d = 1] (mod n) \<longleftrightarrow> ord n a dvd d" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 828 | proof | |
| 829 | assume rh: ?rhs | |
| 830 | then obtain k where "d = ord n a * k" unfolding dvd_def by blast | |
| 831 | hence "[a ^ d = (a ^ (ord n a) mod n)^k] (mod n)" | |
| 832 | by (simp add : modeq_def power_mult power_mod) | |
| 30488 | 833 | also have "[(a ^ (ord n a) mod n)^k = 1] (mod n)" | 
| 834 | using ord[of a n, unfolded modeq_def] | |
| 26158 | 835 | by (simp add: modeq_def power_mod power_Suc0) | 
| 26126 | 836 | finally show ?lhs . | 
| 30488 | 837 | next | 
| 26126 | 838 | assume lh: ?lhs | 
| 839 |   { assume H: "\<not> coprime n a"
 | |
| 840 | hence o: "ord n a = 0" by (simp add: ord_def) | |
| 841 |     {assume d: "d=0" with o H have ?rhs by (simp add: modeq_def)}
 | |
| 842 | moreover | |
| 843 |     {assume d0: "d\<noteq>0" then obtain d' where d': "d = Suc d'" by (cases d, auto)
 | |
| 30488 | 844 | from H[unfolded coprime] | 
| 845 | obtain p where p: "p dvd n" "p dvd a" "p \<noteq> 1" by auto | |
| 846 | from lh[unfolded nat_mod] | |
| 26126 | 847 | obtain q1 q2 where q12:"a ^ d + n * q1 = 1 + n * q2" by blast | 
| 848 | hence "a ^ d + n * q1 - n * q2 = 1" by simp | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31197diff
changeset | 849 | with dvd_diff_nat [OF dvd_add [OF divides_rexp[OF p(2), of d'] dvd_mult2[OF p(1), of q1]] dvd_mult2[OF p(1), of q2]] d' have "p dvd 1" by simp | 
| 26126 | 850 | with p(3) have False by simp | 
| 851 | hence ?rhs ..} | |
| 852 | ultimately have ?rhs by blast} | |
| 853 | moreover | |
| 854 |   {assume H: "coprime n a"
 | |
| 855 | let ?o = "ord n a" | |
| 856 | let ?q = "d div ord n a" | |
| 857 | let ?r = "d mod ord n a" | |
| 30488 | 858 | from cong_exp[OF ord[of a n], of ?q] | 
| 26158 | 859 | have eqo: "[(a^?o)^?q = 1] (mod n)" by (simp add: modeq_def power_Suc0) | 
| 26126 | 860 | from H have onz: "?o \<noteq> 0" by (simp add: ord_eq_0) | 
| 861 | hence op: "?o > 0" by simp | |
| 862 | from mod_div_equality[of d "ord n a"] lh | |
| 863 | have "[a^(?o*?q + ?r) = 1] (mod n)" by (simp add: modeq_def mult_commute) | |
| 30488 | 864 | hence "[(a^?o)^?q * (a^?r) = 1] (mod n)" | 
| 26126 | 865 | by (simp add: modeq_def power_mult[symmetric] power_add[symmetric]) | 
| 866 | hence th: "[a^?r = 1] (mod n)" | |
| 30224 | 867 | using eqo mod_mult_left_eq[of "(a^?o)^?q" "a^?r" n] | 
| 26126 | 868 | apply (simp add: modeq_def del: One_nat_def) | 
| 30224 | 869 | by (simp add: mod_mult_left_eq[symmetric]) | 
| 26126 | 870 |     {assume r: "?r = 0" hence ?rhs by (simp add: dvd_eq_mod_eq_0)}
 | 
| 871 | moreover | |
| 30488 | 872 |     {assume r: "?r \<noteq> 0"
 | 
| 26126 | 873 | with mod_less_divisor[OF op, of d] have r0o:"?r >0 \<and> ?r < ?o" by simp | 
| 30488 | 874 | from conjunct2[OF ord_works[of a n], rule_format, OF r0o] th | 
| 26126 | 875 | have ?rhs by blast} | 
| 876 | ultimately have ?rhs by blast} | |
| 877 | ultimately show ?rhs by blast | |
| 878 | qed | |
| 879 | ||
| 880 | lemma order_divides_phi: "coprime n a \<Longrightarrow> ord n a dvd \<phi> n" | |
| 881 | using ord_divides fermat_little coprime_commute by simp | |
| 30488 | 882 | lemma order_divides_expdiff: | 
| 26126 | 883 | assumes na: "coprime n a" | 
| 884 | shows "[a^d = a^e] (mod n) \<longleftrightarrow> [d = e] (mod (ord n a))" | |
| 885 | proof- | |
| 30488 | 886 |   {fix n a d e
 | 
| 26126 | 887 | assume na: "coprime n a" and ed: "(e::nat) \<le> d" | 
| 888 | hence "\<exists>c. d = e + c" by arith | |
| 889 | then obtain c where c: "d = e + c" by arith | |
| 890 | from na have an: "coprime a n" by (simp add: coprime_commute) | |
| 30488 | 891 | from coprime_exp[OF na, of e] | 
| 26126 | 892 | have aen: "coprime (a^e) n" by (simp add: coprime_commute) | 
| 30488 | 893 | from coprime_exp[OF na, of c] | 
| 26126 | 894 | have acn: "coprime (a^c) n" by (simp add: coprime_commute) | 
| 895 | have "[a^d = a^e] (mod n) \<longleftrightarrow> [a^(e + c) = a^(e + 0)] (mod n)" | |
| 896 | using c by simp | |
| 897 | also have "\<dots> \<longleftrightarrow> [a^e* a^c = a^e *a^0] (mod n)" by (simp add: power_add) | |
| 898 | also have "\<dots> \<longleftrightarrow> [a ^ c = 1] (mod n)" | |
| 899 | using cong_mult_lcancel_eq[OF aen, of "a^c" "a^0"] by simp | |
| 900 | also have "\<dots> \<longleftrightarrow> ord n a dvd c" by (simp only: ord_divides) | |
| 901 | also have "\<dots> \<longleftrightarrow> [e + c = e + 0] (mod ord n a)" | |
| 902 | using cong_add_lcancel_eq[of e c 0 "ord n a", simplified cong_0_divides] | |
| 903 | by simp | |
| 904 | finally have "[a^d = a^e] (mod n) \<longleftrightarrow> [d = e] (mod (ord n a))" | |
| 905 | using c by simp } | |
| 906 | note th = this | |
| 907 | have "e \<le> d \<or> d \<le> e" by arith | |
| 908 | moreover | |
| 909 |   {assume ed: "e \<le> d" from th[OF na ed] have ?thesis .}
 | |
| 910 | moreover | |
| 911 |   {assume de: "d \<le> e"
 | |
| 912 | from th[OF na de] have ?thesis by (simp add: cong_commute) } | |
| 913 | ultimately show ?thesis by blast | |
| 914 | qed | |
| 915 | ||
| 916 | (* Another trivial primality characterization. *) | |
| 917 | ||
| 918 | lemma prime_prime_factor: | |
| 919 | "prime n \<longleftrightarrow> n \<noteq> 1\<and> (\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n)" | |
| 920 | proof- | |
| 921 |   {assume n: "n=0 \<or> n=1" hence ?thesis using prime_0 two_is_prime by auto}
 | |
| 922 | moreover | |
| 923 |   {assume n: "n\<noteq>0" "n\<noteq>1"
 | |
| 924 |     {assume pn: "prime n"
 | |
| 30488 | 925 | |
| 26126 | 926 | from pn[unfolded prime_def] have "\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n" | 
| 30488 | 927 | using n | 
| 26126 | 928 | apply (cases "n = 0 \<or> n=1",simp) | 
| 929 | by (clarsimp, erule_tac x="p" in allE, auto)} | |
| 930 | moreover | |
| 931 |     {assume H: "\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n"
 | |
| 932 | from n have n1: "n > 1" by arith | |
| 933 |       {fix m assume m: "m dvd n" "m\<noteq>1"
 | |
| 30488 | 934 | from prime_factor[OF m(2)] obtain p where | 
| 26126 | 935 | p: "prime p" "p dvd m" by blast | 
| 30488 | 936 | from dvd_trans[OF p(2) m(1)] p(1) H have "p = n" by blast | 
| 26126 | 937 | with p(2) have "n dvd m" by simp | 
| 938 | hence "m=n" using dvd_anti_sym[OF m(1)] by simp } | |
| 939 | with n1 have "prime n" unfolding prime_def by auto } | |
| 30488 | 940 | ultimately have ?thesis using n by blast} | 
| 941 | ultimately show ?thesis by auto | |
| 26126 | 942 | qed | 
| 943 | ||
| 944 | lemma prime_divisor_sqrt: | |
| 945 | "prime n \<longleftrightarrow> n \<noteq> 1 \<and> (\<forall>d. d dvd n \<and> d^2 \<le> n \<longrightarrow> d = 1)" | |
| 946 | proof- | |
| 30488 | 947 |   {assume "n=0 \<or> n=1" hence ?thesis using prime_0 prime_1
 | 
| 26126 | 948 | by (auto simp add: nat_power_eq_0_iff)} | 
| 949 | moreover | |
| 950 |   {assume n: "n\<noteq>0" "n\<noteq>1"
 | |
| 951 | hence np: "n > 1" by arith | |
| 952 |     {fix d assume d: "d dvd n" "d^2 \<le> n" and H: "\<forall>m. m dvd n \<longrightarrow> m=1 \<or> m=n"
 | |
| 953 | from H d have d1n: "d = 1 \<or> d=n" by blast | |
| 954 |       {assume dn: "d=n"
 | |
| 30488 | 955 | have "n^2 > n*1" using n | 
| 26126 | 956 | by (simp add: power2_eq_square mult_less_cancel1) | 
| 957 | with dn d(2) have "d=1" by simp} | |
| 958 | with d1n have "d = 1" by blast } | |
| 959 | moreover | |
| 960 |     {fix d assume d: "d dvd n" and H: "\<forall>d'. d' dvd n \<and> d'^2 \<le> n \<longrightarrow> d' = 1"
 | |
| 961 | from d n have "d \<noteq> 0" apply - apply (rule ccontr) by simp | |
| 962 | hence dp: "d > 0" by simp | |
| 963 | from d[unfolded dvd_def] obtain e where e: "n= d*e" by blast | |
| 964 | from n dp e have ep:"e > 0" by simp | |
| 965 | have "d^2 \<le> n \<or> e^2 \<le> n" using dp ep | |
| 966 | by (auto simp add: e power2_eq_square mult_le_cancel_left) | |
| 967 | moreover | |
| 968 |       {assume h: "d^2 \<le> n"
 | |
| 969 | from H[rule_format, of d] h d have "d = 1" by blast} | |
| 970 | moreover | |
| 971 |       {assume h: "e^2 \<le> n"
 | |
| 972 | from e have "e dvd n" unfolding dvd_def by (simp add: mult_commute) | |
| 973 | with H[rule_format, of e] h have "e=1" by simp | |
| 974 | with e have "d = n" by simp} | |
| 975 | ultimately have "d=1 \<or> d=n" by blast} | |
| 976 | ultimately have ?thesis unfolding prime_def using np n(2) by blast} | |
| 977 | ultimately show ?thesis by auto | |
| 978 | qed | |
| 979 | lemma prime_prime_factor_sqrt: | |
| 30488 | 980 | "prime n \<longleftrightarrow> n \<noteq> 0 \<and> n \<noteq> 1 \<and> \<not> (\<exists>p. prime p \<and> p dvd n \<and> p^2 \<le> n)" | 
| 26126 | 981 | (is "?lhs \<longleftrightarrow>?rhs") | 
| 982 | proof- | |
| 983 |   {assume "n=0 \<or> n=1" hence ?thesis using prime_0 prime_1 by auto}
 | |
| 984 | moreover | |
| 985 |   {assume n: "n\<noteq>0" "n\<noteq>1"
 | |
| 986 |     {assume H: ?lhs
 | |
| 30488 | 987 | from H[unfolded prime_divisor_sqrt] n | 
| 26126 | 988 | have ?rhs apply clarsimp by (erule_tac x="p" in allE, simp add: prime_1) | 
| 989 | } | |
| 990 | moreover | |
| 991 |     {assume H: ?rhs
 | |
| 992 |       {fix d assume d: "d dvd n" "d^2 \<le> n" "d\<noteq>1"
 | |
| 30488 | 993 | from prime_factor[OF d(3)] | 
| 26126 | 994 | obtain p where p: "prime p" "p dvd d" by blast | 
| 995 | from n have np: "n > 0" by arith | |
| 996 | from d(1) n have "d \<noteq> 0" by - (rule ccontr, auto) | |
| 997 | hence dp: "d > 0" by arith | |
| 998 | from mult_mono[OF dvd_imp_le[OF p(2) dp] dvd_imp_le[OF p(2) dp]] d(2) | |
| 999 | have "p^2 \<le> n" unfolding power2_eq_square by arith | |
| 1000 | with H n p(1) dvd_trans[OF p(2) d(1)] have False by blast} | |
| 1001 | with n prime_divisor_sqrt have ?lhs by auto} | |
| 1002 | ultimately have ?thesis by blast } | |
| 1003 | ultimately show ?thesis by (cases "n=0 \<or> n=1", auto) | |
| 1004 | qed | |
| 1005 | (* Pocklington theorem. *) | |
| 1006 | ||
| 1007 | lemma pocklington_lemma: | |
| 1008 | assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and an: "[a^ (n - 1) = 1] (mod n)" | |
| 1009 | and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a^ ((n - 1) div p) - 1) n" | |
| 1010 | and pp: "prime p" and pn: "p dvd n" | |
| 1011 | shows "[p = 1] (mod q)" | |
| 1012 | proof- | |
| 1013 | from pp prime_0 prime_1 have p01: "p \<noteq> 0" "p \<noteq> 1" by - (rule ccontr, simp)+ | |
| 30488 | 1014 | from cong_1_divides[OF an, unfolded nqr, unfolded dvd_def] | 
| 26126 | 1015 | obtain k where k: "a ^ (q * r) - 1 = n*k" by blast | 
| 1016 | from pn[unfolded dvd_def] obtain l where l: "n = p*l" by blast | |
| 1017 |   {assume a0: "a = 0"
 | |
| 1018 | hence "a^ (n - 1) = 0" using n by (simp add: power_0_left) | |
| 1019 | with n an mod_less[of 1 n] have False by (simp add: power_0_left modeq_def)} | |
| 1020 | hence a0: "a\<noteq>0" .. | |
| 1021 | from n nqr have aqr0: "a ^ (q * r) \<noteq> 0" using a0 by (simp add: neq0_conv) | |
| 1022 | hence "(a ^ (q * r) - 1) + 1 = a ^ (q * r)" by simp | |
| 1023 | with k l have "a ^ (q * r) = p*l*k + 1" by simp | |
| 1024 | hence "a ^ (r * q) + p * 0 = 1 + p * (l*k)" by (simp add: mult_ac) | |
| 1025 | hence odq: "ord p (a^r) dvd q" | |
| 1026 | unfolding ord_divides[symmetric] power_mult[symmetric] nat_mod by blast | |
| 1027 | from odq[unfolded dvd_def] obtain d where d: "q = ord p (a^r) * d" by blast | |
| 30488 | 1028 |   {assume d1: "d \<noteq> 1"
 | 
| 26126 | 1029 | from prime_factor[OF d1] obtain P where P: "prime P" "P dvd d" by blast | 
| 1030 | from d dvd_mult[OF P(2), of "ord p (a^r)"] have Pq: "P dvd q" by simp | |
| 1031 | from aq P(1) Pq have caP:"coprime (a^ ((n - 1) div P) - 1) n" by blast | |
| 1032 | from Pq obtain s where s: "q = P*s" unfolding dvd_def by blast | |
| 1033 | have P0: "P \<noteq> 0" using P(1) prime_0 by - (rule ccontr, simp) | |
| 1034 | from P(2) obtain t where t: "d = P*t" unfolding dvd_def by blast | |
| 1035 | from d s t P0 have s': "ord p (a^r) * t = s" by algebra | |
| 1036 | have "ord p (a^r) * t*r = r * ord p (a^r) * t" by algebra | |
| 1037 | hence exps: "a^(ord p (a^r) * t*r) = ((a ^ r) ^ ord p (a^r)) ^ t" | |
| 1038 | by (simp only: power_mult) | |
| 30488 | 1039 | have "[((a ^ r) ^ ord p (a^r)) ^ t= 1^t] (mod p)" | 
| 26126 | 1040 | by (rule cong_exp, rule ord) | 
| 30488 | 1041 | then have th: "[((a ^ r) ^ ord p (a^r)) ^ t= 1] (mod p)" | 
| 26158 | 1042 | by (simp add: power_Suc0) | 
| 26126 | 1043 | from cong_1_divides[OF th] exps have pd0: "p dvd a^(ord p (a^r) * t*r) - 1" by simp | 
| 1044 | from nqr s s' have "(n - 1) div P = ord p (a^r) * t*r" using P0 by simp | |
| 1045 | with caP have "coprime (a^(ord p (a^r) * t*r) - 1) n" by simp | |
| 1046 | with p01 pn pd0 have False unfolding coprime by auto} | |
| 30488 | 1047 | hence d1: "d = 1" by blast | 
| 1048 | hence o: "ord p (a^r) = q" using d by simp | |
| 26126 | 1049 | from pp phi_prime[of p] have phip: " \<phi> p = p - 1" by simp | 
| 1050 |   {fix d assume d: "d dvd p" "d dvd a" "d \<noteq> 1"
 | |
| 1051 | from pp[unfolded prime_def] d have dp: "d = p" by blast | |
| 1052 | from n have n12:"Suc (n - 2) = n - 1" by arith | |
| 1053 | with divides_rexp[OF d(2)[unfolded dp], of "n - 2"] | |
| 1054 | have th0: "p dvd a ^ (n - 1)" by simp | |
| 1055 | from n have n0: "n \<noteq> 0" by simp | |
| 30488 | 1056 | from d(2) an n12[symmetric] have a0: "a \<noteq> 0" | 
| 26126 | 1057 | by - (rule ccontr, simp add: modeq_def) | 
| 1058 | have th1: "a^ (n - 1) \<noteq> 0" using n d(2) dp a0 by (auto simp add: neq0_conv) | |
| 30488 | 1059 | from coprime_minus1[OF th1, unfolded coprime] | 
| 26126 | 1060 | dvd_trans[OF pn cong_1_divides[OF an]] th0 d(3) dp | 
| 1061 | have False by auto} | |
| 30488 | 1062 | hence cpa: "coprime p a" using coprime by auto | 
| 1063 | from coprime_exp[OF cpa, of r] coprime_commute | |
| 26126 | 1064 | have arp: "coprime (a^r) p" by blast | 
| 1065 | from fermat_little[OF arp, simplified ord_divides] o phip | |
| 1066 | have "q dvd (p - 1)" by simp | |
| 1067 | then obtain d where d:"p - 1 = q * d" unfolding dvd_def by blast | |
| 1068 | from prime_0 pp have p0:"p \<noteq> 0" by - (rule ccontr, auto) | |
| 1069 | from p0 d have "p + q * 0 = 1 + q * d" by simp | |
| 1070 | with nat_mod[of p 1 q, symmetric] | |
| 1071 | show ?thesis by blast | |
| 1072 | qed | |
| 1073 | ||
| 1074 | lemma pocklington: | |
| 1075 | assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and sqr: "n \<le> q^2" | |
| 1076 | and an: "[a^ (n - 1) = 1] (mod n)" | |
| 1077 | and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a^ ((n - 1) div p) - 1) n" | |
| 1078 | shows "prime n" | |
| 1079 | unfolding prime_prime_factor_sqrt[of n] | |
| 1080 | proof- | |
| 1081 | let ?ths = "n \<noteq> 0 \<and> n \<noteq> 1 \<and> \<not> (\<exists>p. prime p \<and> p dvd n \<and> p\<twosuperior> \<le> n)" | |
| 1082 | from n have n01: "n\<noteq>0" "n\<noteq>1" by arith+ | |
| 1083 |   {fix p assume p: "prime p" "p dvd n" "p^2 \<le> n"
 | |
| 1084 | from p(3) sqr have "p^(Suc 1) \<le> q^(Suc 1)" by (simp add: power2_eq_square) | |
| 1085 | hence pq: "p \<le> q" unfolding exp_mono_le . | |
| 1086 | from pocklington_lemma[OF n nqr an aq p(1,2)] cong_1_divides | |
| 1087 | have th: "q dvd p - 1" by blast | |
| 1088 | have "p - 1 \<noteq> 0"using prime_ge_2[OF p(1)] by arith | |
| 1089 | with divides_ge[OF th] pq have False by arith } | |
| 1090 | with n01 show ?ths by blast | |
| 1091 | qed | |
| 1092 | ||
| 1093 | (* Variant for application, to separate the exponentiation. *) | |
| 1094 | lemma pocklington_alt: | |
| 1095 | assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and sqr: "n \<le> q^2" | |
| 1096 | and an: "[a^ (n - 1) = 1] (mod n)" | |
| 1097 | and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> (\<exists>b. [a^((n - 1) div p) = b] (mod n) \<and> coprime (b - 1) n)" | |
| 1098 | shows "prime n" | |
| 1099 | proof- | |
| 1100 |   {fix p assume p: "prime p" "p dvd q"
 | |
| 30488 | 1101 | from aq[rule_format] p obtain b where | 
| 26126 | 1102 | b: "[a^((n - 1) div p) = b] (mod n)" "coprime (b - 1) n" by blast | 
| 1103 |     {assume a0: "a=0"
 | |
| 1104 | from n an have "[0 = 1] (mod n)" unfolding a0 power_0_left by auto | |
| 1105 | hence False using n by (simp add: modeq_def dvd_eq_mod_eq_0[symmetric])} | |
| 1106 | hence a0: "a\<noteq> 0" .. | |
| 1107 | hence a1: "a \<ge> 1" by arith | |
| 1108 | from one_le_power[OF a1] have ath: "1 \<le> a ^ ((n - 1) div p)" . | |
| 1109 |     {assume b0: "b = 0"
 | |
| 30488 | 1110 | from p(2) nqr have "(n - 1) mod p = 0" | 
| 26126 | 1111 | apply (simp only: dvd_eq_mod_eq_0[symmetric]) by (rule dvd_mult2, simp) | 
| 30488 | 1112 | with mod_div_equality[of "n - 1" p] | 
| 1113 | have "(n - 1) div p * p= n - 1" by auto | |
| 26126 | 1114 | hence eq: "(a^((n - 1) div p))^p = a^(n - 1)" | 
| 1115 | by (simp only: power_mult[symmetric]) | |
| 1116 | from prime_ge_2[OF p(1)] have pS: "Suc (p - 1) = p" by arith | |
| 1117 | from b(1) have d: "n dvd a^((n - 1) div p)" unfolding b0 cong_0_divides . | |
| 1118 | from divides_rexp[OF d, of "p - 1"] pS eq cong_divides[OF an] n | |
| 1119 | have False by simp} | |
| 30488 | 1120 | then have b0: "b \<noteq> 0" .. | 
| 1121 | hence b1: "b \<ge> 1" by arith | |
| 26126 | 1122 | from cong_coprime[OF cong_sub[OF b(1) cong_refl[of 1] ath b1]] b(2) nqr | 
| 1123 | have "coprime (a ^ ((n - 1) div p) - 1) n" by (simp add: coprime_commute)} | |
| 30488 | 1124 | hence th: "\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a ^ ((n - 1) div p) - 1) n " | 
| 26126 | 1125 | by blast | 
| 1126 | from pocklington[OF n nqr sqr an th] show ?thesis . | |
| 1127 | qed | |
| 1128 | ||
| 1129 | (* Prime factorizations. *) | |
| 1130 | ||
| 1131 | definition "primefact ps n = (foldr op * ps 1 = n \<and> (\<forall>p\<in> set ps. prime p))" | |
| 1132 | ||
| 1133 | lemma primefact: assumes n: "n \<noteq> 0" | |
| 1134 | shows "\<exists>ps. primefact ps n" | |
| 1135 | using n | |
| 1136 | proof(induct n rule: nat_less_induct) | |
| 1137 | fix n assume H: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>ps. primefact ps m)" and n: "n\<noteq>0" | |
| 1138 | let ?ths = "\<exists>ps. primefact ps n" | |
| 30488 | 1139 |   {assume "n = 1"
 | 
| 26126 | 1140 | hence "primefact [] n" by (simp add: primefact_def) | 
| 1141 | hence ?ths by blast } | |
| 1142 | moreover | |
| 1143 |   {assume n1: "n \<noteq> 1"
 | |
| 1144 | with n have n2: "n \<ge> 2" by arith | |
| 1145 | from prime_factor[OF n1] obtain p where p: "prime p" "p dvd n" by blast | |
| 1146 | from p(2) obtain m where m: "n = p*m" unfolding dvd_def by blast | |
| 1147 | from n m have m0: "m > 0" "m\<noteq>0" by auto | |
| 1148 | from prime_ge_2[OF p(1)] have "1 < p" by arith | |
| 1149 | with m0 m have mn: "m < n" by auto | |
| 1150 | from H[rule_format, OF mn m0(2)] obtain ps where ps: "primefact ps m" .. | |
| 1151 | from ps m p(1) have "primefact (p#ps) n" by (simp add: primefact_def) | |
| 1152 | hence ?ths by blast} | |
| 1153 | ultimately show ?ths by blast | |
| 1154 | qed | |
| 1155 | ||
| 30488 | 1156 | lemma primefact_contains: | 
| 26126 | 1157 | assumes pf: "primefact ps n" and p: "prime p" and pn: "p dvd n" | 
| 1158 | shows "p \<in> set ps" | |
| 1159 | using pf p pn | |
| 1160 | proof(induct ps arbitrary: p n) | |
| 1161 | case Nil thus ?case by (auto simp add: primefact_def) | |
| 1162 | next | |
| 1163 | case (Cons q qs p n) | |
| 30488 | 1164 | from Cons.prems[unfolded primefact_def] | 
| 26126 | 1165 | have q: "prime q" "q * foldr op * qs 1 = n" "\<forall>p \<in>set qs. prime p" and p: "prime p" "p dvd q * foldr op * qs 1" by simp_all | 
| 1166 |   {assume "p dvd q"
 | |
| 1167 | with p(1) q(1) have "p = q" unfolding prime_def by auto | |
| 1168 | hence ?case by simp} | |
| 1169 | moreover | |
| 1170 |   { assume h: "p dvd foldr op * qs 1"
 | |
| 30488 | 1171 | from q(3) have pqs: "primefact qs (foldr op * qs 1)" | 
| 26126 | 1172 | by (simp add: primefact_def) | 
| 1173 | from Cons.hyps[OF pqs p(1) h] have ?case by simp} | |
| 1174 | ultimately show ?case using prime_divprod[OF p] by blast | |
| 1175 | qed | |
| 1176 | ||
| 1177 | lemma primefact_variant: "primefact ps n \<longleftrightarrow> foldr op * ps 1 = n \<and> list_all prime ps" by (auto simp add: primefact_def list_all_iff) | |
| 1178 | ||
| 1179 | (* Variant of Lucas theorem. *) | |
| 1180 | ||
| 1181 | lemma lucas_primefact: | |
| 30488 | 1182 | assumes n: "n \<ge> 2" and an: "[a^(n - 1) = 1] (mod n)" | 
| 1183 | and psn: "foldr op * ps 1 = n - 1" | |
| 26126 | 1184 | and psp: "list_all (\<lambda>p. prime p \<and> \<not> [a^((n - 1) div p) = 1] (mod n)) ps" | 
| 1185 | shows "prime n" | |
| 1186 | proof- | |
| 1187 |   {fix p assume p: "prime p" "p dvd n - 1" "[a ^ ((n - 1) div p) = 1] (mod n)"
 | |
| 30488 | 1188 | from psn psp have psn1: "primefact ps (n - 1)" | 
| 26126 | 1189 | by (auto simp add: list_all_iff primefact_variant) | 
| 1190 | from p(3) primefact_contains[OF psn1 p(1,2)] psp | |
| 1191 | have False by (induct ps, auto)} | |
| 1192 | with lucas[OF n an] show ?thesis by blast | |
| 1193 | qed | |
| 1194 | ||
| 1195 | (* Variant of Pocklington theorem. *) | |
| 1196 | ||
| 1197 | lemma mod_le: assumes n: "n \<noteq> (0::nat)" shows "m mod n \<le> m" | |
| 1198 | proof- | |
| 1199 | from mod_div_equality[of m n] | |
| 30488 | 1200 | have "\<exists>x. x + m mod n = m" by blast | 
| 26126 | 1201 | then show ?thesis by auto | 
| 1202 | qed | |
| 30488 | 1203 | |
| 26126 | 1204 | |
| 1205 | lemma pocklington_primefact: | |
| 1206 | assumes n: "n \<ge> 2" and qrn: "q*r = n - 1" and nq2: "n \<le> q^2" | |
| 30488 | 1207 | and arnb: "(a^r) mod n = b" and psq: "foldr op * ps 1 = q" | 
| 26126 | 1208 | and bqn: "(b^q) mod n = 1" | 
| 1209 | and psp: "list_all (\<lambda>p. prime p \<and> coprime ((b^(q div p)) mod n - 1) n) ps" | |
| 1210 | shows "prime n" | |
| 1211 | proof- | |
| 1212 | from bqn psp qrn | |
| 1213 | have bqn: "a ^ (n - 1) mod n = 1" | |
| 30488 | 1214 | and psp: "list_all (\<lambda>p. prime p \<and> coprime (a^(r *(q div p)) mod n - 1) n) ps" unfolding arnb[symmetric] power_mod | 
| 29667 | 1215 | by (simp_all add: power_mult[symmetric] algebra_simps) | 
| 26126 | 1216 | from n have n0: "n > 0" by arith | 
| 1217 | from mod_div_equality[of "a^(n - 1)" n] | |
| 1218 | mod_less_divisor[OF n0, of "a^(n - 1)"] | |
| 30488 | 1219 | have an1: "[a ^ (n - 1) = 1] (mod n)" | 
| 26126 | 1220 | unfolding nat_mod bqn | 
| 1221 | apply - | |
| 1222 | apply (rule exI[where x="0"]) | |
| 1223 | apply (rule exI[where x="a^(n - 1) div n"]) | |
| 29667 | 1224 | by (simp add: algebra_simps) | 
| 26126 | 1225 |   {fix p assume p: "prime p" "p dvd q"
 | 
| 1226 | from psp psq have pfpsq: "primefact ps q" | |
| 1227 | by (auto simp add: primefact_variant list_all_iff) | |
| 30488 | 1228 | from psp primefact_contains[OF pfpsq p] | 
| 26126 | 1229 | have p': "coprime (a ^ (r * (q div p)) mod n - 1) n" | 
| 1230 | by (simp add: list_all_iff) | |
| 1231 | from prime_ge_2[OF p(1)] have p01: "p \<noteq> 0" "p \<noteq> 1" "p =Suc(p - 1)" by arith+ | |
| 30488 | 1232 | from div_mult1_eq[of r q p] p(2) | 
| 26126 | 1233 | have eq1: "r* (q div p) = (n - 1) div p" | 
| 1234 | unfolding qrn[symmetric] dvd_eq_mod_eq_0 by (simp add: mult_commute) | |
| 1235 | have ath: "\<And>a (b::nat). a <= b \<Longrightarrow> a \<noteq> 0 ==> 1 <= a \<and> 1 <= b" by arith | |
| 1236 | from n0 have n00: "n \<noteq> 0" by arith | |
| 1237 | from mod_le[OF n00] | |
| 1238 | have th10: "a ^ ((n - 1) div p) mod n \<le> a ^ ((n - 1) div p)" . | |
| 1239 |     {assume "a ^ ((n - 1) div p) mod n = 0"
 | |
| 1240 | then obtain s where s: "a ^ ((n - 1) div p) = n*s" | |
| 1241 | unfolding mod_eq_0_iff by blast | |
| 1242 | hence eq0: "(a^((n - 1) div p))^p = (n*s)^p" by simp | |
| 1243 | from qrn[symmetric] have qn1: "q dvd n - 1" unfolding dvd_def by auto | |
| 1244 | from dvd_trans[OF p(2) qn1] div_mod_equality'[of "n - 1" p] | |
| 30488 | 1245 | have npp: "(n - 1) div p * p = n - 1" by (simp add: dvd_eq_mod_eq_0) | 
| 26126 | 1246 | with eq0 have "a^ (n - 1) = (n*s)^p" | 
| 1247 | by (simp add: power_mult[symmetric]) | |
| 1248 | hence "1 = (n*s)^(Suc (p - 1)) mod n" using bqn p01 by simp | |
| 28668 
e79e196039a1
fixed and reactivated HOL/Library/Pocklington.thy -- by Mark Hillebrand;
 wenzelm parents: 
27668diff
changeset | 1249 | also have "\<dots> = 0" by (simp add: mult_assoc) | 
| 26126 | 1250 | finally have False by simp } | 
| 30488 | 1251 | then have th11: "a ^ ((n - 1) div p) mod n \<noteq> 0" by auto | 
| 1252 | have th1: "[a ^ ((n - 1) div p) mod n = a ^ ((n - 1) div p)] (mod n)" | |
| 1253 | unfolding modeq_def by simp | |
| 26126 | 1254 | from cong_sub[OF th1 cong_refl[of 1]] ath[OF th10 th11] | 
| 1255 | have th: "[a ^ ((n - 1) div p) mod n - 1 = a ^ ((n - 1) div p) - 1] (mod n)" | |
| 30488 | 1256 | by blast | 
| 1257 | from cong_coprime[OF th] p'[unfolded eq1] | |
| 26126 | 1258 | have "coprime (a ^ ((n - 1) div p) - 1) n" by (simp add: coprime_commute) } | 
| 1259 | with pocklington[OF n qrn[symmetric] nq2 an1] | |
| 30488 | 1260 | show ?thesis by blast | 
| 26126 | 1261 | qed | 
| 1262 | ||
| 1263 | end |