| author | huffman | 
| Sun, 25 Mar 2012 20:15:39 +0200 | |
| changeset 47108 | 2a1953f0d20d | 
| parent 47082 | 737d7bc8e50f | 
| child 50104 | de19856feb54 | 
| permissions | -rw-r--r-- | 
| 43920 | 1  | 
(* Title: HOL/Library/Extended_Real.thy  | 
| 41983 | 2  | 
Author: Johannes Hölzl, TU München  | 
3  | 
Author: Robert Himmelmann, TU München  | 
|
4  | 
Author: Armin Heller, TU München  | 
|
5  | 
Author: Bogdan Grechuk, University of Edinburgh  | 
|
6  | 
*)  | 
|
| 41973 | 7  | 
|
8  | 
header {* Extended real number line *}
 | 
|
9  | 
||
| 43920 | 10  | 
theory Extended_Real  | 
| 43941 | 11  | 
imports Complex_Main Extended_Nat  | 
| 41973 | 12  | 
begin  | 
13  | 
||
| 
41980
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
14  | 
text {*
 | 
| 
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
15  | 
|
| 
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
16  | 
For more lemmas about the extended real numbers go to  | 
| 47082 | 17  | 
  @{file "~~/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy"}
 | 
| 
41980
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
18  | 
|
| 
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
19  | 
*}  | 
| 
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
20  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
21  | 
lemma (in complete_lattice) atLeast_eq_UNIV_iff: "{x..} = UNIV \<longleftrightarrow> x = bot"
 | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
22  | 
proof  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
23  | 
  assume "{x..} = UNIV"
 | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
24  | 
show "x = bot"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
25  | 
proof (rule ccontr)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
26  | 
    assume "x \<noteq> bot" then have "bot \<notin> {x..}" by (simp add: le_less)
 | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
27  | 
    then show False using `{x..} = UNIV` by simp
 | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
28  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
29  | 
qed auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
30  | 
|
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
31  | 
lemma SUPR_pair:  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
32  | 
"(SUP i : A. SUP j : B. f i j) = (SUP p : A \<times> B. f (fst p) (snd p))"  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
33  | 
by (rule antisym) (auto intro!: SUP_least SUP_upper2)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
34  | 
|
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
35  | 
lemma INFI_pair:  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
36  | 
"(INF i : A. INF j : B. f i j) = (INF p : A \<times> B. f (fst p) (snd p))"  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
37  | 
by (rule antisym) (auto intro!: INF_greatest INF_lower2)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
38  | 
|
| 41973 | 39  | 
subsection {* Definition and basic properties *}
 | 
40  | 
||
| 43920 | 41  | 
datatype ereal = ereal real | PInfty | MInfty  | 
| 41973 | 42  | 
|
| 43920 | 43  | 
instantiation ereal :: uminus  | 
| 41973 | 44  | 
begin  | 
| 43920 | 45  | 
fun uminus_ereal where  | 
46  | 
"- (ereal r) = ereal (- r)"  | 
|
| 43923 | 47  | 
| "- PInfty = MInfty"  | 
48  | 
| "- MInfty = PInfty"  | 
|
| 41973 | 49  | 
instance ..  | 
50  | 
end  | 
|
51  | 
||
| 43923 | 52  | 
instantiation ereal :: infinity  | 
53  | 
begin  | 
|
54  | 
definition "(\<infinity>::ereal) = PInfty"  | 
|
55  | 
instance ..  | 
|
56  | 
end  | 
|
| 41973 | 57  | 
|
| 43923 | 58  | 
declare [[coercion "ereal :: real \<Rightarrow> ereal"]]  | 
| 41973 | 59  | 
|
| 43920 | 60  | 
lemma ereal_uminus_uminus[simp]:  | 
61  | 
fixes a :: ereal shows "- (- a) = a"  | 
|
| 41973 | 62  | 
by (cases a) simp_all  | 
63  | 
||
| 43923 | 64  | 
lemma  | 
65  | 
shows PInfty_eq_infinity[simp]: "PInfty = \<infinity>"  | 
|
66  | 
and MInfty_eq_minfinity[simp]: "MInfty = - \<infinity>"  | 
|
67  | 
and MInfty_neq_PInfty[simp]: "\<infinity> \<noteq> - (\<infinity>::ereal)" "- \<infinity> \<noteq> (\<infinity>::ereal)"  | 
|
68  | 
and MInfty_neq_ereal[simp]: "ereal r \<noteq> - \<infinity>" "- \<infinity> \<noteq> ereal r"  | 
|
69  | 
and PInfty_neq_ereal[simp]: "ereal r \<noteq> \<infinity>" "\<infinity> \<noteq> ereal r"  | 
|
70  | 
and PInfty_cases[simp]: "(case \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = y"  | 
|
71  | 
and MInfty_cases[simp]: "(case - \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = z"  | 
|
72  | 
by (simp_all add: infinity_ereal_def)  | 
|
| 41973 | 73  | 
|
| 43933 | 74  | 
declare  | 
75  | 
PInfty_eq_infinity[code_post]  | 
|
76  | 
MInfty_eq_minfinity[code_post]  | 
|
77  | 
||
78  | 
lemma [code_unfold]:  | 
|
79  | 
"\<infinity> = PInfty"  | 
|
80  | 
"-PInfty = MInfty"  | 
|
81  | 
by simp_all  | 
|
82  | 
||
| 43923 | 83  | 
lemma inj_ereal[simp]: "inj_on ereal A"  | 
84  | 
unfolding inj_on_def by auto  | 
|
| 41973 | 85  | 
|
| 43920 | 86  | 
lemma ereal_cases[case_names real PInf MInf, cases type: ereal]:  | 
87  | 
assumes "\<And>r. x = ereal r \<Longrightarrow> P"  | 
|
| 41973 | 88  | 
assumes "x = \<infinity> \<Longrightarrow> P"  | 
89  | 
assumes "x = -\<infinity> \<Longrightarrow> P"  | 
|
90  | 
shows P  | 
|
91  | 
using assms by (cases x) auto  | 
|
92  | 
||
| 43920 | 93  | 
lemmas ereal2_cases = ereal_cases[case_product ereal_cases]  | 
94  | 
lemmas ereal3_cases = ereal2_cases[case_product ereal_cases]  | 
|
| 41973 | 95  | 
|
| 43920 | 96  | 
lemma ereal_uminus_eq_iff[simp]:  | 
97  | 
fixes a b :: ereal shows "-a = -b \<longleftrightarrow> a = b"  | 
|
98  | 
by (cases rule: ereal2_cases[of a b]) simp_all  | 
|
| 41973 | 99  | 
|
| 43920 | 100  | 
function of_ereal :: "ereal \<Rightarrow> real" where  | 
101  | 
"of_ereal (ereal r) = r" |  | 
|
102  | 
"of_ereal \<infinity> = 0" |  | 
|
103  | 
"of_ereal (-\<infinity>) = 0"  | 
|
104  | 
by (auto intro: ereal_cases)  | 
|
| 41973 | 105  | 
termination proof qed (rule wf_empty)  | 
106  | 
||
107  | 
defs (overloaded)  | 
|
| 43920 | 108  | 
real_of_ereal_def [code_unfold]: "real \<equiv> of_ereal"  | 
| 41973 | 109  | 
|
| 43920 | 110  | 
lemma real_of_ereal[simp]:  | 
111  | 
"real (- x :: ereal) = - (real x)"  | 
|
112  | 
"real (ereal r) = r"  | 
|
| 43923 | 113  | 
"real (\<infinity>::ereal) = 0"  | 
| 43920 | 114  | 
by (cases x) (simp_all add: real_of_ereal_def)  | 
| 41973 | 115  | 
|
| 43920 | 116  | 
lemma range_ereal[simp]: "range ereal = UNIV - {\<infinity>, -\<infinity>}"
 | 
| 41973 | 117  | 
proof safe  | 
| 43920 | 118  | 
fix x assume "x \<notin> range ereal" "x \<noteq> \<infinity>"  | 
| 41973 | 119  | 
then show "x = -\<infinity>" by (cases x) auto  | 
120  | 
qed auto  | 
|
121  | 
||
| 43920 | 122  | 
lemma ereal_range_uminus[simp]: "range uminus = (UNIV::ereal set)"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
123  | 
proof safe  | 
| 43920 | 124  | 
fix x :: ereal show "x \<in> range uminus" by (intro image_eqI[of _ _ "-x"]) auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
125  | 
qed auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
126  | 
|
| 41973 | 127  | 
|
| 43920 | 128  | 
instantiation ereal :: abs  | 
| 41976 | 129  | 
begin  | 
| 43920 | 130  | 
function abs_ereal where  | 
131  | 
"\<bar>ereal r\<bar> = ereal \<bar>r\<bar>"  | 
|
| 43923 | 132  | 
| "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)"  | 
133  | 
| "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)"  | 
|
| 43920 | 134  | 
by (auto intro: ereal_cases)  | 
| 41976 | 135  | 
termination proof qed (rule wf_empty)  | 
136  | 
instance ..  | 
|
137  | 
end  | 
|
138  | 
||
| 43923 | 139  | 
lemma abs_eq_infinity_cases[elim!]: "\<lbrakk> \<bar>x :: ereal\<bar> = \<infinity> ; x = \<infinity> \<Longrightarrow> P ; x = -\<infinity> \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P"  | 
| 41976 | 140  | 
by (cases x) auto  | 
141  | 
||
| 43923 | 142  | 
lemma abs_neq_infinity_cases[elim!]: "\<lbrakk> \<bar>x :: ereal\<bar> \<noteq> \<infinity> ; \<And>r. x = ereal r \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P"  | 
| 41976 | 143  | 
by (cases x) auto  | 
144  | 
||
| 43920 | 145  | 
lemma abs_ereal_uminus[simp]: "\<bar>- x\<bar> = \<bar>x::ereal\<bar>"  | 
| 41976 | 146  | 
by (cases x) auto  | 
147  | 
||
| 41973 | 148  | 
subsubsection "Addition"  | 
149  | 
||
| 43920 | 150  | 
instantiation ereal :: comm_monoid_add  | 
| 41973 | 151  | 
begin  | 
152  | 
||
| 43920 | 153  | 
definition "0 = ereal 0"  | 
| 41973 | 154  | 
|
| 43920 | 155  | 
function plus_ereal where  | 
156  | 
"ereal r + ereal p = ereal (r + p)" |  | 
|
| 43923 | 157  | 
"\<infinity> + a = (\<infinity>::ereal)" |  | 
158  | 
"a + \<infinity> = (\<infinity>::ereal)" |  | 
|
| 43920 | 159  | 
"ereal r + -\<infinity> = - \<infinity>" |  | 
| 43923 | 160  | 
"-\<infinity> + ereal p = -(\<infinity>::ereal)" |  | 
161  | 
"-\<infinity> + -\<infinity> = -(\<infinity>::ereal)"  | 
|
| 41973 | 162  | 
proof -  | 
163  | 
case (goal1 P x)  | 
|
164  | 
moreover then obtain a b where "x = (a, b)" by (cases x) auto  | 
|
165  | 
ultimately show P  | 
|
| 43920 | 166  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 167  | 
qed auto  | 
168  | 
termination proof qed (rule wf_empty)  | 
|
169  | 
||
170  | 
lemma Infty_neq_0[simp]:  | 
|
| 43923 | 171  | 
"(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> (\<infinity>::ereal)"  | 
172  | 
"-(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> -(\<infinity>::ereal)"  | 
|
| 43920 | 173  | 
by (simp_all add: zero_ereal_def)  | 
| 41973 | 174  | 
|
| 43920 | 175  | 
lemma ereal_eq_0[simp]:  | 
176  | 
"ereal r = 0 \<longleftrightarrow> r = 0"  | 
|
177  | 
"0 = ereal r \<longleftrightarrow> r = 0"  | 
|
178  | 
unfolding zero_ereal_def by simp_all  | 
|
| 41973 | 179  | 
|
180  | 
instance  | 
|
181  | 
proof  | 
|
| 47082 | 182  | 
fix a b c :: ereal  | 
183  | 
show "0 + a = a"  | 
|
| 43920 | 184  | 
by (cases a) (simp_all add: zero_ereal_def)  | 
| 47082 | 185  | 
show "a + b = b + a"  | 
| 43920 | 186  | 
by (cases rule: ereal2_cases[of a b]) simp_all  | 
| 47082 | 187  | 
show "a + b + c = a + (b + c)"  | 
| 43920 | 188  | 
by (cases rule: ereal3_cases[of a b c]) simp_all  | 
| 41973 | 189  | 
qed  | 
190  | 
end  | 
|
191  | 
||
| 43920 | 192  | 
lemma real_of_ereal_0[simp]: "real (0::ereal) = 0"  | 
193  | 
unfolding real_of_ereal_def zero_ereal_def by simp  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
194  | 
|
| 43920 | 195  | 
lemma abs_ereal_zero[simp]: "\<bar>0\<bar> = (0::ereal)"  | 
196  | 
unfolding zero_ereal_def abs_ereal.simps by simp  | 
|
| 41976 | 197  | 
|
| 43920 | 198  | 
lemma ereal_uminus_zero[simp]:  | 
199  | 
"- 0 = (0::ereal)"  | 
|
200  | 
by (simp add: zero_ereal_def)  | 
|
| 41973 | 201  | 
|
| 43920 | 202  | 
lemma ereal_uminus_zero_iff[simp]:  | 
203  | 
fixes a :: ereal shows "-a = 0 \<longleftrightarrow> a = 0"  | 
|
| 41973 | 204  | 
by (cases a) simp_all  | 
205  | 
||
| 43920 | 206  | 
lemma ereal_plus_eq_PInfty[simp]:  | 
| 43923 | 207  | 
fixes a b :: ereal shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>"  | 
| 43920 | 208  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 209  | 
|
| 43920 | 210  | 
lemma ereal_plus_eq_MInfty[simp]:  | 
| 43923 | 211  | 
fixes a b :: ereal shows "a + b = -\<infinity> \<longleftrightarrow>  | 
| 41973 | 212  | 
(a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>"  | 
| 43920 | 213  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 214  | 
|
| 43920 | 215  | 
lemma ereal_add_cancel_left:  | 
| 43923 | 216  | 
fixes a b :: ereal assumes "a \<noteq> -\<infinity>"  | 
| 41973 | 217  | 
shows "a + b = a + c \<longleftrightarrow> (a = \<infinity> \<or> b = c)"  | 
| 43920 | 218  | 
using assms by (cases rule: ereal3_cases[of a b c]) auto  | 
| 41973 | 219  | 
|
| 43920 | 220  | 
lemma ereal_add_cancel_right:  | 
| 43923 | 221  | 
fixes a b :: ereal assumes "a \<noteq> -\<infinity>"  | 
| 41973 | 222  | 
shows "b + a = c + a \<longleftrightarrow> (a = \<infinity> \<or> b = c)"  | 
| 43920 | 223  | 
using assms by (cases rule: ereal3_cases[of a b c]) auto  | 
| 41973 | 224  | 
|
| 43920 | 225  | 
lemma ereal_real:  | 
226  | 
"ereal (real x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)"  | 
|
| 41973 | 227  | 
by (cases x) simp_all  | 
228  | 
||
| 43920 | 229  | 
lemma real_of_ereal_add:  | 
230  | 
fixes a b :: ereal  | 
|
| 47082 | 231  | 
shows "real (a + b) =  | 
232  | 
(if (\<bar>a\<bar> = \<infinity>) \<and> (\<bar>b\<bar> = \<infinity>) \<or> (\<bar>a\<bar> \<noteq> \<infinity>) \<and> (\<bar>b\<bar> \<noteq> \<infinity>) then real a + real b else 0)"  | 
|
| 43920 | 233  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
234  | 
|
| 43920 | 235  | 
subsubsection "Linear order on @{typ ereal}"
 | 
| 41973 | 236  | 
|
| 43920 | 237  | 
instantiation ereal :: linorder  | 
| 41973 | 238  | 
begin  | 
239  | 
||
| 47082 | 240  | 
function less_ereal  | 
241  | 
where  | 
|
242  | 
" ereal x < ereal y \<longleftrightarrow> x < y"  | 
|
243  | 
| "(\<infinity>::ereal) < a \<longleftrightarrow> False"  | 
|
244  | 
| " a < -(\<infinity>::ereal) \<longleftrightarrow> False"  | 
|
245  | 
| "ereal x < \<infinity> \<longleftrightarrow> True"  | 
|
246  | 
| " -\<infinity> < ereal r \<longleftrightarrow> True"  | 
|
247  | 
| " -\<infinity> < (\<infinity>::ereal) \<longleftrightarrow> True"  | 
|
| 41973 | 248  | 
proof -  | 
249  | 
case (goal1 P x)  | 
|
250  | 
moreover then obtain a b where "x = (a,b)" by (cases x) auto  | 
|
| 43920 | 251  | 
ultimately show P by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 252  | 
qed simp_all  | 
253  | 
termination by (relation "{}") simp
 | 
|
254  | 
||
| 43920 | 255  | 
definition "x \<le> (y::ereal) \<longleftrightarrow> x < y \<or> x = y"  | 
| 41973 | 256  | 
|
| 43920 | 257  | 
lemma ereal_infty_less[simp]:  | 
| 43923 | 258  | 
fixes x :: ereal  | 
259  | 
shows "x < \<infinity> \<longleftrightarrow> (x \<noteq> \<infinity>)"  | 
|
260  | 
"-\<infinity> < x \<longleftrightarrow> (x \<noteq> -\<infinity>)"  | 
|
| 41973 | 261  | 
by (cases x, simp_all) (cases x, simp_all)  | 
262  | 
||
| 43920 | 263  | 
lemma ereal_infty_less_eq[simp]:  | 
| 43923 | 264  | 
fixes x :: ereal  | 
265  | 
shows "\<infinity> \<le> x \<longleftrightarrow> x = \<infinity>"  | 
|
| 41973 | 266  | 
"x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>"  | 
| 43920 | 267  | 
by (auto simp add: less_eq_ereal_def)  | 
| 41973 | 268  | 
|
| 43920 | 269  | 
lemma ereal_less[simp]:  | 
270  | 
"ereal r < 0 \<longleftrightarrow> (r < 0)"  | 
|
271  | 
"0 < ereal r \<longleftrightarrow> (0 < r)"  | 
|
| 43923 | 272  | 
"0 < (\<infinity>::ereal)"  | 
273  | 
"-(\<infinity>::ereal) < 0"  | 
|
| 43920 | 274  | 
by (simp_all add: zero_ereal_def)  | 
| 41973 | 275  | 
|
| 43920 | 276  | 
lemma ereal_less_eq[simp]:  | 
| 43923 | 277  | 
"x \<le> (\<infinity>::ereal)"  | 
278  | 
"-(\<infinity>::ereal) \<le> x"  | 
|
| 43920 | 279  | 
"ereal r \<le> ereal p \<longleftrightarrow> r \<le> p"  | 
280  | 
"ereal r \<le> 0 \<longleftrightarrow> r \<le> 0"  | 
|
281  | 
"0 \<le> ereal r \<longleftrightarrow> 0 \<le> r"  | 
|
282  | 
by (auto simp add: less_eq_ereal_def zero_ereal_def)  | 
|
| 41973 | 283  | 
|
| 43920 | 284  | 
lemma ereal_infty_less_eq2:  | 
| 43923 | 285  | 
"a \<le> b \<Longrightarrow> a = \<infinity> \<Longrightarrow> b = (\<infinity>::ereal)"  | 
286  | 
"a \<le> b \<Longrightarrow> b = -\<infinity> \<Longrightarrow> a = -(\<infinity>::ereal)"  | 
|
| 41973 | 287  | 
by simp_all  | 
288  | 
||
289  | 
instance  | 
|
290  | 
proof  | 
|
| 47082 | 291  | 
fix x y z :: ereal  | 
292  | 
show "x \<le> x"  | 
|
| 41973 | 293  | 
by (cases x) simp_all  | 
| 47082 | 294  | 
show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"  | 
| 43920 | 295  | 
by (cases rule: ereal2_cases[of x y]) auto  | 
| 41973 | 296  | 
show "x \<le> y \<or> y \<le> x "  | 
| 43920 | 297  | 
by (cases rule: ereal2_cases[of x y]) auto  | 
| 41973 | 298  | 
  { assume "x \<le> y" "y \<le> x" then show "x = y"
 | 
| 43920 | 299  | 
by (cases rule: ereal2_cases[of x y]) auto }  | 
| 47082 | 300  | 
  { assume "x \<le> y" "y \<le> z" then show "x \<le> z"
 | 
| 43920 | 301  | 
by (cases rule: ereal3_cases[of x y z]) auto }  | 
| 41973 | 302  | 
qed  | 
| 47082 | 303  | 
|
| 41973 | 304  | 
end  | 
305  | 
||
| 43920 | 306  | 
instance ereal :: ordered_ab_semigroup_add  | 
| 41978 | 307  | 
proof  | 
| 43920 | 308  | 
fix a b c :: ereal assume "a \<le> b" then show "c + a \<le> c + b"  | 
309  | 
by (cases rule: ereal3_cases[of a b c]) auto  | 
|
| 41978 | 310  | 
qed  | 
311  | 
||
| 43920 | 312  | 
lemma real_of_ereal_positive_mono:  | 
| 43923 | 313  | 
fixes x y :: ereal shows "\<lbrakk>0 \<le> x; x \<le> y; y \<noteq> \<infinity>\<rbrakk> \<Longrightarrow> real x \<le> real y"  | 
| 43920 | 314  | 
by (cases rule: ereal2_cases[of x y]) auto  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
315  | 
|
| 43920 | 316  | 
lemma ereal_MInfty_lessI[intro, simp]:  | 
| 43923 | 317  | 
fixes a :: ereal shows "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a"  | 
| 41973 | 318  | 
by (cases a) auto  | 
319  | 
||
| 43920 | 320  | 
lemma ereal_less_PInfty[intro, simp]:  | 
| 43923 | 321  | 
fixes a :: ereal shows "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>"  | 
| 41973 | 322  | 
by (cases a) auto  | 
323  | 
||
| 43920 | 324  | 
lemma ereal_less_ereal_Ex:  | 
325  | 
fixes a b :: ereal  | 
|
326  | 
shows "x < ereal r \<longleftrightarrow> x = -\<infinity> \<or> (\<exists>p. p < r \<and> x = ereal p)"  | 
|
| 41973 | 327  | 
by (cases x) auto  | 
328  | 
||
| 43920 | 329  | 
lemma less_PInf_Ex_of_nat: "x \<noteq> \<infinity> \<longleftrightarrow> (\<exists>n::nat. x < ereal (real n))"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
330  | 
proof (cases x)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
331  | 
case (real r) then show ?thesis  | 
| 
41980
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
332  | 
using reals_Archimedean2[of r] by simp  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
333  | 
qed simp_all  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
334  | 
|
| 43920 | 335  | 
lemma ereal_add_mono:  | 
336  | 
fixes a b c d :: ereal assumes "a \<le> b" "c \<le> d" shows "a + c \<le> b + d"  | 
|
| 41973 | 337  | 
using assms  | 
338  | 
apply (cases a)  | 
|
| 43920 | 339  | 
apply (cases rule: ereal3_cases[of b c d], auto)  | 
340  | 
apply (cases rule: ereal3_cases[of b c d], auto)  | 
|
| 41973 | 341  | 
done  | 
342  | 
||
| 43920 | 343  | 
lemma ereal_minus_le_minus[simp]:  | 
344  | 
fixes a b :: ereal shows "- a \<le> - b \<longleftrightarrow> b \<le> a"  | 
|
345  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
|
| 41973 | 346  | 
|
| 43920 | 347  | 
lemma ereal_minus_less_minus[simp]:  | 
348  | 
fixes a b :: ereal shows "- a < - b \<longleftrightarrow> b < a"  | 
|
349  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
|
| 41973 | 350  | 
|
| 43920 | 351  | 
lemma ereal_le_real_iff:  | 
352  | 
"x \<le> real y \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0))"  | 
|
| 41973 | 353  | 
by (cases y) auto  | 
354  | 
||
| 43920 | 355  | 
lemma real_le_ereal_iff:  | 
356  | 
"real y \<le> x \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x))"  | 
|
| 41973 | 357  | 
by (cases y) auto  | 
358  | 
||
| 43920 | 359  | 
lemma ereal_less_real_iff:  | 
360  | 
"x < real y \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0))"  | 
|
| 41973 | 361  | 
by (cases y) auto  | 
362  | 
||
| 43920 | 363  | 
lemma real_less_ereal_iff:  | 
364  | 
"real y < x \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x))"  | 
|
| 41973 | 365  | 
by (cases y) auto  | 
366  | 
||
| 43920 | 367  | 
lemma real_of_ereal_pos:  | 
368  | 
fixes x :: ereal shows "0 \<le> x \<Longrightarrow> 0 \<le> real x" by (cases x) auto  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
369  | 
|
| 43920 | 370  | 
lemmas real_of_ereal_ord_simps =  | 
371  | 
ereal_le_real_iff real_le_ereal_iff ereal_less_real_iff real_less_ereal_iff  | 
|
| 41973 | 372  | 
|
| 43920 | 373  | 
lemma abs_ereal_ge0[simp]: "0 \<le> x \<Longrightarrow> \<bar>x :: ereal\<bar> = x"  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
374  | 
by (cases x) auto  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
375  | 
|
| 43920 | 376  | 
lemma abs_ereal_less0[simp]: "x < 0 \<Longrightarrow> \<bar>x :: ereal\<bar> = -x"  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
377  | 
by (cases x) auto  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
378  | 
|
| 43920 | 379  | 
lemma abs_ereal_pos[simp]: "0 \<le> \<bar>x :: ereal\<bar>"  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
380  | 
by (cases x) auto  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
381  | 
|
| 43923 | 382  | 
lemma real_of_ereal_le_0[simp]: "real (x :: ereal) \<le> 0 \<longleftrightarrow> (x \<le> 0 \<or> x = \<infinity>)"  | 
383  | 
by (cases x) auto  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
384  | 
|
| 43923 | 385  | 
lemma abs_real_of_ereal[simp]: "\<bar>real (x :: ereal)\<bar> = real \<bar>x\<bar>"  | 
386  | 
by (cases x) auto  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
387  | 
|
| 43923 | 388  | 
lemma zero_less_real_of_ereal:  | 
389  | 
fixes x :: ereal shows "0 < real x \<longleftrightarrow> (0 < x \<and> x \<noteq> \<infinity>)"  | 
|
390  | 
by (cases x) auto  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
391  | 
|
| 43920 | 392  | 
lemma ereal_0_le_uminus_iff[simp]:  | 
393  | 
fixes a :: ereal shows "0 \<le> -a \<longleftrightarrow> a \<le> 0"  | 
|
394  | 
by (cases rule: ereal2_cases[of a]) auto  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
395  | 
|
| 43920 | 396  | 
lemma ereal_uminus_le_0_iff[simp]:  | 
397  | 
fixes a :: ereal shows "-a \<le> 0 \<longleftrightarrow> 0 \<le> a"  | 
|
398  | 
by (cases rule: ereal2_cases[of a]) auto  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
399  | 
|
| 43923 | 400  | 
lemma ereal_dense2: "x < y \<Longrightarrow> \<exists>z. x < ereal z \<and> ereal z < y"  | 
401  | 
using lt_ex gt_ex dense by (cases x y rule: ereal2_cases) auto  | 
|
402  | 
||
| 43920 | 403  | 
lemma ereal_dense:  | 
404  | 
fixes x y :: ereal assumes "x < y"  | 
|
| 43923 | 405  | 
shows "\<exists>z. x < z \<and> z < y"  | 
406  | 
using ereal_dense2[OF `x < y`] by blast  | 
|
| 41973 | 407  | 
|
| 43920 | 408  | 
lemma ereal_add_strict_mono:  | 
409  | 
fixes a b c d :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
410  | 
assumes "a = b" "0 \<le> a" "a \<noteq> \<infinity>" "c < d"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
411  | 
shows "a + c < b + d"  | 
| 43920 | 412  | 
using assms by (cases rule: ereal3_cases[case_product ereal_cases, of a b c d]) auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
413  | 
|
| 43923 | 414  | 
lemma ereal_less_add:  | 
415  | 
fixes a b c :: ereal shows "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b"  | 
|
| 43920 | 416  | 
by (cases rule: ereal2_cases[of b c]) auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
417  | 
|
| 43920 | 418  | 
lemma ereal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::ereal)" by auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
419  | 
|
| 43920 | 420  | 
lemma ereal_uminus_less_reorder: "- a < b \<longleftrightarrow> -b < (a::ereal)"  | 
421  | 
by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
422  | 
|
| 43920 | 423  | 
lemma ereal_uminus_le_reorder: "- a \<le> b \<longleftrightarrow> -b \<le> (a::ereal)"  | 
424  | 
by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_le_minus)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
425  | 
|
| 43920 | 426  | 
lemmas ereal_uminus_reorder =  | 
427  | 
ereal_uminus_eq_reorder ereal_uminus_less_reorder ereal_uminus_le_reorder  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
428  | 
|
| 43920 | 429  | 
lemma ereal_bot:  | 
430  | 
fixes x :: ereal assumes "\<And>B. x \<le> ereal B" shows "x = - \<infinity>"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
431  | 
proof (cases x)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
432  | 
case (real r) with assms[of "r - 1"] show ?thesis by auto  | 
| 47082 | 433  | 
next  | 
434  | 
case PInf with assms[of 0] show ?thesis by auto  | 
|
435  | 
next  | 
|
436  | 
case MInf then show ?thesis by simp  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
437  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
438  | 
|
| 43920 | 439  | 
lemma ereal_top:  | 
440  | 
fixes x :: ereal assumes "\<And>B. x \<ge> ereal B" shows "x = \<infinity>"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
441  | 
proof (cases x)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
442  | 
case (real r) with assms[of "r + 1"] show ?thesis by auto  | 
| 47082 | 443  | 
next  | 
444  | 
case MInf with assms[of 0] show ?thesis by auto  | 
|
445  | 
next  | 
|
446  | 
case PInf then show ?thesis by simp  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
447  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
448  | 
|
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
449  | 
lemma  | 
| 43920 | 450  | 
shows ereal_max[simp]: "ereal (max x y) = max (ereal x) (ereal y)"  | 
451  | 
and ereal_min[simp]: "ereal (min x y) = min (ereal x) (ereal y)"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
452  | 
by (simp_all add: min_def max_def)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
453  | 
|
| 43920 | 454  | 
lemma ereal_max_0: "max 0 (ereal r) = ereal (max 0 r)"  | 
455  | 
by (auto simp: zero_ereal_def)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
456  | 
|
| 41978 | 457  | 
lemma  | 
| 43920 | 458  | 
fixes f :: "nat \<Rightarrow> ereal"  | 
| 41978 | 459  | 
shows incseq_uminus[simp]: "incseq (\<lambda>x. - f x) \<longleftrightarrow> decseq f"  | 
460  | 
and decseq_uminus[simp]: "decseq (\<lambda>x. - f x) \<longleftrightarrow> incseq f"  | 
|
461  | 
unfolding decseq_def incseq_def by auto  | 
|
462  | 
||
| 43920 | 463  | 
lemma incseq_ereal: "incseq f \<Longrightarrow> incseq (\<lambda>x. ereal (f x))"  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
464  | 
unfolding incseq_def by auto  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
465  | 
|
| 43920 | 466  | 
lemma ereal_add_nonneg_nonneg:  | 
467  | 
fixes a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b"  | 
|
| 41978 | 468  | 
using add_mono[of 0 a 0 b] by simp  | 
469  | 
||
470  | 
lemma image_eqD: "f ` A = B \<Longrightarrow> (\<forall>x\<in>A. f x \<in> B)"  | 
|
471  | 
by auto  | 
|
472  | 
||
473  | 
lemma incseq_setsumI:  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
474  | 
  fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add, ordered_ab_semigroup_add}"
 | 
| 41978 | 475  | 
assumes "\<And>i. 0 \<le> f i"  | 
476  | 
  shows "incseq (\<lambda>i. setsum f {..< i})"
 | 
|
477  | 
proof (intro incseq_SucI)  | 
|
478  | 
  fix n have "setsum f {..< n} + 0 \<le> setsum f {..<n} + f n"
 | 
|
479  | 
using assms by (rule add_left_mono)  | 
|
480  | 
  then show "setsum f {..< n} \<le> setsum f {..< Suc n}"
 | 
|
481  | 
by auto  | 
|
482  | 
qed  | 
|
483  | 
||
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
484  | 
lemma incseq_setsumI2:  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
485  | 
  fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{comm_monoid_add, ordered_ab_semigroup_add}"
 | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
486  | 
assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
487  | 
shows "incseq (\<lambda>i. \<Sum>n\<in>A. f n i)"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
488  | 
using assms unfolding incseq_def by (auto intro: setsum_mono)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
489  | 
|
| 41973 | 490  | 
subsubsection "Multiplication"  | 
491  | 
||
| 43920 | 492  | 
instantiation ereal :: "{comm_monoid_mult, sgn}"
 | 
| 41973 | 493  | 
begin  | 
494  | 
||
| 43920 | 495  | 
definition "1 = ereal 1"  | 
| 41973 | 496  | 
|
| 43920 | 497  | 
function sgn_ereal where  | 
498  | 
"sgn (ereal r) = ereal (sgn r)"  | 
|
| 43923 | 499  | 
| "sgn (\<infinity>::ereal) = 1"  | 
500  | 
| "sgn (-\<infinity>::ereal) = -1"  | 
|
| 43920 | 501  | 
by (auto intro: ereal_cases)  | 
| 41976 | 502  | 
termination proof qed (rule wf_empty)  | 
503  | 
||
| 43920 | 504  | 
function times_ereal where  | 
505  | 
"ereal r * ereal p = ereal (r * p)" |  | 
|
506  | 
"ereal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" |  | 
|
507  | 
"\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" |  | 
|
508  | 
"ereal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" |  | 
|
509  | 
"-\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" |  | 
|
| 43923 | 510  | 
"(\<infinity>::ereal) * \<infinity> = \<infinity>" |  | 
511  | 
"-(\<infinity>::ereal) * \<infinity> = -\<infinity>" |  | 
|
512  | 
"(\<infinity>::ereal) * -\<infinity> = -\<infinity>" |  | 
|
513  | 
"-(\<infinity>::ereal) * -\<infinity> = \<infinity>"  | 
|
| 41973 | 514  | 
proof -  | 
515  | 
case (goal1 P x)  | 
|
516  | 
moreover then obtain a b where "x = (a, b)" by (cases x) auto  | 
|
| 43920 | 517  | 
ultimately show P by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 518  | 
qed simp_all  | 
519  | 
termination by (relation "{}") simp
 | 
|
520  | 
||
521  | 
instance  | 
|
522  | 
proof  | 
|
| 47082 | 523  | 
fix a b c :: ereal show "1 * a = a"  | 
| 43920 | 524  | 
by (cases a) (simp_all add: one_ereal_def)  | 
| 47082 | 525  | 
show "a * b = b * a"  | 
| 43920 | 526  | 
by (cases rule: ereal2_cases[of a b]) simp_all  | 
| 47082 | 527  | 
show "a * b * c = a * (b * c)"  | 
| 43920 | 528  | 
by (cases rule: ereal3_cases[of a b c])  | 
529  | 
(simp_all add: zero_ereal_def zero_less_mult_iff)  | 
|
| 41973 | 530  | 
qed  | 
531  | 
end  | 
|
532  | 
||
| 43920 | 533  | 
lemma real_of_ereal_le_1:  | 
534  | 
fixes a :: ereal shows "a \<le> 1 \<Longrightarrow> real a \<le> 1"  | 
|
535  | 
by (cases a) (auto simp: one_ereal_def)  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
536  | 
|
| 43920 | 537  | 
lemma abs_ereal_one[simp]: "\<bar>1\<bar> = (1::ereal)"  | 
538  | 
unfolding one_ereal_def by simp  | 
|
| 41976 | 539  | 
|
| 43920 | 540  | 
lemma ereal_mult_zero[simp]:  | 
541  | 
fixes a :: ereal shows "a * 0 = 0"  | 
|
542  | 
by (cases a) (simp_all add: zero_ereal_def)  | 
|
| 41973 | 543  | 
|
| 43920 | 544  | 
lemma ereal_zero_mult[simp]:  | 
545  | 
fixes a :: ereal shows "0 * a = 0"  | 
|
546  | 
by (cases a) (simp_all add: zero_ereal_def)  | 
|
| 41973 | 547  | 
|
| 43920 | 548  | 
lemma ereal_m1_less_0[simp]:  | 
549  | 
"-(1::ereal) < 0"  | 
|
550  | 
by (simp add: zero_ereal_def one_ereal_def)  | 
|
| 41973 | 551  | 
|
| 43920 | 552  | 
lemma ereal_zero_m1[simp]:  | 
553  | 
"1 \<noteq> (0::ereal)"  | 
|
554  | 
by (simp add: zero_ereal_def one_ereal_def)  | 
|
| 41973 | 555  | 
|
| 43920 | 556  | 
lemma ereal_times_0[simp]:  | 
557  | 
fixes x :: ereal shows "0 * x = 0"  | 
|
558  | 
by (cases x) (auto simp: zero_ereal_def)  | 
|
| 41973 | 559  | 
|
| 43920 | 560  | 
lemma ereal_times[simp]:  | 
| 43923 | 561  | 
"1 \<noteq> (\<infinity>::ereal)" "(\<infinity>::ereal) \<noteq> 1"  | 
562  | 
"1 \<noteq> -(\<infinity>::ereal)" "-(\<infinity>::ereal) \<noteq> 1"  | 
|
| 43920 | 563  | 
by (auto simp add: times_ereal_def one_ereal_def)  | 
| 41973 | 564  | 
|
| 43920 | 565  | 
lemma ereal_plus_1[simp]:  | 
566  | 
"1 + ereal r = ereal (r + 1)" "ereal r + 1 = ereal (r + 1)"  | 
|
| 43923 | 567  | 
"1 + -(\<infinity>::ereal) = -\<infinity>" "-(\<infinity>::ereal) + 1 = -\<infinity>"  | 
| 43920 | 568  | 
unfolding one_ereal_def by auto  | 
| 41973 | 569  | 
|
| 43920 | 570  | 
lemma ereal_zero_times[simp]:  | 
571  | 
fixes a b :: ereal shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"  | 
|
572  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
|
| 41973 | 573  | 
|
| 43920 | 574  | 
lemma ereal_mult_eq_PInfty[simp]:  | 
| 43923 | 575  | 
shows "a * b = (\<infinity>::ereal) \<longleftrightarrow>  | 
| 41973 | 576  | 
(a = \<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = -\<infinity>)"  | 
| 43920 | 577  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 578  | 
|
| 43920 | 579  | 
lemma ereal_mult_eq_MInfty[simp]:  | 
| 43923 | 580  | 
shows "a * b = -(\<infinity>::ereal) \<longleftrightarrow>  | 
| 41973 | 581  | 
(a = \<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = -\<infinity>)"  | 
| 43920 | 582  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 583  | 
|
| 43920 | 584  | 
lemma ereal_0_less_1[simp]: "0 < (1::ereal)"  | 
585  | 
by (simp_all add: zero_ereal_def one_ereal_def)  | 
|
| 41973 | 586  | 
|
| 43920 | 587  | 
lemma ereal_zero_one[simp]: "0 \<noteq> (1::ereal)"  | 
588  | 
by (simp_all add: zero_ereal_def one_ereal_def)  | 
|
| 41973 | 589  | 
|
| 43920 | 590  | 
lemma ereal_mult_minus_left[simp]:  | 
591  | 
fixes a b :: ereal shows "-a * b = - (a * b)"  | 
|
592  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
|
| 41973 | 593  | 
|
| 43920 | 594  | 
lemma ereal_mult_minus_right[simp]:  | 
595  | 
fixes a b :: ereal shows "a * -b = - (a * b)"  | 
|
596  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
|
| 41973 | 597  | 
|
| 43920 | 598  | 
lemma ereal_mult_infty[simp]:  | 
| 43923 | 599  | 
"a * (\<infinity>::ereal) = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)"  | 
| 41973 | 600  | 
by (cases a) auto  | 
601  | 
||
| 43920 | 602  | 
lemma ereal_infty_mult[simp]:  | 
| 43923 | 603  | 
"(\<infinity>::ereal) * a = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)"  | 
| 41973 | 604  | 
by (cases a) auto  | 
605  | 
||
| 43920 | 606  | 
lemma ereal_mult_strict_right_mono:  | 
| 43923 | 607  | 
assumes "a < b" and "0 < c" "c < (\<infinity>::ereal)"  | 
| 41973 | 608  | 
shows "a * c < b * c"  | 
609  | 
using assms  | 
|
| 43920 | 610  | 
by (cases rule: ereal3_cases[of a b c])  | 
| 44142 | 611  | 
(auto simp: zero_le_mult_iff)  | 
| 41973 | 612  | 
|
| 43920 | 613  | 
lemma ereal_mult_strict_left_mono:  | 
| 43923 | 614  | 
"\<lbrakk> a < b ; 0 < c ; c < (\<infinity>::ereal)\<rbrakk> \<Longrightarrow> c * a < c * b"  | 
| 43920 | 615  | 
using ereal_mult_strict_right_mono by (simp add: mult_commute[of c])  | 
| 41973 | 616  | 
|
| 43920 | 617  | 
lemma ereal_mult_right_mono:  | 
618  | 
fixes a b c :: ereal shows "\<lbrakk>a \<le> b; 0 \<le> c\<rbrakk> \<Longrightarrow> a*c \<le> b*c"  | 
|
| 41973 | 619  | 
using assms  | 
620  | 
apply (cases "c = 0") apply simp  | 
|
| 43920 | 621  | 
by (cases rule: ereal3_cases[of a b c])  | 
| 44142 | 622  | 
(auto simp: zero_le_mult_iff)  | 
| 41973 | 623  | 
|
| 43920 | 624  | 
lemma ereal_mult_left_mono:  | 
625  | 
fixes a b c :: ereal shows "\<lbrakk>a \<le> b; 0 \<le> c\<rbrakk> \<Longrightarrow> c * a \<le> c * b"  | 
|
626  | 
using ereal_mult_right_mono by (simp add: mult_commute[of c])  | 
|
| 41973 | 627  | 
|
| 43920 | 628  | 
lemma zero_less_one_ereal[simp]: "0 \<le> (1::ereal)"  | 
629  | 
by (simp add: one_ereal_def zero_ereal_def)  | 
|
| 41978 | 630  | 
|
| 43920 | 631  | 
lemma ereal_0_le_mult[simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * (b :: ereal)"  | 
632  | 
by (cases rule: ereal2_cases[of a b]) (auto simp: mult_nonneg_nonneg)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
633  | 
|
| 43920 | 634  | 
lemma ereal_right_distrib:  | 
635  | 
fixes r a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b"  | 
|
636  | 
by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
637  | 
|
| 43920 | 638  | 
lemma ereal_left_distrib:  | 
639  | 
fixes r a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r"  | 
|
640  | 
by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
641  | 
|
| 43920 | 642  | 
lemma ereal_mult_le_0_iff:  | 
643  | 
fixes a b :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
644  | 
shows "a * b \<le> 0 \<longleftrightarrow> (0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b)"  | 
| 43920 | 645  | 
by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_le_0_iff)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
646  | 
|
| 43920 | 647  | 
lemma ereal_zero_le_0_iff:  | 
648  | 
fixes a b :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
649  | 
shows "0 \<le> a * b \<longleftrightarrow> (0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0)"  | 
| 43920 | 650  | 
by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_le_mult_iff)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
651  | 
|
| 43920 | 652  | 
lemma ereal_mult_less_0_iff:  | 
653  | 
fixes a b :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
654  | 
shows "a * b < 0 \<longleftrightarrow> (0 < a \<and> b < 0) \<or> (a < 0 \<and> 0 < b)"  | 
| 43920 | 655  | 
by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_less_0_iff)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
656  | 
|
| 43920 | 657  | 
lemma ereal_zero_less_0_iff:  | 
658  | 
fixes a b :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
659  | 
shows "0 < a * b \<longleftrightarrow> (0 < a \<and> 0 < b) \<or> (a < 0 \<and> b < 0)"  | 
| 43920 | 660  | 
by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_less_mult_iff)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
661  | 
|
| 43920 | 662  | 
lemma ereal_distrib:  | 
663  | 
fixes a b c :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
664  | 
assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>" "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>" "\<bar>c\<bar> \<noteq> \<infinity>"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
665  | 
shows "(a + b) * c = a * c + b * c"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
666  | 
using assms  | 
| 43920 | 667  | 
by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
668  | 
|
| 
47108
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
669  | 
instance ereal :: numeral ..  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
670  | 
|
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
671  | 
lemma numeral_eq_ereal [simp]: "numeral w = ereal (numeral w)"  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
672  | 
apply (induct w rule: num_induct)  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
673  | 
apply (simp only: numeral_One one_ereal_def)  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
674  | 
apply (simp only: numeral_inc ereal_plus_1)  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
675  | 
done  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
676  | 
|
| 43920 | 677  | 
lemma ereal_le_epsilon:  | 
678  | 
fixes x y :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
679  | 
assumes "ALL e. 0 < e --> x <= y + e"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
680  | 
shows "x <= y"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
681  | 
proof-  | 
| 43920 | 682  | 
{ assume a: "EX r. y = ereal r"
 | 
| 47082 | 683  | 
then obtain r where r_def: "y = ereal r" by auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
684  | 
  { assume "x=(-\<infinity>)" hence ?thesis by auto }
 | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
685  | 
moreover  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
686  | 
  { assume "~(x=(-\<infinity>))"
 | 
| 47082 | 687  | 
then obtain p where p_def: "x = ereal p"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
688  | 
using a assms[rule_format, of 1] by (cases x) auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
689  | 
    { fix e have "0 < e --> p <= r + e"
 | 
| 43920 | 690  | 
using assms[rule_format, of "ereal e"] p_def r_def by auto }  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
691  | 
hence "p <= r" apply (subst field_le_epsilon) by auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
692  | 
hence ?thesis using r_def p_def by auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
693  | 
} ultimately have ?thesis by blast  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
694  | 
}  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
695  | 
moreover  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
696  | 
{ assume "y=(-\<infinity>) | y=\<infinity>" hence ?thesis
 | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
697  | 
using assms[rule_format, of 1] by (cases x) auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
698  | 
} ultimately show ?thesis by (cases y) auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
699  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
700  | 
|
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
701  | 
|
| 43920 | 702  | 
lemma ereal_le_epsilon2:  | 
703  | 
fixes x y :: ereal  | 
|
704  | 
assumes "ALL e. 0 < e --> x <= y + ereal e"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
705  | 
shows "x <= y"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
706  | 
proof-  | 
| 43920 | 707  | 
{ fix e :: ereal assume "e>0"
 | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
708  | 
  { assume "e=\<infinity>" hence "x<=y+e" by auto }
 | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
709  | 
moreover  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
710  | 
  { assume "e~=\<infinity>"
 | 
| 47082 | 711  | 
then obtain r where "e = ereal r" using `e>0` apply (cases e) by auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
712  | 
hence "x<=y+e" using assms[rule_format, of r] `e>0` by auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
713  | 
} ultimately have "x<=y+e" by blast  | 
| 47082 | 714  | 
} then show ?thesis using ereal_le_epsilon by auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
715  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
716  | 
|
| 43920 | 717  | 
lemma ereal_le_real:  | 
718  | 
fixes x y :: ereal  | 
|
719  | 
assumes "ALL z. x <= ereal z --> y <= ereal z"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
720  | 
shows "y <= x"  | 
| 44142 | 721  | 
by (metis assms ereal_bot ereal_cases ereal_infty_less_eq(2) ereal_less_eq(1) linorder_le_cases)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
722  | 
|
| 43920 | 723  | 
lemma ereal_le_ereal:  | 
724  | 
fixes x y :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
725  | 
assumes "\<And>B. B < x \<Longrightarrow> B <= y"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
726  | 
shows "x <= y"  | 
| 43920 | 727  | 
by (metis assms ereal_dense leD linorder_le_less_linear)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
728  | 
|
| 43920 | 729  | 
lemma ereal_ge_ereal:  | 
730  | 
fixes x y :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
731  | 
assumes "ALL B. B>x --> B >= y"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
732  | 
shows "x >= y"  | 
| 43920 | 733  | 
by (metis assms ereal_dense leD linorder_le_less_linear)  | 
| 41978 | 734  | 
|
| 43920 | 735  | 
lemma setprod_ereal_0:  | 
736  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
737  | 
shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> (finite A \<and> (\<exists>i\<in>A. f i = 0))"  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
738  | 
proof cases  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
739  | 
assume "finite A"  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
740  | 
then show ?thesis by (induct A) auto  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
741  | 
qed auto  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
742  | 
|
| 43920 | 743  | 
lemma setprod_ereal_pos:  | 
744  | 
fixes f :: "'a \<Rightarrow> ereal" assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" shows "0 \<le> (\<Prod>i\<in>I. f i)"  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
745  | 
proof cases  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
746  | 
assume "finite I" from this pos show ?thesis by induct auto  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
747  | 
qed simp  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
748  | 
|
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
749  | 
lemma setprod_PInf:  | 
| 43923 | 750  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
751  | 
assumes "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i"  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
752  | 
shows "(\<Prod>i\<in>I. f i) = \<infinity> \<longleftrightarrow> finite I \<and> (\<exists>i\<in>I. f i = \<infinity>) \<and> (\<forall>i\<in>I. f i \<noteq> 0)"  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
753  | 
proof cases  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
754  | 
assume "finite I" from this assms show ?thesis  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
755  | 
proof (induct I)  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
756  | 
case (insert i I)  | 
| 43920 | 757  | 
then have pos: "0 \<le> f i" "0 \<le> setprod f I" by (auto intro!: setprod_ereal_pos)  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
758  | 
from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> setprod f I * f i = \<infinity>" by auto  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
759  | 
also have "\<dots> \<longleftrightarrow> (setprod f I = \<infinity> \<or> f i = \<infinity>) \<and> f i \<noteq> 0 \<and> setprod f I \<noteq> 0"  | 
| 43920 | 760  | 
using setprod_ereal_pos[of I f] pos  | 
761  | 
by (cases rule: ereal2_cases[of "f i" "setprod f I"]) auto  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
762  | 
also have "\<dots> \<longleftrightarrow> finite (insert i I) \<and> (\<exists>j\<in>insert i I. f j = \<infinity>) \<and> (\<forall>j\<in>insert i I. f j \<noteq> 0)"  | 
| 43920 | 763  | 
using insert by (auto simp: setprod_ereal_0)  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
764  | 
finally show ?case .  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
765  | 
qed simp  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
766  | 
qed simp  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
767  | 
|
| 43920 | 768  | 
lemma setprod_ereal: "(\<Prod>i\<in>A. ereal (f i)) = ereal (setprod f A)"  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
769  | 
proof cases  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
770  | 
assume "finite A" then show ?thesis  | 
| 43920 | 771  | 
by induct (auto simp: one_ereal_def)  | 
772  | 
qed (simp add: one_ereal_def)  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
773  | 
|
| 41978 | 774  | 
subsubsection {* Power *}
 | 
775  | 
||
| 43920 | 776  | 
lemma ereal_power[simp]: "(ereal x) ^ n = ereal (x^n)"  | 
777  | 
by (induct n) (auto simp: one_ereal_def)  | 
|
| 41978 | 778  | 
|
| 43923 | 779  | 
lemma ereal_power_PInf[simp]: "(\<infinity>::ereal) ^ n = (if n = 0 then 1 else \<infinity>)"  | 
| 43920 | 780  | 
by (induct n) (auto simp: one_ereal_def)  | 
| 41978 | 781  | 
|
| 43920 | 782  | 
lemma ereal_power_uminus[simp]:  | 
783  | 
fixes x :: ereal  | 
|
| 41978 | 784  | 
shows "(- x) ^ n = (if even n then x ^ n else - (x^n))"  | 
| 43920 | 785  | 
by (induct n) (auto simp: one_ereal_def)  | 
| 41978 | 786  | 
|
| 
47108
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
787  | 
lemma ereal_power_numeral[simp]:  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
788  | 
"(numeral num :: ereal) ^ n = ereal (numeral num ^ n)"  | 
| 43920 | 789  | 
by (induct n) (auto simp: one_ereal_def)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
790  | 
|
| 43920 | 791  | 
lemma zero_le_power_ereal[simp]:  | 
792  | 
fixes a :: ereal assumes "0 \<le> a"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
793  | 
shows "0 \<le> a ^ n"  | 
| 43920 | 794  | 
using assms by (induct n) (auto simp: ereal_zero_le_0_iff)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
795  | 
|
| 41973 | 796  | 
subsubsection {* Subtraction *}
 | 
797  | 
||
| 43920 | 798  | 
lemma ereal_minus_minus_image[simp]:  | 
799  | 
fixes S :: "ereal set"  | 
|
| 41973 | 800  | 
shows "uminus ` uminus ` S = S"  | 
801  | 
by (auto simp: image_iff)  | 
|
802  | 
||
| 43920 | 803  | 
lemma ereal_uminus_lessThan[simp]:  | 
804  | 
  fixes a :: ereal shows "uminus ` {..<a} = {-a<..}"
 | 
|
| 47082 | 805  | 
proof -  | 
806  | 
  {
 | 
|
807  | 
fix x assume "-a < x"  | 
|
808  | 
then have "- x < - (- a)" by (simp del: ereal_uminus_uminus)  | 
|
809  | 
then have "- x < a" by simp  | 
|
810  | 
}  | 
|
811  | 
then show ?thesis by (auto intro!: image_eqI)  | 
|
812  | 
qed  | 
|
| 41973 | 813  | 
|
| 43920 | 814  | 
lemma ereal_uminus_greaterThan[simp]:  | 
815  | 
  "uminus ` {(a::ereal)<..} = {..<-a}"
 | 
|
816  | 
by (metis ereal_uminus_lessThan ereal_uminus_uminus  | 
|
817  | 
ereal_minus_minus_image)  | 
|
| 41973 | 818  | 
|
| 43920 | 819  | 
instantiation ereal :: minus  | 
| 41973 | 820  | 
begin  | 
| 43920 | 821  | 
definition "x - y = x + -(y::ereal)"  | 
| 41973 | 822  | 
instance ..  | 
823  | 
end  | 
|
824  | 
||
| 43920 | 825  | 
lemma ereal_minus[simp]:  | 
826  | 
"ereal r - ereal p = ereal (r - p)"  | 
|
827  | 
"-\<infinity> - ereal r = -\<infinity>"  | 
|
828  | 
"ereal r - \<infinity> = -\<infinity>"  | 
|
| 43923 | 829  | 
"(\<infinity>::ereal) - x = \<infinity>"  | 
830  | 
"-(\<infinity>::ereal) - \<infinity> = -\<infinity>"  | 
|
| 41973 | 831  | 
"x - -y = x + y"  | 
832  | 
"x - 0 = x"  | 
|
833  | 
"0 - x = -x"  | 
|
| 43920 | 834  | 
by (simp_all add: minus_ereal_def)  | 
| 41973 | 835  | 
|
| 43920 | 836  | 
lemma ereal_x_minus_x[simp]:  | 
| 43923 | 837  | 
"x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0::ereal)"  | 
| 41973 | 838  | 
by (cases x) simp_all  | 
839  | 
||
| 43920 | 840  | 
lemma ereal_eq_minus_iff:  | 
841  | 
fixes x y z :: ereal  | 
|
| 41973 | 842  | 
shows "x = z - y \<longleftrightarrow>  | 
| 41976 | 843  | 
(\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y = z) \<and>  | 
| 41973 | 844  | 
(y = -\<infinity> \<longrightarrow> x = \<infinity>) \<and>  | 
845  | 
(y = \<infinity> \<longrightarrow> z = \<infinity> \<longrightarrow> x = \<infinity>) \<and>  | 
|
846  | 
(y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>)"  | 
|
| 43920 | 847  | 
by (cases rule: ereal3_cases[of x y z]) auto  | 
| 41973 | 848  | 
|
| 43920 | 849  | 
lemma ereal_eq_minus:  | 
850  | 
fixes x y z :: ereal  | 
|
| 41976 | 851  | 
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x = z - y \<longleftrightarrow> x + y = z"  | 
| 43920 | 852  | 
by (auto simp: ereal_eq_minus_iff)  | 
| 41973 | 853  | 
|
| 43920 | 854  | 
lemma ereal_less_minus_iff:  | 
855  | 
fixes x y z :: ereal  | 
|
| 41973 | 856  | 
shows "x < z - y \<longleftrightarrow>  | 
857  | 
(y = \<infinity> \<longrightarrow> z = \<infinity> \<and> x \<noteq> \<infinity>) \<and>  | 
|
858  | 
(y = -\<infinity> \<longrightarrow> x \<noteq> \<infinity>) \<and>  | 
|
| 41976 | 859  | 
(\<bar>y\<bar> \<noteq> \<infinity>\<longrightarrow> x + y < z)"  | 
| 43920 | 860  | 
by (cases rule: ereal3_cases[of x y z]) auto  | 
| 41973 | 861  | 
|
| 43920 | 862  | 
lemma ereal_less_minus:  | 
863  | 
fixes x y z :: ereal  | 
|
| 41976 | 864  | 
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x < z - y \<longleftrightarrow> x + y < z"  | 
| 43920 | 865  | 
by (auto simp: ereal_less_minus_iff)  | 
| 41973 | 866  | 
|
| 43920 | 867  | 
lemma ereal_le_minus_iff:  | 
868  | 
fixes x y z :: ereal  | 
|
| 41973 | 869  | 
shows "x \<le> z - y \<longleftrightarrow>  | 
870  | 
(y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and>  | 
|
| 41976 | 871  | 
(\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)"  | 
| 43920 | 872  | 
by (cases rule: ereal3_cases[of x y z]) auto  | 
| 41973 | 873  | 
|
| 43920 | 874  | 
lemma ereal_le_minus:  | 
875  | 
fixes x y z :: ereal  | 
|
| 41976 | 876  | 
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x \<le> z - y \<longleftrightarrow> x + y \<le> z"  | 
| 43920 | 877  | 
by (auto simp: ereal_le_minus_iff)  | 
| 41973 | 878  | 
|
| 43920 | 879  | 
lemma ereal_minus_less_iff:  | 
880  | 
fixes x y z :: ereal  | 
|
| 41973 | 881  | 
shows "x - y < z \<longleftrightarrow>  | 
882  | 
y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and>  | 
|
883  | 
(y \<noteq> \<infinity> \<longrightarrow> x < z + y)"  | 
|
| 43920 | 884  | 
by (cases rule: ereal3_cases[of x y z]) auto  | 
| 41973 | 885  | 
|
| 43920 | 886  | 
lemma ereal_minus_less:  | 
887  | 
fixes x y z :: ereal  | 
|
| 41976 | 888  | 
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y < z \<longleftrightarrow> x < z + y"  | 
| 43920 | 889  | 
by (auto simp: ereal_minus_less_iff)  | 
| 41973 | 890  | 
|
| 43920 | 891  | 
lemma ereal_minus_le_iff:  | 
892  | 
fixes x y z :: ereal  | 
|
| 41973 | 893  | 
shows "x - y \<le> z \<longleftrightarrow>  | 
894  | 
(y = -\<infinity> \<longrightarrow> z = \<infinity>) \<and>  | 
|
895  | 
(y = \<infinity> \<longrightarrow> x = \<infinity> \<longrightarrow> z = \<infinity>) \<and>  | 
|
| 41976 | 896  | 
(\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x \<le> z + y)"  | 
| 43920 | 897  | 
by (cases rule: ereal3_cases[of x y z]) auto  | 
| 41973 | 898  | 
|
| 43920 | 899  | 
lemma ereal_minus_le:  | 
900  | 
fixes x y z :: ereal  | 
|
| 41976 | 901  | 
shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y \<le> z \<longleftrightarrow> x \<le> z + y"  | 
| 43920 | 902  | 
by (auto simp: ereal_minus_le_iff)  | 
| 41973 | 903  | 
|
| 43920 | 904  | 
lemma ereal_minus_eq_minus_iff:  | 
905  | 
fixes a b c :: ereal  | 
|
| 41973 | 906  | 
shows "a - b = a - c \<longleftrightarrow>  | 
907  | 
b = c \<or> a = \<infinity> \<or> (a = -\<infinity> \<and> b \<noteq> -\<infinity> \<and> c \<noteq> -\<infinity>)"  | 
|
| 43920 | 908  | 
by (cases rule: ereal3_cases[of a b c]) auto  | 
| 41973 | 909  | 
|
| 43920 | 910  | 
lemma ereal_add_le_add_iff:  | 
| 43923 | 911  | 
fixes a b c :: ereal  | 
912  | 
shows "c + a \<le> c + b \<longleftrightarrow>  | 
|
| 41973 | 913  | 
a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)"  | 
| 43920 | 914  | 
by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)  | 
| 41973 | 915  | 
|
| 43920 | 916  | 
lemma ereal_mult_le_mult_iff:  | 
| 43923 | 917  | 
fixes a b c :: ereal  | 
918  | 
shows "\<bar>c\<bar> \<noteq> \<infinity> \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"  | 
|
| 43920 | 919  | 
by (cases rule: ereal3_cases[of a b c]) (simp_all add: mult_le_cancel_left)  | 
| 41973 | 920  | 
|
| 43920 | 921  | 
lemma ereal_minus_mono:  | 
922  | 
fixes A B C D :: ereal assumes "A \<le> B" "D \<le> C"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
923  | 
shows "A - C \<le> B - D"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
924  | 
using assms  | 
| 43920 | 925  | 
by (cases rule: ereal3_cases[case_product ereal_cases, of A B C D]) simp_all  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
926  | 
|
| 43920 | 927  | 
lemma real_of_ereal_minus:  | 
| 43923 | 928  | 
fixes a b :: ereal  | 
929  | 
shows "real (a - b) = (if \<bar>a\<bar> = \<infinity> \<or> \<bar>b\<bar> = \<infinity> then 0 else real a - real b)"  | 
|
| 43920 | 930  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
931  | 
|
| 43920 | 932  | 
lemma ereal_diff_positive:  | 
933  | 
fixes a b :: ereal shows "a \<le> b \<Longrightarrow> 0 \<le> b - a"  | 
|
934  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
935  | 
|
| 43920 | 936  | 
lemma ereal_between:  | 
937  | 
fixes x e :: ereal  | 
|
| 41976 | 938  | 
assumes "\<bar>x\<bar> \<noteq> \<infinity>" "0 < e"  | 
| 41973 | 939  | 
shows "x - e < x" "x < x + e"  | 
940  | 
using assms apply (cases x, cases e) apply auto  | 
|
| 47082 | 941  | 
using assms apply (cases x, cases e) apply auto  | 
942  | 
done  | 
|
| 41973 | 943  | 
|
944  | 
subsubsection {* Division *}
 | 
|
945  | 
||
| 43920 | 946  | 
instantiation ereal :: inverse  | 
| 41973 | 947  | 
begin  | 
948  | 
||
| 43920 | 949  | 
function inverse_ereal where  | 
950  | 
"inverse (ereal r) = (if r = 0 then \<infinity> else ereal (inverse r))" |  | 
|
| 43923 | 951  | 
"inverse (\<infinity>::ereal) = 0" |  | 
952  | 
"inverse (-\<infinity>::ereal) = 0"  | 
|
| 43920 | 953  | 
by (auto intro: ereal_cases)  | 
| 41973 | 954  | 
termination by (relation "{}") simp
 | 
955  | 
||
| 43920 | 956  | 
definition "x / y = x * inverse (y :: ereal)"  | 
| 41973 | 957  | 
|
| 47082 | 958  | 
instance ..  | 
| 41973 | 959  | 
end  | 
960  | 
||
| 43920 | 961  | 
lemma real_of_ereal_inverse[simp]:  | 
962  | 
fixes a :: ereal  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
963  | 
shows "real (inverse a) = 1 / real a"  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
964  | 
by (cases a) (auto simp: inverse_eq_divide)  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
965  | 
|
| 43920 | 966  | 
lemma ereal_inverse[simp]:  | 
| 43923 | 967  | 
"inverse (0::ereal) = \<infinity>"  | 
| 43920 | 968  | 
"inverse (1::ereal) = 1"  | 
969  | 
by (simp_all add: one_ereal_def zero_ereal_def)  | 
|
| 41973 | 970  | 
|
| 43920 | 971  | 
lemma ereal_divide[simp]:  | 
972  | 
"ereal r / ereal p = (if p = 0 then ereal r * \<infinity> else ereal (r / p))"  | 
|
973  | 
unfolding divide_ereal_def by (auto simp: divide_real_def)  | 
|
| 41973 | 974  | 
|
| 43920 | 975  | 
lemma ereal_divide_same[simp]:  | 
| 43923 | 976  | 
fixes x :: ereal shows "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)"  | 
| 41973 | 977  | 
by (cases x)  | 
| 43920 | 978  | 
(simp_all add: divide_real_def divide_ereal_def one_ereal_def)  | 
| 41973 | 979  | 
|
| 43920 | 980  | 
lemma ereal_inv_inv[simp]:  | 
| 43923 | 981  | 
fixes x :: ereal shows "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)"  | 
| 41973 | 982  | 
by (cases x) auto  | 
983  | 
||
| 43920 | 984  | 
lemma ereal_inverse_minus[simp]:  | 
| 43923 | 985  | 
fixes x :: ereal shows "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)"  | 
| 41973 | 986  | 
by (cases x) simp_all  | 
987  | 
||
| 43920 | 988  | 
lemma ereal_uminus_divide[simp]:  | 
989  | 
fixes x y :: ereal shows "- x / y = - (x / y)"  | 
|
990  | 
unfolding divide_ereal_def by simp  | 
|
| 41973 | 991  | 
|
| 43920 | 992  | 
lemma ereal_divide_Infty[simp]:  | 
| 43923 | 993  | 
fixes x :: ereal shows "x / \<infinity> = 0" "x / -\<infinity> = 0"  | 
| 43920 | 994  | 
unfolding divide_ereal_def by simp_all  | 
| 41973 | 995  | 
|
| 43920 | 996  | 
lemma ereal_divide_one[simp]:  | 
997  | 
"x / 1 = (x::ereal)"  | 
|
998  | 
unfolding divide_ereal_def by simp  | 
|
| 41973 | 999  | 
|
| 43920 | 1000  | 
lemma ereal_divide_ereal[simp]:  | 
1001  | 
"\<infinity> / ereal r = (if 0 \<le> r then \<infinity> else -\<infinity>)"  | 
|
1002  | 
unfolding divide_ereal_def by simp  | 
|
| 41973 | 1003  | 
|
| 43920 | 1004  | 
lemma zero_le_divide_ereal[simp]:  | 
1005  | 
fixes a :: ereal assumes "0 \<le> a" "0 \<le> b"  | 
|
| 41978 | 1006  | 
shows "0 \<le> a / b"  | 
| 43920 | 1007  | 
using assms by (cases rule: ereal2_cases[of a b]) (auto simp: zero_le_divide_iff)  | 
| 41978 | 1008  | 
|
| 43920 | 1009  | 
lemma ereal_le_divide_pos:  | 
| 43923 | 1010  | 
fixes x y z :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z"  | 
| 43920 | 1011  | 
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)  | 
| 41973 | 1012  | 
|
| 43920 | 1013  | 
lemma ereal_divide_le_pos:  | 
| 43923 | 1014  | 
fixes x y z :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y"  | 
| 43920 | 1015  | 
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)  | 
| 41973 | 1016  | 
|
| 43920 | 1017  | 
lemma ereal_le_divide_neg:  | 
| 43923 | 1018  | 
fixes x y z :: ereal shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y"  | 
| 43920 | 1019  | 
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)  | 
| 41973 | 1020  | 
|
| 43920 | 1021  | 
lemma ereal_divide_le_neg:  | 
| 43923 | 1022  | 
fixes x y z :: ereal shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z"  | 
| 43920 | 1023  | 
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)  | 
| 41973 | 1024  | 
|
| 43920 | 1025  | 
lemma ereal_inverse_antimono_strict:  | 
1026  | 
fixes x y :: ereal  | 
|
| 41973 | 1027  | 
shows "0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> inverse y < inverse x"  | 
| 43920 | 1028  | 
by (cases rule: ereal2_cases[of x y]) auto  | 
| 41973 | 1029  | 
|
| 43920 | 1030  | 
lemma ereal_inverse_antimono:  | 
1031  | 
fixes x y :: ereal  | 
|
| 41973 | 1032  | 
shows "0 \<le> x \<Longrightarrow> x <= y \<Longrightarrow> inverse y <= inverse x"  | 
| 43920 | 1033  | 
by (cases rule: ereal2_cases[of x y]) auto  | 
| 41973 | 1034  | 
|
1035  | 
lemma inverse_inverse_Pinfty_iff[simp]:  | 
|
| 43923 | 1036  | 
fixes x :: ereal shows "inverse x = \<infinity> \<longleftrightarrow> x = 0"  | 
| 41973 | 1037  | 
by (cases x) auto  | 
1038  | 
||
| 43920 | 1039  | 
lemma ereal_inverse_eq_0:  | 
| 43923 | 1040  | 
fixes x :: ereal shows "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>"  | 
| 41973 | 1041  | 
by (cases x) auto  | 
1042  | 
||
| 43920 | 1043  | 
lemma ereal_0_gt_inverse:  | 
1044  | 
fixes x :: ereal shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1045  | 
by (cases x) auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1046  | 
|
| 43920 | 1047  | 
lemma ereal_mult_less_right:  | 
| 43923 | 1048  | 
fixes a b c :: ereal  | 
| 41973 | 1049  | 
assumes "b * a < c * a" "0 < a" "a < \<infinity>"  | 
1050  | 
shows "b < c"  | 
|
1051  | 
using assms  | 
|
| 43920 | 1052  | 
by (cases rule: ereal3_cases[of a b c])  | 
| 41973 | 1053  | 
(auto split: split_if_asm simp: zero_less_mult_iff zero_le_mult_iff)  | 
1054  | 
||
| 43920 | 1055  | 
lemma ereal_power_divide:  | 
| 43923 | 1056  | 
fixes x y :: ereal shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n"  | 
| 43920 | 1057  | 
by (cases rule: ereal2_cases[of x y])  | 
1058  | 
(auto simp: one_ereal_def zero_ereal_def power_divide not_le  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1059  | 
power_less_zero_eq zero_le_power_iff)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1060  | 
|
| 43920 | 1061  | 
lemma ereal_le_mult_one_interval:  | 
1062  | 
fixes x y :: ereal  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1063  | 
assumes y: "y \<noteq> -\<infinity>"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1064  | 
assumes z: "\<And>z. \<lbrakk> 0 < z ; z < 1 \<rbrakk> \<Longrightarrow> z * x \<le> y"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1065  | 
shows "x \<le> y"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1066  | 
proof (cases x)  | 
| 43920 | 1067  | 
case PInf with z[of "1 / 2"] show "x \<le> y" by (simp add: one_ereal_def)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1068  | 
next  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1069  | 
case (real r) note r = this  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1070  | 
show "x \<le> y"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1071  | 
proof (cases y)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1072  | 
case (real p) note p = this  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1073  | 
have "r \<le> p"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1074  | 
proof (rule field_le_mult_one_interval)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1075  | 
fix z :: real assume "0 < z" and "z < 1"  | 
| 43920 | 1076  | 
with z[of "ereal z"]  | 
1077  | 
show "z * r \<le> p" using p r by (auto simp: zero_le_mult_iff one_ereal_def)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1078  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1079  | 
then show "x \<le> y" using p r by simp  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1080  | 
qed (insert y, simp_all)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1081  | 
qed simp  | 
| 41978 | 1082  | 
|
| 45934 | 1083  | 
lemma ereal_divide_right_mono[simp]:  | 
1084  | 
fixes x y z :: ereal  | 
|
1085  | 
assumes "x \<le> y" "0 < z" shows "x / z \<le> y / z"  | 
|
1086  | 
using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_right_mono)  | 
|
1087  | 
||
1088  | 
lemma ereal_divide_left_mono[simp]:  | 
|
1089  | 
fixes x y z :: ereal  | 
|
1090  | 
assumes "y \<le> x" "0 < z" "0 < x * y"  | 
|
1091  | 
shows "z / x \<le> z / y"  | 
|
1092  | 
using assms by (cases x y z rule: ereal3_cases)  | 
|
1093  | 
(auto intro: divide_left_mono simp: field_simps sign_simps split: split_if_asm)  | 
|
1094  | 
||
1095  | 
lemma ereal_divide_zero_left[simp]:  | 
|
1096  | 
fixes a :: ereal  | 
|
1097  | 
shows "0 / a = 0"  | 
|
1098  | 
by (cases a) (auto simp: zero_ereal_def)  | 
|
1099  | 
||
1100  | 
lemma ereal_times_divide_eq_left[simp]:  | 
|
1101  | 
fixes a b c :: ereal  | 
|
1102  | 
shows "b / c * a = b * a / c"  | 
|
1103  | 
by (cases a b c rule: ereal3_cases) (auto simp: field_simps sign_simps)  | 
|
1104  | 
||
| 41973 | 1105  | 
subsection "Complete lattice"  | 
1106  | 
||
| 43920 | 1107  | 
instantiation ereal :: lattice  | 
| 41973 | 1108  | 
begin  | 
| 43920 | 1109  | 
definition [simp]: "sup x y = (max x y :: ereal)"  | 
1110  | 
definition [simp]: "inf x y = (min x y :: ereal)"  | 
|
| 47082 | 1111  | 
instance by default simp_all  | 
| 41973 | 1112  | 
end  | 
1113  | 
||
| 43920 | 1114  | 
instantiation ereal :: complete_lattice  | 
| 41973 | 1115  | 
begin  | 
1116  | 
||
| 43923 | 1117  | 
definition "bot = (-\<infinity>::ereal)"  | 
1118  | 
definition "top = (\<infinity>::ereal)"  | 
|
| 41973 | 1119  | 
|
| 43923 | 1120  | 
definition "Sup S = (LEAST z. \<forall>x\<in>S. x \<le> z :: ereal)"  | 
1121  | 
definition "Inf S = (GREATEST z. \<forall>x\<in>S. z \<le> x :: ereal)"  | 
|
| 41973 | 1122  | 
|
| 43920 | 1123  | 
lemma ereal_complete_Sup:  | 
1124  | 
  fixes S :: "ereal set" assumes "S \<noteq> {}"
 | 
|
| 41973 | 1125  | 
shows "\<exists>x. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z)"  | 
1126  | 
proof cases  | 
|
| 43920 | 1127  | 
assume "\<exists>x. \<forall>a\<in>S. a \<le> ereal x"  | 
1128  | 
then obtain y where y: "\<And>a. a\<in>S \<Longrightarrow> a \<le> ereal y" by auto  | 
|
| 41973 | 1129  | 
then have "\<infinity> \<notin> S" by force  | 
1130  | 
show ?thesis  | 
|
1131  | 
proof cases  | 
|
1132  | 
    assume "S = {-\<infinity>}"
 | 
|
1133  | 
then show ?thesis by (auto intro!: exI[of _ "-\<infinity>"])  | 
|
1134  | 
next  | 
|
1135  | 
    assume "S \<noteq> {-\<infinity>}"
 | 
|
1136  | 
    with `S \<noteq> {}` `\<infinity> \<notin> S` obtain x where "x \<in> S - {-\<infinity>}" "x \<noteq> \<infinity>" by auto
 | 
|
1137  | 
    with y `\<infinity> \<notin> S` have "\<forall>z\<in>real ` (S - {-\<infinity>}). z \<le> y"
 | 
|
| 43920 | 1138  | 
by (auto simp: real_of_ereal_ord_simps)  | 
| 
44669
 
8e6cdb9c00a7
remove redundant lemma reals_complete2 in favor of complete_real
 
huffman 
parents: 
44520 
diff
changeset
 | 
1139  | 
    with complete_real[of "real ` (S - {-\<infinity>})"] `x \<in> S - {-\<infinity>}`
 | 
| 41973 | 1140  | 
obtain s where s:  | 
1141  | 
       "\<forall>y\<in>S - {-\<infinity>}. real y \<le> s" "\<And>z. (\<forall>y\<in>S - {-\<infinity>}. real y \<le> z) \<Longrightarrow> s \<le> z"
 | 
|
1142  | 
by auto  | 
|
1143  | 
show ?thesis  | 
|
| 43920 | 1144  | 
proof (safe intro!: exI[of _ "ereal s"])  | 
1145  | 
fix z assume "z \<in> S" with `\<infinity> \<notin> S` show "z \<le> ereal s"  | 
|
| 41973 | 1146  | 
proof (cases z)  | 
1147  | 
case (real r)  | 
|
1148  | 
then show ?thesis  | 
|
| 43920 | 1149  | 
using s(1)[rule_format, of z] `z \<in> S` `z = ereal r` by auto  | 
| 41973 | 1150  | 
qed auto  | 
1151  | 
next  | 
|
1152  | 
fix z assume *: "\<forall>y\<in>S. y \<le> z"  | 
|
| 43920 | 1153  | 
      with `S \<noteq> {-\<infinity>}` `S \<noteq> {}` show "ereal s \<le> z"
 | 
| 41973 | 1154  | 
proof (cases z)  | 
1155  | 
case (real u)  | 
|
1156  | 
with * have "s \<le> u"  | 
|
| 43920 | 1157  | 
by (intro s(2)[of u]) (auto simp: real_of_ereal_ord_simps)  | 
| 41973 | 1158  | 
then show ?thesis using real by simp  | 
1159  | 
qed auto  | 
|
1160  | 
qed  | 
|
1161  | 
qed  | 
|
1162  | 
next  | 
|
| 43920 | 1163  | 
assume *: "\<not> (\<exists>x. \<forall>a\<in>S. a \<le> ereal x)"  | 
| 41973 | 1164  | 
show ?thesis  | 
1165  | 
proof (safe intro!: exI[of _ \<infinity>])  | 
|
1166  | 
fix y assume **: "\<forall>z\<in>S. z \<le> y"  | 
|
1167  | 
with * show "\<infinity> \<le> y"  | 
|
1168  | 
proof (cases y)  | 
|
1169  | 
case MInf with * ** show ?thesis by (force simp: not_le)  | 
|
1170  | 
qed auto  | 
|
1171  | 
qed simp  | 
|
1172  | 
qed  | 
|
1173  | 
||
| 43920 | 1174  | 
lemma ereal_complete_Inf:  | 
1175  | 
  fixes S :: "ereal set" assumes "S ~= {}"
 | 
|
| 41973 | 1176  | 
shows "EX x. (ALL y:S. x <= y) & (ALL z. (ALL y:S. z <= y) --> z <= x)"  | 
1177  | 
proof-  | 
|
1178  | 
def S1 == "uminus ` S"  | 
|
1179  | 
hence "S1 ~= {}" using assms by auto
 | 
|
| 47082 | 1180  | 
then obtain x where x_def: "(ALL y:S1. y <= x) & (ALL z. (ALL y:S1. y <= z) --> x <= z)"  | 
| 43920 | 1181  | 
using ereal_complete_Sup[of S1] by auto  | 
| 41973 | 1182  | 
{ fix z assume "ALL y:S. z <= y"
 | 
1183  | 
hence "ALL y:S1. y <= -z" unfolding S1_def by auto  | 
|
1184  | 
hence "x <= -z" using x_def by auto  | 
|
1185  | 
hence "z <= -x"  | 
|
| 43920 | 1186  | 
apply (subst ereal_uminus_uminus[symmetric])  | 
1187  | 
unfolding ereal_minus_le_minus . }  | 
|
| 41973 | 1188  | 
moreover have "(ALL y:S. -x <= y)"  | 
1189  | 
using x_def unfolding S1_def  | 
|
1190  | 
apply simp  | 
|
| 43920 | 1191  | 
apply (subst (3) ereal_uminus_uminus[symmetric])  | 
1192  | 
unfolding ereal_minus_le_minus by simp  | 
|
| 41973 | 1193  | 
ultimately show ?thesis by auto  | 
1194  | 
qed  | 
|
1195  | 
||
| 43920 | 1196  | 
lemma ereal_complete_uminus_eq:  | 
1197  | 
fixes S :: "ereal set"  | 
|
| 41973 | 1198  | 
shows "(\<forall>y\<in>uminus`S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>uminus`S. y \<le> z) \<longrightarrow> x \<le> z)  | 
1199  | 
\<longleftrightarrow> (\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)"  | 
|
| 43920 | 1200  | 
by simp (metis ereal_minus_le_minus ereal_uminus_uminus)  | 
| 41973 | 1201  | 
|
| 43920 | 1202  | 
lemma ereal_Sup_uminus_image_eq:  | 
1203  | 
fixes S :: "ereal set"  | 
|
| 41973 | 1204  | 
shows "Sup (uminus ` S) = - Inf S"  | 
1205  | 
proof cases  | 
|
1206  | 
  assume "S = {}"
 | 
|
| 43920 | 1207  | 
moreover have "(THE x. All (op \<le> x)) = (-\<infinity>::ereal)"  | 
1208  | 
by (rule the_equality) (auto intro!: ereal_bot)  | 
|
1209  | 
moreover have "(SOME x. \<forall>y. y \<le> x) = (\<infinity>::ereal)"  | 
|
1210  | 
by (rule some_equality) (auto intro!: ereal_top)  | 
|
1211  | 
ultimately show ?thesis unfolding Inf_ereal_def Sup_ereal_def  | 
|
| 41973 | 1212  | 
Least_def Greatest_def GreatestM_def by simp  | 
1213  | 
next  | 
|
1214  | 
  assume "S \<noteq> {}"
 | 
|
| 43920 | 1215  | 
with ereal_complete_Sup[of "uminus`S"]  | 
| 41973 | 1216  | 
obtain x where x: "(\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)"  | 
| 43920 | 1217  | 
unfolding ereal_complete_uminus_eq by auto  | 
| 41973 | 1218  | 
show "Sup (uminus ` S) = - Inf S"  | 
| 43920 | 1219  | 
unfolding Inf_ereal_def Greatest_def GreatestM_def  | 
| 41973 | 1220  | 
proof (intro someI2[of _ _ "\<lambda>x. Sup (uminus`S) = - x"])  | 
1221  | 
show "(\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>y. (\<forall>z\<in>S. y \<le> z) \<longrightarrow> y \<le> -x)"  | 
|
1222  | 
using x .  | 
|
1223  | 
fix x' assume "(\<forall>y\<in>S. x' \<le> y) \<and> (\<forall>y. (\<forall>z\<in>S. y \<le> z) \<longrightarrow> y \<le> x')"  | 
|
1224  | 
then have "(\<forall>y\<in>uminus`S. y \<le> - x') \<and> (\<forall>y. (\<forall>z\<in>uminus`S. z \<le> y) \<longrightarrow> - x' \<le> y)"  | 
|
| 43920 | 1225  | 
unfolding ereal_complete_uminus_eq by simp  | 
| 41973 | 1226  | 
then show "Sup (uminus ` S) = -x'"  | 
| 43920 | 1227  | 
unfolding Sup_ereal_def ereal_uminus_eq_iff  | 
| 41973 | 1228  | 
by (intro Least_equality) auto  | 
1229  | 
qed  | 
|
1230  | 
qed  | 
|
1231  | 
||
1232  | 
instance  | 
|
1233  | 
proof  | 
|
| 43920 | 1234  | 
  { fix x :: ereal and A
 | 
1235  | 
show "bot <= x" by (cases x) (simp_all add: bot_ereal_def)  | 
|
1236  | 
show "x <= top" by (simp add: top_ereal_def) }  | 
|
| 41973 | 1237  | 
|
| 43920 | 1238  | 
  { fix x :: ereal and A assume "x : A"
 | 
1239  | 
with ereal_complete_Sup[of A]  | 
|
| 41973 | 1240  | 
obtain s where s: "\<forall>y\<in>A. y <= s" "\<forall>z. (\<forall>y\<in>A. y <= z) \<longrightarrow> s <= z" by auto  | 
1241  | 
hence "x <= s" using `x : A` by auto  | 
|
| 43920 | 1242  | 
also have "... = Sup A" using s unfolding Sup_ereal_def  | 
| 41973 | 1243  | 
by (auto intro!: Least_equality[symmetric])  | 
1244  | 
finally show "x <= Sup A" . }  | 
|
1245  | 
note le_Sup = this  | 
|
1246  | 
||
| 43920 | 1247  | 
  { fix x :: ereal and A assume *: "!!z. (z : A ==> z <= x)"
 | 
| 41973 | 1248  | 
show "Sup A <= x"  | 
1249  | 
    proof (cases "A = {}")
 | 
|
1250  | 
case True  | 
|
| 43920 | 1251  | 
hence "Sup A = -\<infinity>" unfolding Sup_ereal_def  | 
| 41973 | 1252  | 
by (auto intro!: Least_equality)  | 
1253  | 
thus "Sup A <= x" by simp  | 
|
1254  | 
next  | 
|
1255  | 
case False  | 
|
| 43920 | 1256  | 
with ereal_complete_Sup[of A]  | 
| 41973 | 1257  | 
obtain s where s: "\<forall>y\<in>A. y <= s" "\<forall>z. (\<forall>y\<in>A. y <= z) \<longrightarrow> s <= z" by auto  | 
1258  | 
hence "Sup A = s"  | 
|
| 43920 | 1259  | 
unfolding Sup_ereal_def by (auto intro!: Least_equality)  | 
| 41973 | 1260  | 
also have "s <= x" using * s by auto  | 
1261  | 
finally show "Sup A <= x" .  | 
|
1262  | 
qed }  | 
|
1263  | 
note Sup_le = this  | 
|
1264  | 
||
| 43920 | 1265  | 
  { fix x :: ereal and A assume "x \<in> A"
 | 
| 41973 | 1266  | 
with le_Sup[of "-x" "uminus`A"] show "Inf A \<le> x"  | 
| 43920 | 1267  | 
unfolding ereal_Sup_uminus_image_eq by simp }  | 
| 41973 | 1268  | 
|
| 43920 | 1269  | 
  { fix x :: ereal and A assume *: "!!z. (z : A ==> x <= z)"
 | 
| 41973 | 1270  | 
with Sup_le[of "uminus`A" "-x"] show "x \<le> Inf A"  | 
| 43920 | 1271  | 
unfolding ereal_Sup_uminus_image_eq by force }  | 
| 41973 | 1272  | 
qed  | 
| 43941 | 1273  | 
|
| 41973 | 1274  | 
end  | 
1275  | 
||
| 43941 | 1276  | 
instance ereal :: complete_linorder ..  | 
1277  | 
||
| 43920 | 1278  | 
lemma ereal_SUPR_uminus:  | 
1279  | 
fixes f :: "'a => ereal"  | 
|
| 41973 | 1280  | 
shows "(SUP i : R. -(f i)) = -(INF i : R. f i)"  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1281  | 
unfolding SUP_def INF_def  | 
| 43920 | 1282  | 
using ereal_Sup_uminus_image_eq[of "f`R"]  | 
| 41973 | 1283  | 
by (simp add: image_image)  | 
1284  | 
||
| 43920 | 1285  | 
lemma ereal_INFI_uminus:  | 
1286  | 
fixes f :: "'a => ereal"  | 
|
| 41973 | 1287  | 
shows "(INF i : R. -(f i)) = -(SUP i : R. f i)"  | 
| 43920 | 1288  | 
using ereal_SUPR_uminus[of _ "\<lambda>x. - f x"] by simp  | 
| 41973 | 1289  | 
|
| 43920 | 1290  | 
lemma ereal_Inf_uminus_image_eq: "Inf (uminus ` S) = - Sup (S::ereal set)"  | 
1291  | 
using ereal_Sup_uminus_image_eq[of "uminus ` S"] by (simp add: image_image)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1292  | 
|
| 43920 | 1293  | 
lemma ereal_inj_on_uminus[intro, simp]: "inj_on uminus (A :: ereal set)"  | 
| 41973 | 1294  | 
by (auto intro!: inj_onI)  | 
1295  | 
||
| 43920 | 1296  | 
lemma ereal_image_uminus_shift:  | 
1297  | 
fixes X Y :: "ereal set" shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y"  | 
|
| 41973 | 1298  | 
proof  | 
1299  | 
assume "uminus ` X = Y"  | 
|
1300  | 
then have "uminus ` uminus ` X = uminus ` Y"  | 
|
1301  | 
by (simp add: inj_image_eq_iff)  | 
|
1302  | 
then show "X = uminus ` Y" by (simp add: image_image)  | 
|
1303  | 
qed (simp add: image_image)  | 
|
1304  | 
||
| 43920 | 1305  | 
lemma Inf_ereal_iff:  | 
1306  | 
fixes z :: ereal  | 
|
| 41973 | 1307  | 
shows "(!!x. x:X ==> z <= x) ==> (EX x:X. x<y) <-> Inf X < y"  | 
1308  | 
by (metis complete_lattice_class.Inf_greatest complete_lattice_class.Inf_lower less_le_not_le linear  | 
|
1309  | 
order_less_le_trans)  | 
|
1310  | 
||
1311  | 
lemma Sup_eq_MInfty:  | 
|
| 43920 | 1312  | 
  fixes S :: "ereal set" shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}"
 | 
| 41973 | 1313  | 
proof  | 
1314  | 
assume a: "Sup S = -\<infinity>"  | 
|
1315  | 
with complete_lattice_class.Sup_upper[of _ S]  | 
|
1316  | 
  show "S={} \<or> S={-\<infinity>}" by auto
 | 
|
1317  | 
next  | 
|
1318  | 
  assume "S={} \<or> S={-\<infinity>}" then show "Sup S = -\<infinity>"
 | 
|
| 43920 | 1319  | 
unfolding Sup_ereal_def by (auto intro!: Least_equality)  | 
| 41973 | 1320  | 
qed  | 
1321  | 
||
1322  | 
lemma Inf_eq_PInfty:  | 
|
| 43920 | 1323  | 
  fixes S :: "ereal set" shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}"
 | 
| 41973 | 1324  | 
using Sup_eq_MInfty[of "uminus`S"]  | 
| 43920 | 1325  | 
unfolding ereal_Sup_uminus_image_eq ereal_image_uminus_shift by simp  | 
| 41973 | 1326  | 
|
| 43923 | 1327  | 
lemma Inf_eq_MInfty:  | 
1328  | 
fixes S :: "ereal set" shows "-\<infinity> \<in> S \<Longrightarrow> Inf S = -\<infinity>"  | 
|
| 43920 | 1329  | 
unfolding Inf_ereal_def  | 
| 41973 | 1330  | 
by (auto intro!: Greatest_equality)  | 
1331  | 
||
| 43923 | 1332  | 
lemma Sup_eq_PInfty:  | 
1333  | 
fixes S :: "ereal set" shows "\<infinity> \<in> S \<Longrightarrow> Sup S = \<infinity>"  | 
|
| 43920 | 1334  | 
unfolding Sup_ereal_def  | 
| 41973 | 1335  | 
by (auto intro!: Least_equality)  | 
1336  | 
||
| 43920 | 1337  | 
lemma ereal_SUPI:  | 
1338  | 
fixes x :: ereal  | 
|
| 41973 | 1339  | 
assumes "!!i. i : A ==> f i <= x"  | 
1340  | 
assumes "!!y. (!!i. i : A ==> f i <= y) ==> x <= y"  | 
|
1341  | 
shows "(SUP i:A. f i) = x"  | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1342  | 
unfolding SUP_def Sup_ereal_def  | 
| 41973 | 1343  | 
using assms by (auto intro!: Least_equality)  | 
1344  | 
||
| 43920 | 1345  | 
lemma ereal_INFI:  | 
1346  | 
fixes x :: ereal  | 
|
| 41973 | 1347  | 
assumes "!!i. i : A ==> f i >= x"  | 
1348  | 
assumes "!!y. (!!i. i : A ==> f i >= y) ==> x >= y"  | 
|
1349  | 
shows "(INF i:A. f i) = x"  | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1350  | 
unfolding INF_def Inf_ereal_def  | 
| 41973 | 1351  | 
using assms by (auto intro!: Greatest_equality)  | 
1352  | 
||
| 43920 | 1353  | 
lemma Sup_ereal_close:  | 
1354  | 
fixes e :: ereal  | 
|
| 41976 | 1355  | 
  assumes "0 < e" and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}"
 | 
| 41973 | 1356  | 
shows "\<exists>x\<in>S. Sup S - e < x"  | 
| 41976 | 1357  | 
using assms by (cases e) (auto intro!: less_Sup_iff[THEN iffD1])  | 
| 41973 | 1358  | 
|
| 43920 | 1359  | 
lemma Inf_ereal_close:  | 
1360  | 
fixes e :: ereal assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>" "0 < e"  | 
|
| 41973 | 1361  | 
shows "\<exists>x\<in>X. x < Inf X + e"  | 
1362  | 
proof (rule Inf_less_iff[THEN iffD1])  | 
|
1363  | 
show "Inf X < Inf X + e" using assms  | 
|
| 41976 | 1364  | 
by (cases e) auto  | 
| 41973 | 1365  | 
qed  | 
1366  | 
||
| 43920 | 1367  | 
lemma SUP_nat_Infty: "(SUP i::nat. ereal (real i)) = \<infinity>"  | 
| 41973 | 1368  | 
proof -  | 
| 43923 | 1369  | 
  { fix x ::ereal assume "x \<noteq> \<infinity>"
 | 
| 43920 | 1370  | 
then have "\<exists>k::nat. x < ereal (real k)"  | 
| 41973 | 1371  | 
proof (cases x)  | 
1372  | 
case MInf then show ?thesis by (intro exI[of _ 0]) auto  | 
|
1373  | 
next  | 
|
1374  | 
case (real r)  | 
|
1375  | 
moreover obtain k :: nat where "r < real k"  | 
|
1376  | 
using ex_less_of_nat by (auto simp: real_eq_of_nat)  | 
|
1377  | 
ultimately show ?thesis by auto  | 
|
1378  | 
qed simp }  | 
|
1379  | 
then show ?thesis  | 
|
| 43920 | 1380  | 
using SUP_eq_top_iff[of UNIV "\<lambda>n::nat. ereal (real n)"]  | 
1381  | 
by (auto simp: top_ereal_def)  | 
|
| 41973 | 1382  | 
qed  | 
1383  | 
||
| 43920 | 1384  | 
lemma ereal_le_Sup:  | 
1385  | 
fixes x :: ereal  | 
|
| 41973 | 1386  | 
shows "(x <= (SUP i:A. f i)) <-> (ALL y. y < x --> (EX i. i : A & y <= f i))"  | 
1387  | 
(is "?lhs <-> ?rhs")  | 
|
1388  | 
proof-  | 
|
1389  | 
{ assume "?rhs"
 | 
|
1390  | 
  { assume "~(x <= (SUP i:A. f i))" hence "(SUP i:A. f i)<x" by (simp add: not_le)
 | 
|
| 47082 | 1391  | 
then obtain y where y_def: "(SUP i:A. f i)<y & y<x" using ereal_dense by auto  | 
1392  | 
then obtain i where "i : A & y <= f i" using `?rhs` by auto  | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1393  | 
hence "y <= (SUP i:A. f i)" using SUP_upper[of i A f] by auto  | 
| 41973 | 1394  | 
hence False using y_def by auto  | 
1395  | 
} hence "?lhs" by auto  | 
|
1396  | 
}  | 
|
1397  | 
moreover  | 
|
1398  | 
{ assume "?lhs" hence "?rhs"
 | 
|
| 
45236
 
ac4a2a66707d
replacing metis proofs with facts xt1 by new proof with more readable names
 
bulwahn 
parents: 
45036 
diff
changeset
 | 
1399  | 
by (metis less_SUP_iff order_less_imp_le order_less_le_trans)  | 
| 41973 | 1400  | 
} ultimately show ?thesis by auto  | 
1401  | 
qed  | 
|
1402  | 
||
| 43920 | 1403  | 
lemma ereal_Inf_le:  | 
1404  | 
fixes x :: ereal  | 
|
| 41973 | 1405  | 
shows "((INF i:A. f i) <= x) <-> (ALL y. x < y --> (EX i. i : A & f i <= y))"  | 
1406  | 
(is "?lhs <-> ?rhs")  | 
|
1407  | 
proof-  | 
|
1408  | 
{ assume "?rhs"
 | 
|
1409  | 
  { assume "~((INF i:A. f i) <= x)" hence "x < (INF i:A. f i)" by (simp add: not_le)
 | 
|
| 47082 | 1410  | 
then obtain y where y_def: "x<y & y<(INF i:A. f i)" using ereal_dense by auto  | 
1411  | 
then obtain i where "i : A & f i <= y" using `?rhs` by auto  | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1412  | 
hence "(INF i:A. f i) <= y" using INF_lower[of i A f] by auto  | 
| 41973 | 1413  | 
hence False using y_def by auto  | 
1414  | 
} hence "?lhs" by auto  | 
|
1415  | 
}  | 
|
1416  | 
moreover  | 
|
1417  | 
{ assume "?lhs" hence "?rhs"
 | 
|
| 
45236
 
ac4a2a66707d
replacing metis proofs with facts xt1 by new proof with more readable names
 
bulwahn 
parents: 
45036 
diff
changeset
 | 
1418  | 
by (metis INF_less_iff order_le_less order_less_le_trans)  | 
| 41973 | 1419  | 
} ultimately show ?thesis by auto  | 
1420  | 
qed  | 
|
1421  | 
||
1422  | 
lemma Inf_less:  | 
|
| 43920 | 1423  | 
fixes x :: ereal  | 
| 41973 | 1424  | 
assumes "(INF i:A. f i) < x"  | 
1425  | 
shows "EX i. i : A & f i <= x"  | 
|
1426  | 
proof(rule ccontr)  | 
|
1427  | 
assume "~ (EX i. i : A & f i <= x)"  | 
|
1428  | 
hence "ALL i:A. f i > x" by auto  | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1429  | 
hence "(INF i:A. f i) >= x" apply (subst INF_greatest) by auto  | 
| 41973 | 1430  | 
thus False using assms by auto  | 
1431  | 
qed  | 
|
1432  | 
||
1433  | 
lemma same_INF:  | 
|
1434  | 
assumes "ALL e:A. f e = g e"  | 
|
1435  | 
shows "(INF e:A. f e) = (INF e:A. g e)"  | 
|
1436  | 
proof-  | 
|
1437  | 
have "f ` A = g ` A" unfolding image_def using assms by auto  | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1438  | 
thus ?thesis unfolding INF_def by auto  | 
| 41973 | 1439  | 
qed  | 
1440  | 
||
1441  | 
lemma same_SUP:  | 
|
1442  | 
assumes "ALL e:A. f e = g e"  | 
|
1443  | 
shows "(SUP e:A. f e) = (SUP e:A. g e)"  | 
|
1444  | 
proof-  | 
|
1445  | 
have "f ` A = g ` A" unfolding image_def using assms by auto  | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1446  | 
thus ?thesis unfolding SUP_def by auto  | 
| 41973 | 1447  | 
qed  | 
1448  | 
||
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1449  | 
lemma SUPR_eq:  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1450  | 
assumes "\<forall>i\<in>A. \<exists>j\<in>B. f i \<le> g j"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1451  | 
assumes "\<forall>j\<in>B. \<exists>i\<in>A. g j \<le> f i"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1452  | 
shows "(SUP i:A. f i) = (SUP j:B. g j)"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1453  | 
proof (intro antisym)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1454  | 
show "(SUP i:A. f i) \<le> (SUP j:B. g j)"  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1455  | 
using assms by (metis SUP_least SUP_upper2)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1456  | 
show "(SUP i:B. g i) \<le> (SUP j:A. f j)"  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1457  | 
using assms by (metis SUP_least SUP_upper2)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1458  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1459  | 
|
| 43920 | 1460  | 
lemma SUP_ereal_le_addI:  | 
| 43923 | 1461  | 
fixes f :: "'i \<Rightarrow> ereal"  | 
| 41978 | 1462  | 
assumes "\<And>i. f i + y \<le> z" and "y \<noteq> -\<infinity>"  | 
1463  | 
shows "SUPR UNIV f + y \<le> z"  | 
|
1464  | 
proof (cases y)  | 
|
1465  | 
case (real r)  | 
|
| 43920 | 1466  | 
then have "\<And>i. f i \<le> z - y" using assms by (simp add: ereal_le_minus_iff)  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1467  | 
then have "SUPR UNIV f \<le> z - y" by (rule SUP_least)  | 
| 43920 | 1468  | 
then show ?thesis using real by (simp add: ereal_le_minus_iff)  | 
| 41978 | 1469  | 
qed (insert assms, auto)  | 
1470  | 
||
| 43920 | 1471  | 
lemma SUPR_ereal_add:  | 
1472  | 
fixes f g :: "nat \<Rightarrow> ereal"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1473  | 
assumes "incseq f" "incseq g" and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>"  | 
| 41978 | 1474  | 
shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g"  | 
| 43920 | 1475  | 
proof (rule ereal_SUPI)  | 
| 41978 | 1476  | 
fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> f i + g i \<le> y"  | 
1477  | 
have f: "SUPR UNIV f \<noteq> -\<infinity>" using pos  | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1478  | 
unfolding SUP_def Sup_eq_MInfty by (auto dest: image_eqD)  | 
| 41978 | 1479  | 
  { fix j
 | 
1480  | 
    { fix i
 | 
|
1481  | 
have "f i + g j \<le> f i + g (max i j)"  | 
|
1482  | 
using `incseq g`[THEN incseqD] by (rule add_left_mono) auto  | 
|
1483  | 
also have "\<dots> \<le> f (max i j) + g (max i j)"  | 
|
1484  | 
using `incseq f`[THEN incseqD] by (rule add_right_mono) auto  | 
|
1485  | 
also have "\<dots> \<le> y" using * by auto  | 
|
1486  | 
finally have "f i + g j \<le> y" . }  | 
|
1487  | 
then have "SUPR UNIV f + g j \<le> y"  | 
|
| 43920 | 1488  | 
using assms(4)[of j] by (intro SUP_ereal_le_addI) auto  | 
| 41978 | 1489  | 
then have "g j + SUPR UNIV f \<le> y" by (simp add: ac_simps) }  | 
1490  | 
then have "SUPR UNIV g + SUPR UNIV f \<le> y"  | 
|
| 43920 | 1491  | 
using f by (rule SUP_ereal_le_addI)  | 
| 41978 | 1492  | 
then show "SUPR UNIV f + SUPR UNIV g \<le> y" by (simp add: ac_simps)  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1493  | 
qed (auto intro!: add_mono SUP_upper)  | 
| 41978 | 1494  | 
|
| 43920 | 1495  | 
lemma SUPR_ereal_add_pos:  | 
1496  | 
fixes f g :: "nat \<Rightarrow> ereal"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1497  | 
assumes inc: "incseq f" "incseq g" and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1498  | 
shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g"  | 
| 43920 | 1499  | 
proof (intro SUPR_ereal_add inc)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1500  | 
fix i show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>" using pos[of i] by auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1501  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1502  | 
|
| 43920 | 1503  | 
lemma SUPR_ereal_setsum:  | 
1504  | 
fixes f g :: "'a \<Rightarrow> nat \<Rightarrow> ereal"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1505  | 
assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1506  | 
shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUPR UNIV (f n))"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1507  | 
proof cases  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1508  | 
assume "finite A" then show ?thesis using assms  | 
| 43920 | 1509  | 
by induct (auto simp: incseq_setsumI2 setsum_nonneg SUPR_ereal_add_pos)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1510  | 
qed simp  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1511  | 
|
| 43920 | 1512  | 
lemma SUPR_ereal_cmult:  | 
1513  | 
fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" "0 \<le> c"  | 
|
| 41978 | 1514  | 
shows "(SUP i. c * f i) = c * SUPR UNIV f"  | 
| 43920 | 1515  | 
proof (rule ereal_SUPI)  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1516  | 
fix i have "f i \<le> SUPR UNIV f" by (rule SUP_upper) auto  | 
| 41978 | 1517  | 
then show "c * f i \<le> c * SUPR UNIV f"  | 
| 43920 | 1518  | 
using `0 \<le> c` by (rule ereal_mult_left_mono)  | 
| 41978 | 1519  | 
next  | 
1520  | 
fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> c * f i \<le> y"  | 
|
1521  | 
show "c * SUPR UNIV f \<le> y"  | 
|
1522  | 
proof cases  | 
|
1523  | 
assume c: "0 < c \<and> c \<noteq> \<infinity>"  | 
|
1524  | 
with * have "SUPR UNIV f \<le> y / c"  | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1525  | 
by (intro SUP_least) (auto simp: ereal_le_divide_pos)  | 
| 41978 | 1526  | 
with c show ?thesis  | 
| 43920 | 1527  | 
by (auto simp: ereal_le_divide_pos)  | 
| 41978 | 1528  | 
next  | 
1529  | 
    { assume "c = \<infinity>" have ?thesis
 | 
|
1530  | 
proof cases  | 
|
1531  | 
assume "\<forall>i. f i = 0"  | 
|
1532  | 
        moreover then have "range f = {0}" by auto
 | 
|
| 44918 | 1533  | 
ultimately show "c * SUPR UNIV f \<le> y" using *  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1534  | 
by (auto simp: SUP_def min_max.sup_absorb1)  | 
| 41978 | 1535  | 
next  | 
1536  | 
assume "\<not> (\<forall>i. f i = 0)"  | 
|
1537  | 
then obtain i where "f i \<noteq> 0" by auto  | 
|
1538  | 
with *[of i] `c = \<infinity>` `0 \<le> f i` show ?thesis by (auto split: split_if_asm)  | 
|
1539  | 
qed }  | 
|
1540  | 
moreover assume "\<not> (0 < c \<and> c \<noteq> \<infinity>)"  | 
|
1541  | 
ultimately show ?thesis using * `0 \<le> c` by auto  | 
|
1542  | 
qed  | 
|
1543  | 
qed  | 
|
1544  | 
||
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1545  | 
lemma SUP_PInfty:  | 
| 43920 | 1546  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
1547  | 
assumes "\<And>n::nat. \<exists>i\<in>A. ereal (real n) \<le> f i"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1548  | 
shows "(SUP i:A. f i) = \<infinity>"  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1549  | 
unfolding SUP_def Sup_eq_top_iff[where 'a=ereal, unfolded top_ereal_def]  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1550  | 
apply simp  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1551  | 
proof safe  | 
| 43923 | 1552  | 
fix x :: ereal assume "x \<noteq> \<infinity>"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1553  | 
show "\<exists>i\<in>A. x < f i"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1554  | 
proof (cases x)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1555  | 
case PInf with `x \<noteq> \<infinity>` show ?thesis by simp  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1556  | 
next  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1557  | 
case MInf with assms[of "0"] show ?thesis by force  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1558  | 
next  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1559  | 
case (real r)  | 
| 43920 | 1560  | 
with less_PInf_Ex_of_nat[of x] obtain n :: nat where "x < ereal (real n)" by auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1561  | 
moreover from assms[of n] guess i ..  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1562  | 
ultimately show ?thesis  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1563  | 
by (auto intro!: bexI[of _ i])  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1564  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1565  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1566  | 
|
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1567  | 
lemma Sup_countable_SUPR:  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1568  | 
  assumes "A \<noteq> {}"
 | 
| 43920 | 1569  | 
shows "\<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> A \<and> Sup A = SUPR UNIV f"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1570  | 
proof (cases "Sup A")  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1571  | 
case (real r)  | 
| 43920 | 1572  | 
have "\<forall>n::nat. \<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1573  | 
proof  | 
| 43920 | 1574  | 
fix n ::nat have "\<exists>x\<in>A. Sup A - 1 / ereal (real n) < x"  | 
1575  | 
using assms real by (intro Sup_ereal_close) (auto simp: one_ereal_def)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1576  | 
then guess x ..  | 
| 43920 | 1577  | 
then show "\<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)"  | 
1578  | 
by (auto intro!: exI[of _ x] simp: ereal_minus_less_iff)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1579  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1580  | 
from choice[OF this] guess f .. note f = this  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1581  | 
have "SUPR UNIV f = Sup A"  | 
| 43920 | 1582  | 
proof (rule ereal_SUPI)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1583  | 
fix i show "f i \<le> Sup A" using f  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1584  | 
by (auto intro!: complete_lattice_class.Sup_upper)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1585  | 
next  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1586  | 
fix y assume bound: "\<And>i. i \<in> UNIV \<Longrightarrow> f i \<le> y"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1587  | 
show "Sup A \<le> y"  | 
| 43920 | 1588  | 
proof (rule ereal_le_epsilon, intro allI impI)  | 
1589  | 
fix e :: ereal assume "0 < e"  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1590  | 
show "Sup A \<le> y + e"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1591  | 
proof (cases e)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1592  | 
case (real r)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1593  | 
hence "0 < r" using `0 < e` by auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1594  | 
then obtain n ::nat where *: "1 / real n < r" "0 < n"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1595  | 
using ex_inverse_of_nat_less by (auto simp: real_eq_of_nat inverse_eq_divide)  | 
| 44918 | 1596  | 
have "Sup A \<le> f n + 1 / ereal (real n)" using f[THEN spec, of n]  | 
1597  | 
by auto  | 
|
| 43920 | 1598  | 
also have "1 / ereal (real n) \<le> e" using real * by (auto simp: one_ereal_def )  | 
1599  | 
with bound have "f n + 1 / ereal (real n) \<le> y + e" by (rule add_mono) simp  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1600  | 
finally show "Sup A \<le> y + e" .  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1601  | 
qed (insert `0 < e`, auto)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1602  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1603  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1604  | 
with f show ?thesis by (auto intro!: exI[of _ f])  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1605  | 
next  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1606  | 
case PInf  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1607  | 
  from `A \<noteq> {}` obtain x where "x \<in> A" by auto
 | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1608  | 
show ?thesis  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1609  | 
proof cases  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1610  | 
assume "\<infinity> \<in> A"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1611  | 
moreover then have "\<infinity> \<le> Sup A" by (intro complete_lattice_class.Sup_upper)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1612  | 
ultimately show ?thesis by (auto intro!: exI[of _ "\<lambda>x. \<infinity>"])  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1613  | 
next  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1614  | 
assume "\<infinity> \<notin> A"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1615  | 
have "\<exists>x\<in>A. 0 \<le> x"  | 
| 43920 | 1616  | 
by (metis Infty_neq_0 PInf complete_lattice_class.Sup_least ereal_infty_less_eq2 linorder_linear)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1617  | 
then obtain x where "x \<in> A" "0 \<le> x" by auto  | 
| 43920 | 1618  | 
have "\<forall>n::nat. \<exists>f. f \<in> A \<and> x + ereal (real n) \<le> f"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1619  | 
proof (rule ccontr)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1620  | 
assume "\<not> ?thesis"  | 
| 43920 | 1621  | 
then have "\<exists>n::nat. Sup A \<le> x + ereal (real n)"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1622  | 
by (simp add: Sup_le_iff not_le less_imp_le Ball_def) (metis less_imp_le)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1623  | 
then show False using `x \<in> A` `\<infinity> \<notin> A` PInf  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1624  | 
by(cases x) auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1625  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1626  | 
from choice[OF this] guess f .. note f = this  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1627  | 
have "SUPR UNIV f = \<infinity>"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1628  | 
proof (rule SUP_PInfty)  | 
| 43920 | 1629  | 
fix n :: nat show "\<exists>i\<in>UNIV. ereal (real n) \<le> f i"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1630  | 
using f[THEN spec, of n] `0 \<le> x`  | 
| 43920 | 1631  | 
by (cases rule: ereal2_cases[of "f n" x]) (auto intro!: exI[of _ n])  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1632  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1633  | 
then show ?thesis using f PInf by (auto intro!: exI[of _ f])  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1634  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1635  | 
next  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1636  | 
case MInf  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1637  | 
  with `A \<noteq> {}` have "A = {-\<infinity>}" by (auto simp: Sup_eq_MInfty)
 | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1638  | 
then show ?thesis using MInf by (auto intro!: exI[of _ "\<lambda>x. -\<infinity>"])  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1639  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1640  | 
|
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1641  | 
lemma SUPR_countable_SUPR:  | 
| 43920 | 1642  | 
  "A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> g`A \<and> SUPR A g = SUPR UNIV f"
 | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1643  | 
using Sup_countable_SUPR[of "g`A"] by (auto simp: SUP_def)  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1644  | 
|
| 43920 | 1645  | 
lemma Sup_ereal_cadd:  | 
1646  | 
  fixes A :: "ereal set" assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
 | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1647  | 
shows "Sup ((\<lambda>x. a + x) ` A) = a + Sup A"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1648  | 
proof (rule antisym)  | 
| 43920 | 1649  | 
have *: "\<And>a::ereal. \<And>A. Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1650  | 
by (auto intro!: add_mono complete_lattice_class.Sup_least complete_lattice_class.Sup_upper)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1651  | 
then show "Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A" .  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1652  | 
show "a + Sup A \<le> Sup ((\<lambda>x. a + x) ` A)"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1653  | 
proof (cases a)  | 
| 44918 | 1654  | 
    case PInf with `A \<noteq> {}` show ?thesis by (auto simp: image_constant min_max.sup_absorb1)
 | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1655  | 
next  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1656  | 
case (real r)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1657  | 
then have **: "op + (- a) ` op + a ` A = A"  | 
| 43920 | 1658  | 
by (auto simp: image_iff ac_simps zero_ereal_def[symmetric])  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1659  | 
from *[of "-a" "(\<lambda>x. a + x) ` A"] real show ?thesis unfolding **  | 
| 43920 | 1660  | 
by (cases rule: ereal2_cases[of "Sup A" "Sup (op + a ` A)"]) auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1661  | 
qed (insert `a \<noteq> -\<infinity>`, auto)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1662  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1663  | 
|
| 43920 | 1664  | 
lemma Sup_ereal_cminus:  | 
1665  | 
  fixes A :: "ereal set" assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
 | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1666  | 
shows "Sup ((\<lambda>x. a - x) ` A) = a - Inf A"  | 
| 43920 | 1667  | 
using Sup_ereal_cadd[of "uminus ` A" a] assms  | 
1668  | 
by (simp add: comp_def image_image minus_ereal_def  | 
|
1669  | 
ereal_Sup_uminus_image_eq)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1670  | 
|
| 43920 | 1671  | 
lemma SUPR_ereal_cminus:  | 
| 43923 | 1672  | 
fixes f :: "'i \<Rightarrow> ereal"  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1673  | 
  fixes A assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
 | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1674  | 
shows "(SUP x:A. a - f x) = a - (INF x:A. f x)"  | 
| 43920 | 1675  | 
using Sup_ereal_cminus[of "f`A" a] assms  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1676  | 
unfolding SUP_def INF_def image_image by auto  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1677  | 
|
| 43920 | 1678  | 
lemma Inf_ereal_cminus:  | 
1679  | 
  fixes A :: "ereal set" assumes "A \<noteq> {}" and "\<bar>a\<bar> \<noteq> \<infinity>"
 | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1680  | 
shows "Inf ((\<lambda>x. a - x) ` A) = a - Sup A"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1681  | 
proof -  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1682  | 
  { fix x have "-a - -x = -(a - x)" using assms by (cases x) auto }
 | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1683  | 
moreover then have "(\<lambda>x. -a - x)`uminus`A = uminus ` (\<lambda>x. a - x) ` A"  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1684  | 
by (auto simp: image_image)  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1685  | 
ultimately show ?thesis  | 
| 43920 | 1686  | 
using Sup_ereal_cminus[of "uminus ` A" "-a"] assms  | 
1687  | 
by (auto simp add: ereal_Sup_uminus_image_eq ereal_Inf_uminus_image_eq)  | 
|
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1688  | 
qed  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1689  | 
|
| 43920 | 1690  | 
lemma INFI_ereal_cminus:  | 
| 43923 | 1691  | 
  fixes a :: ereal assumes "A \<noteq> {}" and "\<bar>a\<bar> \<noteq> \<infinity>"
 | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1692  | 
shows "(INF x:A. a - f x) = a - (SUP x:A. f x)"  | 
| 43920 | 1693  | 
using Inf_ereal_cminus[of "f`A" a] assms  | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
1694  | 
unfolding SUP_def INF_def image_image  | 
| 
41979
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1695  | 
by auto  | 
| 
 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 
hoelzl 
parents: 
41978 
diff
changeset
 | 
1696  | 
|
| 43920 | 1697  | 
lemma uminus_ereal_add_uminus_uminus:  | 
1698  | 
fixes a b :: ereal shows "a \<noteq> \<infinity> \<Longrightarrow> b \<noteq> \<infinity> \<Longrightarrow> - (- a + - b) = a + b"  | 
|
1699  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1700  | 
|
| 43920 | 1701  | 
lemma INFI_ereal_add:  | 
| 43923 | 1702  | 
fixes f :: "nat \<Rightarrow> ereal"  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1703  | 
assumes "decseq f" "decseq g" and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>"  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1704  | 
shows "(INF i. f i + g i) = INFI UNIV f + INFI UNIV g"  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1705  | 
proof -  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1706  | 
have INF_less: "(INF i. f i) < \<infinity>" "(INF i. g i) < \<infinity>"  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1707  | 
using assms unfolding INF_less_iff by auto  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1708  | 
  { fix i from fin[of i] have "- ((- f i) + (- g i)) = f i + g i"
 | 
| 43920 | 1709  | 
by (rule uminus_ereal_add_uminus_uminus) }  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1710  | 
then have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))"  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1711  | 
by simp  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1712  | 
also have "\<dots> = INFI UNIV f + INFI UNIV g"  | 
| 43920 | 1713  | 
unfolding ereal_INFI_uminus  | 
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1714  | 
using assms INF_less  | 
| 43920 | 1715  | 
by (subst SUPR_ereal_add)  | 
1716  | 
(auto simp: ereal_SUPR_uminus intro!: uminus_ereal_add_uminus_uminus)  | 
|
| 
42950
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1717  | 
finally show ?thesis .  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1718  | 
qed  | 
| 
 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 
hoelzl 
parents: 
42600 
diff
changeset
 | 
1719  | 
|
| 45934 | 1720  | 
subsection "Relation to @{typ enat}"
 | 
1721  | 
||
1722  | 
definition "ereal_of_enat n = (case n of enat n \<Rightarrow> ereal (real n) | \<infinity> \<Rightarrow> \<infinity>)"  | 
|
1723  | 
||
1724  | 
declare [[coercion "ereal_of_enat :: enat \<Rightarrow> ereal"]]  | 
|
1725  | 
declare [[coercion "(\<lambda>n. ereal (real n)) :: nat \<Rightarrow> ereal"]]  | 
|
1726  | 
||
1727  | 
lemma ereal_of_enat_simps[simp]:  | 
|
1728  | 
"ereal_of_enat (enat n) = ereal n"  | 
|
1729  | 
"ereal_of_enat \<infinity> = \<infinity>"  | 
|
1730  | 
by (simp_all add: ereal_of_enat_def)  | 
|
1731  | 
||
1732  | 
lemma ereal_of_enat_le_iff[simp]:  | 
|
1733  | 
"ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n"  | 
|
1734  | 
by (cases m n rule: enat2_cases) auto  | 
|
1735  | 
||
| 
47108
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
1736  | 
lemma numeral_le_ereal_of_enat_iff[simp]:  | 
| 
 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 
huffman 
parents: 
47082 
diff
changeset
 | 
1737  | 
shows "numeral m \<le> ereal_of_enat n \<longleftrightarrow> numeral m \<le> n"  | 
| 45934 | 1738  | 
by (cases n) (auto dest: natceiling_le intro: natceiling_le_eq[THEN iffD1])  | 
1739  | 
||
1740  | 
lemma ereal_of_enat_ge_zero_cancel_iff[simp]:  | 
|
1741  | 
"0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n"  | 
|
1742  | 
by (cases n) (auto simp: enat_0[symmetric])  | 
|
1743  | 
||
1744  | 
lemma ereal_of_enat_gt_zero_cancel_iff[simp]:  | 
|
1745  | 
"0 < ereal_of_enat n \<longleftrightarrow> 0 < n"  | 
|
1746  | 
by (cases n) (auto simp: enat_0[symmetric])  | 
|
1747  | 
||
1748  | 
lemma ereal_of_enat_zero[simp]:  | 
|
1749  | 
"ereal_of_enat 0 = 0"  | 
|
1750  | 
by (auto simp: enat_0[symmetric])  | 
|
1751  | 
||
1752  | 
lemma ereal_of_enat_add:  | 
|
1753  | 
"ereal_of_enat (m + n) = ereal_of_enat m + ereal_of_enat n"  | 
|
1754  | 
by (cases m n rule: enat2_cases) auto  | 
|
1755  | 
||
1756  | 
lemma ereal_of_enat_sub:  | 
|
1757  | 
assumes "n \<le> m" shows "ereal_of_enat (m - n) = ereal_of_enat m - ereal_of_enat n "  | 
|
1758  | 
using assms by (cases m n rule: enat2_cases) auto  | 
|
1759  | 
||
1760  | 
lemma ereal_of_enat_mult:  | 
|
1761  | 
"ereal_of_enat (m * n) = ereal_of_enat m * ereal_of_enat n"  | 
|
1762  | 
by (cases m n rule: enat2_cases) auto  | 
|
1763  | 
||
1764  | 
lemmas ereal_of_enat_pushin = ereal_of_enat_add ereal_of_enat_sub ereal_of_enat_mult  | 
|
1765  | 
lemmas ereal_of_enat_pushout = ereal_of_enat_pushin[symmetric]  | 
|
1766  | 
||
1767  | 
||
| 43920 | 1768  | 
subsection "Limits on @{typ ereal}"
 | 
| 41973 | 1769  | 
|
1770  | 
subsubsection "Topological space"  | 
|
1771  | 
||
| 43920 | 1772  | 
instantiation ereal :: topological_space  | 
| 41973 | 1773  | 
begin  | 
1774  | 
||
| 43920 | 1775  | 
definition "open A \<longleftrightarrow> open (ereal -` A)  | 
1776  | 
       \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {ereal x <..} \<subseteq> A))
 | 
|
1777  | 
       \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A))"
 | 
|
| 41973 | 1778  | 
|
| 43920 | 1779  | 
lemma open_PInfty: "open A \<Longrightarrow> \<infinity> \<in> A \<Longrightarrow> (\<exists>x. {ereal x<..} \<subseteq> A)"
 | 
1780  | 
unfolding open_ereal_def by auto  | 
|
| 41973 | 1781  | 
|
| 43920 | 1782  | 
lemma open_MInfty: "open A \<Longrightarrow> -\<infinity> \<in> A \<Longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A)"
 | 
1783  | 
unfolding open_ereal_def by auto  | 
|
| 41973 | 1784  | 
|
| 43920 | 1785  | 
lemma open_PInfty2: assumes "open A" "\<infinity> \<in> A" obtains x where "{ereal x<..} \<subseteq> A"
 | 
| 41973 | 1786  | 
using open_PInfty[OF assms] by auto  | 
1787  | 
||
| 43920 | 1788  | 
lemma open_MInfty2: assumes "open A" "-\<infinity> \<in> A" obtains x where "{..<ereal x} \<subseteq> A"
 | 
| 41973 | 1789  | 
using open_MInfty[OF assms] by auto  | 
1790  | 
||
| 43920 | 1791  | 
lemma ereal_openE: assumes "open A" obtains x y where  | 
1792  | 
"open (ereal -` A)"  | 
|
1793  | 
  "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A"
 | 
|
1794  | 
  "-\<infinity> \<in> A \<Longrightarrow> {..<ereal y} \<subseteq> A"
 | 
|
1795  | 
using assms open_ereal_def by auto  | 
|
| 41973 | 1796  | 
|
1797  | 
instance  | 
|
1798  | 
proof  | 
|
| 43920 | 1799  | 
let ?U = "UNIV::ereal set"  | 
1800  | 
show "open ?U" unfolding open_ereal_def  | 
|
| 41975 | 1801  | 
by (auto intro!: exI[of _ 0])  | 
| 41973 | 1802  | 
next  | 
| 43920 | 1803  | 
fix S T::"ereal set" assume "open S" and "open T"  | 
1804  | 
from `open S`[THEN ereal_openE] guess xS yS .  | 
|
1805  | 
moreover from `open T`[THEN ereal_openE] guess xT yT .  | 
|
| 41975 | 1806  | 
ultimately have  | 
| 43920 | 1807  | 
"open (ereal -` (S \<inter> T))"  | 
1808  | 
    "\<infinity> \<in> S \<inter> T \<Longrightarrow> {ereal (max xS xT) <..} \<subseteq> S \<inter> T"
 | 
|
1809  | 
    "-\<infinity> \<in> S \<inter> T \<Longrightarrow> {..< ereal (min yS yT)} \<subseteq> S \<inter> T"
 | 
|
| 41975 | 1810  | 
by auto  | 
| 43920 | 1811  | 
then show "open (S Int T)" unfolding open_ereal_def by blast  | 
| 41973 | 1812  | 
next  | 
| 43920 | 1813  | 
fix K :: "ereal set set" assume "\<forall>S\<in>K. open S"  | 
1814  | 
then have *: "\<forall>S. \<exists>x y. S \<in> K \<longrightarrow> open (ereal -` S) \<and>  | 
|
1815  | 
    (\<infinity> \<in> S \<longrightarrow> {ereal x <..} \<subseteq> S) \<and> (-\<infinity> \<in> S \<longrightarrow> {..< ereal y} \<subseteq> S)"
 | 
|
1816  | 
by (auto simp: open_ereal_def)  | 
|
1817  | 
then show "open (Union K)" unfolding open_ereal_def  | 
|
| 41975 | 1818  | 
proof (intro conjI impI)  | 
| 43920 | 1819  | 
show "open (ereal -` \<Union>K)"  | 
| 
41980
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
1820  | 
using *[THEN choice] by (auto simp: vimage_Union)  | 
| 41975 | 1821  | 
qed ((metis UnionE Union_upper subset_trans *)+)  | 
| 41973 | 1822  | 
qed  | 
1823  | 
end  | 
|
1824  | 
||
| 43920 | 1825  | 
lemma open_ereal: "open S \<Longrightarrow> open (ereal ` S)"  | 
1826  | 
by (auto simp: inj_vimage_image_eq open_ereal_def)  | 
|
| 41976 | 1827  | 
|
| 43920 | 1828  | 
lemma open_ereal_vimage: "open S \<Longrightarrow> open (ereal -` S)"  | 
1829  | 
unfolding open_ereal_def by auto  | 
|
| 41976 | 1830  | 
|
| 43920 | 1831  | 
lemma open_ereal_lessThan[intro, simp]: "open {..< a :: ereal}"
 | 
| 41975 | 1832  | 
proof -  | 
| 43920 | 1833  | 
  have "\<And>x. ereal -` {..<ereal x} = {..< x}"
 | 
1834  | 
    "ereal -` {..< \<infinity>} = UNIV" "ereal -` {..< -\<infinity>} = {}" by auto
 | 
|
1835  | 
then show ?thesis by (cases a) (auto simp: open_ereal_def)  | 
|
| 41975 | 1836  | 
qed  | 
1837  | 
||
| 43920 | 1838  | 
lemma open_ereal_greaterThan[intro, simp]:  | 
1839  | 
  "open {a :: ereal <..}"
 | 
|
| 41975 | 1840  | 
proof -  | 
| 43920 | 1841  | 
  have "\<And>x. ereal -` {ereal x<..} = {x<..}"
 | 
1842  | 
    "ereal -` {\<infinity><..} = {}" "ereal -` {-\<infinity><..} = UNIV" by auto
 | 
|
1843  | 
then show ?thesis by (cases a) (auto simp: open_ereal_def)  | 
|
| 41975 | 1844  | 
qed  | 
1845  | 
||
| 43920 | 1846  | 
lemma ereal_open_greaterThanLessThan[intro, simp]: "open {a::ereal <..< b}"
 | 
| 41973 | 1847  | 
unfolding greaterThanLessThan_def by auto  | 
1848  | 
||
| 43920 | 1849  | 
lemma closed_ereal_atLeast[simp, intro]: "closed {a :: ereal ..}"
 | 
| 41973 | 1850  | 
proof -  | 
1851  | 
  have "- {a ..} = {..< a}" by auto
 | 
|
1852  | 
  then show "closed {a ..}"
 | 
|
| 43920 | 1853  | 
unfolding closed_def using open_ereal_lessThan by auto  | 
| 41973 | 1854  | 
qed  | 
1855  | 
||
| 43920 | 1856  | 
lemma closed_ereal_atMost[simp, intro]: "closed {.. b :: ereal}"
 | 
| 41973 | 1857  | 
proof -  | 
1858  | 
  have "- {.. b} = {b <..}" by auto
 | 
|
1859  | 
  then show "closed {.. b}"
 | 
|
| 43920 | 1860  | 
unfolding closed_def using open_ereal_greaterThan by auto  | 
| 41973 | 1861  | 
qed  | 
1862  | 
||
| 43920 | 1863  | 
lemma closed_ereal_atLeastAtMost[simp, intro]:  | 
1864  | 
  shows "closed {a :: ereal .. b}"
 | 
|
| 41973 | 1865  | 
unfolding atLeastAtMost_def by auto  | 
1866  | 
||
| 43920 | 1867  | 
lemma closed_ereal_singleton:  | 
1868  | 
  "closed {a :: ereal}"
 | 
|
1869  | 
by (metis atLeastAtMost_singleton closed_ereal_atLeastAtMost)  | 
|
| 41973 | 1870  | 
|
| 43920 | 1871  | 
lemma ereal_open_cont_interval:  | 
| 43923 | 1872  | 
fixes S :: "ereal set"  | 
| 41976 | 1873  | 
assumes "open S" "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>"  | 
| 41973 | 1874  | 
  obtains e where "e>0" "{x-e <..< x+e} \<subseteq> S"
 | 
1875  | 
proof-  | 
|
| 43920 | 1876  | 
from `open S` have "open (ereal -` S)" by (rule ereal_openE)  | 
1877  | 
then obtain e where "0 < e" and e: "\<And>y. dist y (real x) < e \<Longrightarrow> ereal y \<in> S"  | 
|
| 
41980
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
1878  | 
using assms unfolding open_dist by force  | 
| 41975 | 1879  | 
show thesis  | 
1880  | 
proof (intro that subsetI)  | 
|
| 43920 | 1881  | 
show "0 < ereal e" using `0 < e` by auto  | 
1882  | 
    fix y assume "y \<in> {x - ereal e<..<x + ereal e}"
 | 
|
1883  | 
with assms obtain t where "y = ereal t" "dist t (real x) < e"  | 
|
| 
41980
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
1884  | 
apply (cases y) by (auto simp: dist_real_def)  | 
| 
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
1885  | 
then show "y \<in> S" using e[of t] by auto  | 
| 41975 | 1886  | 
qed  | 
| 41973 | 1887  | 
qed  | 
1888  | 
||
| 43920 | 1889  | 
lemma ereal_open_cont_interval2:  | 
| 43923 | 1890  | 
fixes S :: "ereal set"  | 
| 41976 | 1891  | 
assumes "open S" "x \<in> S" and x: "\<bar>x\<bar> \<noteq> \<infinity>"  | 
| 41973 | 1892  | 
  obtains a b where "a < x" "x < b" "{a <..< b} \<subseteq> S"
 | 
1893  | 
proof-  | 
|
| 43920 | 1894  | 
guess e using ereal_open_cont_interval[OF assms] .  | 
1895  | 
with that[of "x-e" "x+e"] ereal_between[OF x, of e]  | 
|
| 41973 | 1896  | 
show thesis by auto  | 
1897  | 
qed  | 
|
1898  | 
||
| 43920 | 1899  | 
instance ereal :: t2_space  | 
| 41973 | 1900  | 
proof  | 
| 43920 | 1901  | 
fix x y :: ereal assume "x ~= y"  | 
1902  | 
  let "?P x (y::ereal)" = "EX U V. open U & open V & x : U & y : V & U Int V = {}"
 | 
|
| 41973 | 1903  | 
|
| 43920 | 1904  | 
  { fix x y :: ereal assume "x < y"
 | 
1905  | 
from ereal_dense[OF this] obtain z where z: "x < z" "z < y" by auto  | 
|
| 41973 | 1906  | 
have "?P x y"  | 
1907  | 
      apply (rule exI[of _ "{..<z}"])
 | 
|
1908  | 
      apply (rule exI[of _ "{z<..}"])
 | 
|
1909  | 
using z by auto }  | 
|
1910  | 
note * = this  | 
|
1911  | 
||
1912  | 
from `x ~= y`  | 
|
1913  | 
  show "EX U V. open U & open V & x : U & y : V & U Int V = {}"
 | 
|
1914  | 
proof (cases rule: linorder_cases)  | 
|
1915  | 
assume "x = y" with `x ~= y` show ?thesis by simp  | 
|
1916  | 
next assume "x < y" from *[OF this] show ?thesis by auto  | 
|
1917  | 
next assume "y < x" from *[OF this] show ?thesis by auto  | 
|
1918  | 
qed  | 
|
1919  | 
qed  | 
|
1920  | 
||
1921  | 
subsubsection {* Convergent sequences *}
 | 
|
1922  | 
||
| 43920 | 1923  | 
lemma lim_ereal[simp]:  | 
1924  | 
"((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net" (is "?l = ?r")  | 
|
| 41973 | 1925  | 
proof (intro iffI topological_tendstoI)  | 
1926  | 
fix S assume "?l" "open S" "x \<in> S"  | 
|
1927  | 
then show "eventually (\<lambda>x. f x \<in> S) net"  | 
|
| 43920 | 1928  | 
using `?l`[THEN topological_tendstoD, OF open_ereal, OF `open S`]  | 
| 41973 | 1929  | 
by (simp add: inj_image_mem_iff)  | 
1930  | 
next  | 
|
| 43920 | 1931  | 
fix S assume "?r" "open S" "ereal x \<in> S"  | 
1932  | 
show "eventually (\<lambda>x. ereal (f x) \<in> S) net"  | 
|
1933  | 
using `?r`[THEN topological_tendstoD, OF open_ereal_vimage, OF `open S`]  | 
|
1934  | 
using `ereal x \<in> S` by auto  | 
|
| 41973 | 1935  | 
qed  | 
1936  | 
||
| 43920 | 1937  | 
lemma lim_real_of_ereal[simp]:  | 
1938  | 
assumes lim: "(f ---> ereal x) net"  | 
|
| 41973 | 1939  | 
shows "((\<lambda>x. real (f x)) ---> x) net"  | 
1940  | 
proof (intro topological_tendstoI)  | 
|
1941  | 
fix S assume "open S" "x \<in> S"  | 
|
| 43920 | 1942  | 
then have S: "open S" "ereal x \<in> ereal ` S"  | 
| 41973 | 1943  | 
by (simp_all add: inj_image_mem_iff)  | 
| 43920 | 1944  | 
have "\<forall>x. f x \<in> ereal ` S \<longrightarrow> real (f x) \<in> S" by auto  | 
1945  | 
from this lim[THEN topological_tendstoD, OF open_ereal, OF S]  | 
|
| 41973 | 1946  | 
show "eventually (\<lambda>x. real (f x) \<in> S) net"  | 
1947  | 
by (rule eventually_mono)  | 
|
1948  | 
qed  | 
|
1949  | 
||
| 43920 | 1950  | 
lemma Lim_PInfty: "f ----> \<infinity> <-> (ALL B. EX N. ALL n>=N. f n >= ereal B)" (is "?l = ?r")  | 
| 43923 | 1951  | 
proof  | 
1952  | 
assume ?r  | 
|
1953  | 
show ?l  | 
|
1954  | 
apply(rule topological_tendstoI)  | 
|
| 41973 | 1955  | 
unfolding eventually_sequentially  | 
| 43923 | 1956  | 
proof-  | 
1957  | 
fix S :: "ereal set" assume "open S" "\<infinity> : S"  | 
|
| 41973 | 1958  | 
from open_PInfty[OF this] guess B .. note B=this  | 
1959  | 
from `?r`[rule_format,of "B+1"] guess N .. note N=this  | 
|
1960  | 
show "EX N. ALL n>=N. f n : S" apply(rule_tac x=N in exI)  | 
|
1961  | 
proof safe case goal1  | 
|
| 43920 | 1962  | 
have "ereal B < ereal (B + 1)" by auto  | 
| 41973 | 1963  | 
also have "... <= f n" using goal1 N by auto  | 
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44669 
diff
changeset
 | 
1964  | 
finally show ?case using B by fastforce  | 
| 41973 | 1965  | 
qed  | 
1966  | 
qed  | 
|
| 43923 | 1967  | 
next  | 
1968  | 
assume ?l  | 
|
1969  | 
show ?r  | 
|
| 43920 | 1970  | 
  proof fix B::real have "open {ereal B<..}" "\<infinity> : {ereal B<..}" by auto
 | 
| 41973 | 1971  | 
from topological_tendstoD[OF `?l` this,unfolded eventually_sequentially]  | 
1972  | 
guess N .. note N=this  | 
|
| 43920 | 1973  | 
show "EX N. ALL n>=N. ereal B <= f n" apply(rule_tac x=N in exI) using N by auto  | 
| 41973 | 1974  | 
qed  | 
1975  | 
qed  | 
|
1976  | 
||
1977  | 
||
| 43920 | 1978  | 
lemma Lim_MInfty: "f ----> (-\<infinity>) <-> (ALL B. EX N. ALL n>=N. f n <= ereal B)" (is "?l = ?r")  | 
| 43923 | 1979  | 
proof  | 
1980  | 
assume ?r  | 
|
1981  | 
show ?l  | 
|
1982  | 
apply(rule topological_tendstoI)  | 
|
| 41973 | 1983  | 
unfolding eventually_sequentially  | 
| 43923 | 1984  | 
proof-  | 
1985  | 
fix S :: "ereal set"  | 
|
1986  | 
assume "open S" "(-\<infinity>) : S"  | 
|
| 41973 | 1987  | 
from open_MInfty[OF this] guess B .. note B=this  | 
1988  | 
from `?r`[rule_format,of "B-(1::real)"] guess N .. note N=this  | 
|
1989  | 
show "EX N. ALL n>=N. f n : S" apply(rule_tac x=N in exI)  | 
|
1990  | 
proof safe case goal1  | 
|
| 43920 | 1991  | 
have "ereal (B - 1) >= f n" using goal1 N by auto  | 
1992  | 
also have "... < ereal B" by auto  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44669 
diff
changeset
 | 
1993  | 
finally show ?case using B by fastforce  | 
| 41973 | 1994  | 
qed  | 
1995  | 
qed  | 
|
1996  | 
next assume ?l show ?r  | 
|
| 43920 | 1997  | 
  proof fix B::real have "open {..<ereal B}" "(-\<infinity>) : {..<ereal B}" by auto
 | 
| 41973 | 1998  | 
from topological_tendstoD[OF `?l` this,unfolded eventually_sequentially]  | 
1999  | 
guess N .. note N=this  | 
|
| 43920 | 2000  | 
show "EX N. ALL n>=N. ereal B >= f n" apply(rule_tac x=N in exI) using N by auto  | 
| 41973 | 2001  | 
qed  | 
2002  | 
qed  | 
|
2003  | 
||
2004  | 
||
| 43920 | 2005  | 
lemma Lim_bounded_PInfty: assumes lim:"f ----> l" and "!!n. f n <= ereal B" shows "l ~= \<infinity>"  | 
| 41973 | 2006  | 
proof(rule ccontr,unfold not_not) let ?B = "B + 1" assume as:"l=\<infinity>"  | 
2007  | 
from lim[unfolded this Lim_PInfty,rule_format,of "?B"]  | 
|
2008  | 
guess N .. note N=this[rule_format,OF le_refl]  | 
|
| 43920 | 2009  | 
hence "ereal ?B <= ereal B" using assms(2)[of N] by(rule order_trans)  | 
2010  | 
hence "ereal ?B < ereal ?B" apply (rule le_less_trans) by auto  | 
|
| 41973 | 2011  | 
thus False by auto  | 
2012  | 
qed  | 
|
2013  | 
||
2014  | 
||
| 43920 | 2015  | 
lemma Lim_bounded_MInfty: assumes lim:"f ----> l" and "!!n. f n >= ereal B" shows "l ~= (-\<infinity>)"  | 
| 41973 | 2016  | 
proof(rule ccontr,unfold not_not) let ?B = "B - 1" assume as:"l=(-\<infinity>)"  | 
2017  | 
from lim[unfolded this Lim_MInfty,rule_format,of "?B"]  | 
|
2018  | 
guess N .. note N=this[rule_format,OF le_refl]  | 
|
| 43920 | 2019  | 
hence "ereal B <= ereal ?B" using assms(2)[of N] order_trans[of "ereal B" "f N" "ereal(B - 1)"] by blast  | 
| 41973 | 2020  | 
thus False by auto  | 
2021  | 
qed  | 
|
2022  | 
||
2023  | 
||
2024  | 
lemma tendsto_explicit:  | 
|
2025  | 
"f ----> f0 <-> (ALL S. open S --> f0 : S --> (EX N. ALL n>=N. f n : S))"  | 
|
2026  | 
unfolding tendsto_def eventually_sequentially by auto  | 
|
2027  | 
||
2028  | 
||
2029  | 
lemma tendsto_obtains_N:  | 
|
2030  | 
assumes "f ----> f0"  | 
|
2031  | 
assumes "open S" "f0 : S"  | 
|
2032  | 
obtains N where "ALL n>=N. f n : S"  | 
|
2033  | 
using tendsto_explicit[of f f0] assms by auto  | 
|
2034  | 
||
2035  | 
||
2036  | 
lemma tail_same_limit:  | 
|
2037  | 
fixes X Y N  | 
|
2038  | 
assumes "X ----> L" "ALL n>=N. X n = Y n"  | 
|
2039  | 
shows "Y ----> L"  | 
|
2040  | 
proof-  | 
|
2041  | 
{ fix S assume "open S" and "L:S"
 | 
|
| 47082 | 2042  | 
then obtain N1 where "ALL n>=N1. X n : S"  | 
| 41973 | 2043  | 
using assms unfolding tendsto_def eventually_sequentially by auto  | 
2044  | 
hence "ALL n>=max N N1. Y n : S" using assms by auto  | 
|
2045  | 
hence "EX N. ALL n>=N. Y n : S" apply(rule_tac x="max N N1" in exI) by auto  | 
|
2046  | 
}  | 
|
2047  | 
thus ?thesis using tendsto_explicit by auto  | 
|
2048  | 
qed  | 
|
2049  | 
||
2050  | 
||
2051  | 
lemma Lim_bounded_PInfty2:  | 
|
| 43920 | 2052  | 
assumes lim:"f ----> l" and "ALL n>=N. f n <= ereal B"  | 
| 41973 | 2053  | 
shows "l ~= \<infinity>"  | 
2054  | 
proof-  | 
|
| 43920 | 2055  | 
def g == "(%n. if n>=N then f n else ereal B)"  | 
| 41973 | 2056  | 
hence "g ----> l" using tail_same_limit[of f l N g] lim by auto  | 
| 43920 | 2057  | 
moreover have "!!n. g n <= ereal B" using g_def assms by auto  | 
| 41973 | 2058  | 
ultimately show ?thesis using Lim_bounded_PInfty by auto  | 
2059  | 
qed  | 
|
2060  | 
||
| 43920 | 2061  | 
lemma Lim_bounded_ereal:  | 
2062  | 
assumes lim:"f ----> (l :: ereal)"  | 
|
| 41973 | 2063  | 
and "ALL n>=M. f n <= C"  | 
2064  | 
shows "l<=C"  | 
|
2065  | 
proof-  | 
|
2066  | 
{ assume "l=(-\<infinity>)" hence ?thesis by auto }
 | 
|
2067  | 
moreover  | 
|
2068  | 
{ assume "~(l=(-\<infinity>))"
 | 
|
2069  | 
  { assume "C=\<infinity>" hence ?thesis by auto }
 | 
|
2070  | 
moreover  | 
|
2071  | 
  { assume "C=(-\<infinity>)" hence "ALL n>=M. f n = (-\<infinity>)" using assms by auto
 | 
|
2072  | 
hence "l=(-\<infinity>)" using assms  | 
|
| 
41980
 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 
hoelzl 
parents: 
41979 
diff
changeset
 | 
2073  | 
tendsto_unique[OF trivial_limit_sequentially] tail_same_limit[of "\<lambda>n. -\<infinity>" "-\<infinity>" M f, OF tendsto_const] by auto  | 
| 41973 | 2074  | 
hence ?thesis by auto }  | 
2075  | 
moreover  | 
|
| 43920 | 2076  | 
  { assume "EX B. C = ereal B"
 | 
| 47082 | 2077  | 
then obtain B where B_def: "C=ereal B" by auto  | 
| 41973 | 2078  | 
hence "~(l=\<infinity>)" using Lim_bounded_PInfty2 assms by auto  | 
| 47082 | 2079  | 
then obtain m where m_def: "ereal m=l" using `~(l=(-\<infinity>))` by (cases l) auto  | 
2080  | 
    then obtain N where N_def: "ALL n>=N. f n : {ereal(m - 1) <..< ereal(m+1)}"
 | 
|
| 43920 | 2081  | 
       apply (subst tendsto_obtains_N[of f l "{ereal(m - 1) <..< ereal(m+1)}"]) using assms by auto
 | 
| 41973 | 2082  | 
    { fix n assume "n>=N"
 | 
| 43920 | 2083  | 
hence "EX r. ereal r = f n" using N_def by (cases "f n") auto  | 
| 47082 | 2084  | 
} then obtain g where g_def: "ALL n>=N. ereal (g n) = f n" by metis  | 
| 43920 | 2085  | 
hence "(%n. ereal (g n)) ----> l" using tail_same_limit[of f l N] assms by auto  | 
| 41973 | 2086  | 
hence *: "(%n. g n) ----> m" using m_def by auto  | 
2087  | 
    { fix n assume "n>=max N M"
 | 
|
| 43920 | 2088  | 
hence "ereal (g n) <= ereal B" using assms g_def B_def by auto  | 
| 41973 | 2089  | 
hence "g n <= B" by auto  | 
2090  | 
} hence "EX N. ALL n>=N. g n <= B" by blast  | 
|
2091  | 
hence "m<=B" using * LIMSEQ_le_const2[of g m B] by auto  | 
|
2092  | 
hence ?thesis using m_def B_def by auto  | 
|
2093  | 
} ultimately have ?thesis by (cases C) auto  | 
|
2094  | 
} ultimately show ?thesis by blast  | 
|
2095  | 
qed  | 
|
2096  | 
||
| 43920 | 2097  | 
lemma real_of_ereal_mult[simp]:  | 
2098  | 
fixes a b :: ereal shows "real (a * b) = real a * real b"  | 
|
2099  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
|
| 41973 | 2100  | 
|
| 43920 | 2101  | 
lemma real_of_ereal_eq_0:  | 
| 43923 | 2102  | 
fixes x :: ereal shows "real x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0"  | 
| 41973 | 2103  | 
by (cases x) auto  | 
2104  | 
||
| 43920 | 2105  | 
lemma tendsto_ereal_realD:  | 
2106  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
|
2107  | 
assumes "x \<noteq> 0" and tendsto: "((\<lambda>x. ereal (real (f x))) ---> x) net"  | 
|
| 41973 | 2108  | 
shows "(f ---> x) net"  | 
2109  | 
proof (intro topological_tendstoI)  | 
|
2110  | 
fix S assume S: "open S" "x \<in> S"  | 
|
2111  | 
  with `x \<noteq> 0` have "open (S - {0})" "x \<in> S - {0}" by auto
 | 
|
2112  | 
from tendsto[THEN topological_tendstoD, OF this]  | 
|
2113  | 
show "eventually (\<lambda>x. f x \<in> S) net"  | 
|
| 44142 | 2114  | 
by (rule eventually_rev_mp) (auto simp: ereal_real)  | 
| 41973 | 2115  | 
qed  | 
2116  | 
||
| 43920 | 2117  | 
lemma tendsto_ereal_realI:  | 
2118  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
|
| 41976 | 2119  | 
assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and tendsto: "(f ---> x) net"  | 
| 43920 | 2120  | 
shows "((\<lambda>x. ereal (real (f x))) ---> x) net"  | 
| 41973 | 2121  | 
proof (intro topological_tendstoI)  | 
2122  | 
fix S assume "open S" "x \<in> S"  | 
|
2123  | 
  with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}" by auto
 | 
|
2124  | 
from tendsto[THEN topological_tendstoD, OF this]  | 
|
| 43920 | 2125  | 
show "eventually (\<lambda>x. ereal (real (f x)) \<in> S) net"  | 
2126  | 
by (elim eventually_elim1) (auto simp: ereal_real)  | 
|
| 41973 | 2127  | 
qed  | 
2128  | 
||
| 43920 | 2129  | 
lemma ereal_mult_cancel_left:  | 
2130  | 
fixes a b c :: ereal shows "a * b = a * c \<longleftrightarrow>  | 
|
| 41976 | 2131  | 
((\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c)"  | 
| 43920 | 2132  | 
by (cases rule: ereal3_cases[of a b c])  | 
| 41973 | 2133  | 
(simp_all add: zero_less_mult_iff)  | 
2134  | 
||
| 43920 | 2135  | 
lemma ereal_inj_affinity:  | 
| 43923 | 2136  | 
fixes m t :: ereal  | 
| 41976 | 2137  | 
assumes "\<bar>m\<bar> \<noteq> \<infinity>" "m \<noteq> 0" "\<bar>t\<bar> \<noteq> \<infinity>"  | 
| 41973 | 2138  | 
shows "inj_on (\<lambda>x. m * x + t) A"  | 
2139  | 
using assms  | 
|
| 43920 | 2140  | 
by (cases rule: ereal2_cases[of m t])  | 
2141  | 
(auto intro!: inj_onI simp: ereal_add_cancel_right ereal_mult_cancel_left)  | 
|
| 41973 | 2142  | 
|
| 43920 | 2143  | 
lemma ereal_PInfty_eq_plus[simp]:  | 
| 43923 | 2144  | 
fixes a b :: ereal  | 
| 41973 | 2145  | 
shows "\<infinity> = a + b \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>"  | 
| 43920 | 2146  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 2147  | 
|
| 43920 | 2148  | 
lemma ereal_MInfty_eq_plus[simp]:  | 
| 43923 | 2149  | 
fixes a b :: ereal  | 
| 41973 | 2150  | 
shows "-\<infinity> = a + b \<longleftrightarrow> (a = -\<infinity> \<and> b \<noteq> \<infinity>) \<or> (b = -\<infinity> \<and> a \<noteq> \<infinity>)"  | 
| 43920 | 2151  | 
by (cases rule: ereal2_cases[of a b]) auto  | 
| 41973 | 2152  | 
|
| 43920 | 2153  | 
lemma ereal_less_divide_pos:  | 
| 43923 | 2154  | 
fixes x y :: ereal  | 
2155  | 
shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y < z / x \<longleftrightarrow> x * y < z"  | 
|
| 43920 | 2156  | 
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)  | 
| 41973 | 2157  | 
|
| 43920 | 2158  | 
lemma ereal_divide_less_pos:  | 
| 43923 | 2159  | 
fixes x y z :: ereal  | 
2160  | 
shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y / x < z \<longleftrightarrow> y < x * z"  | 
|
| 43920 | 2161  | 
by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)  | 
| 41973 | 2162  | 
|
| 43920 | 2163  | 
lemma ereal_divide_eq:  | 
| 43923 | 2164  | 
fixes a b c :: ereal  | 
2165  | 
shows "b \<noteq> 0 \<Longrightarrow> \<bar>b\<bar> \<noteq> \<infinity> \<Longrightarrow> a / b = c \<longleftrightarrow> a = b * c"  | 
|
| 43920 | 2166  | 
by (cases rule: ereal3_cases[of a b c])  | 
| 41973 | 2167  | 
(simp_all add: field_simps)  | 
2168  | 
||
| 43923 | 2169  | 
lemma ereal_inverse_not_MInfty[simp]: "inverse (a::ereal) \<noteq> -\<infinity>"  | 
| 41973 | 2170  | 
by (cases a) auto  | 
2171  | 
||
| 43920 | 2172  | 
lemma ereal_mult_m1[simp]: "x * ereal (-1) = -x"  | 
| 41973 | 2173  | 
by (cases x) auto  | 
2174  | 
||
| 43920 | 2175  | 
lemma ereal_LimI_finite:  | 
| 43923 | 2176  | 
fixes x :: ereal  | 
| 41976 | 2177  | 
assumes "\<bar>x\<bar> \<noteq> \<infinity>"  | 
| 41973 | 2178  | 
assumes "!!r. 0 < r ==> EX N. ALL n>=N. u n < x + r & x < u n + r"  | 
2179  | 
shows "u ----> x"  | 
|
2180  | 
proof (rule topological_tendstoI, unfold eventually_sequentially)  | 
|
| 43920 | 2181  | 
obtain rx where rx_def: "x=ereal rx" using assms by (cases x) auto  | 
| 41973 | 2182  | 
fix S assume "open S" "x : S"  | 
| 43920 | 2183  | 
then have "open (ereal -` S)" unfolding open_ereal_def by auto  | 
2184  | 
with `x \<in> S` obtain r where "0 < r" and dist: "!!y. dist y rx < r ==> ereal y \<in> S"  | 
|
| 41975 | 2185  | 
unfolding open_real_def rx_def by auto  | 
| 41973 | 2186  | 
then obtain n where  | 
| 43920 | 2187  | 
upper: "!!N. n <= N ==> u N < x + ereal r" and  | 
2188  | 
lower: "!!N. n <= N ==> x < u N + ereal r" using assms(2)[of "ereal r"] by auto  | 
|
| 41973 | 2189  | 
show "EX N. ALL n>=N. u n : S"  | 
2190  | 
proof (safe intro!: exI[of _ n])  | 
|
2191  | 
fix N assume "n <= N"  | 
|
2192  | 
from upper[OF this] lower[OF this] assms `0 < r`  | 
|
2193  | 
    have "u N ~: {\<infinity>,(-\<infinity>)}" by auto
 | 
|
| 47082 | 2194  | 
then obtain ra where ra_def: "(u N) = ereal ra" by (cases "u N") auto  | 
| 41973 | 2195  | 
hence "rx < ra + r" and "ra < rx + r"  | 
2196  | 
using rx_def assms `0 < r` lower[OF `n <= N`] upper[OF `n <= N`] by auto  | 
|
| 41975 | 2197  | 
hence "dist (real (u N)) rx < r"  | 
| 41973 | 2198  | 
using rx_def ra_def  | 
2199  | 
by (auto simp: dist_real_def abs_diff_less_iff field_simps)  | 
|
| 41976 | 2200  | 
    from dist[OF this] show "u N : S" using `u N  ~: {\<infinity>, -\<infinity>}`
 | 
| 43920 | 2201  | 
by (auto simp: ereal_real split: split_if_asm)  | 
| 41973 | 2202  | 
qed  | 
2203  | 
qed  | 
|
2204  | 
||
| 43920 | 2205  | 
lemma ereal_LimI_finite_iff:  | 
| 43923 | 2206  | 
fixes x :: ereal  | 
| 41976 | 2207  | 
assumes "\<bar>x\<bar> \<noteq> \<infinity>"  | 
| 41973 | 2208  | 
shows "u ----> x <-> (ALL r. 0 < r --> (EX N. ALL n>=N. u n < x + r & x < u n + r))"  | 
2209  | 
(is "?lhs <-> ?rhs")  | 
|
| 41976 | 2210  | 
proof  | 
2211  | 
assume lim: "u ----> x"  | 
|
| 43920 | 2212  | 
  { fix r assume "(r::ereal)>0"
 | 
| 47082 | 2213  | 
    then obtain N where N_def: "ALL n>=N. u n : {x - r <..< x + r}"
 | 
| 41973 | 2214  | 
       apply (subst tendsto_obtains_N[of u x "{x - r <..< x + r}"])
 | 
| 43920 | 2215  | 
using lim ereal_between[of x r] assms `r>0` by auto  | 
| 41973 | 2216  | 
hence "EX N. ALL n>=N. u n < x + r & x < u n + r"  | 
| 43920 | 2217  | 
using ereal_minus_less[of r x] by (cases r) auto  | 
| 41976 | 2218  | 
} then show "?rhs" by auto  | 
2219  | 
next  | 
|
2220  | 
assume ?rhs then show "u ----> x"  | 
|
| 43920 | 2221  | 
using ereal_LimI_finite[of x] assms by auto  | 
| 41973 | 2222  | 
qed  | 
2223  | 
||
2224  | 
||
2225  | 
subsubsection {* @{text Liminf} and @{text Limsup} *}
 | 
|
2226  | 
||
2227  | 
definition  | 
|
2228  | 
"Liminf net f = (GREATEST l. \<forall>y<l. eventually (\<lambda>x. y < f x) net)"  | 
|
2229  | 
||
2230  | 
definition  | 
|
2231  | 
"Limsup net f = (LEAST l. \<forall>y>l. eventually (\<lambda>x. f x < y) net)"  | 
|
2232  | 
||
2233  | 
lemma Liminf_Sup:  | 
|
| 43941 | 2234  | 
fixes f :: "'a => 'b::complete_linorder"  | 
| 41973 | 2235  | 
  shows "Liminf net f = Sup {l. \<forall>y<l. eventually (\<lambda>x. y < f x) net}"
 | 
2236  | 
by (auto intro!: Greatest_equality complete_lattice_class.Sup_upper simp: less_Sup_iff Liminf_def)  | 
|
2237  | 
||
2238  | 
lemma Limsup_Inf:  | 
|
| 43941 | 2239  | 
fixes f :: "'a => 'b::complete_linorder"  | 
| 41973 | 2240  | 
  shows "Limsup net f = Inf {l. \<forall>y>l. eventually (\<lambda>x. f x < y) net}"
 | 
2241  | 
by (auto intro!: Least_equality complete_lattice_class.Inf_lower simp: Inf_less_iff Limsup_def)  | 
|
2242  | 
||
| 43920 | 2243  | 
lemma ereal_SupI:  | 
2244  | 
fixes x :: ereal  | 
|
| 41973 | 2245  | 
assumes "\<And>y. y \<in> A \<Longrightarrow> y \<le> x"  | 
2246  | 
assumes "\<And>y. (\<And>z. z \<in> A \<Longrightarrow> z \<le> y) \<Longrightarrow> x \<le> y"  | 
|
2247  | 
shows "Sup A = x"  | 
|
| 43920 | 2248  | 
unfolding Sup_ereal_def  | 
| 41973 | 2249  | 
using assms by (auto intro!: Least_equality)  | 
2250  | 
||
| 43920 | 2251  | 
lemma ereal_InfI:  | 
2252  | 
fixes x :: ereal  | 
|
| 41973 | 2253  | 
assumes "\<And>i. i \<in> A \<Longrightarrow> x \<le> i"  | 
2254  | 
assumes "\<And>y. (\<And>i. i \<in> A \<Longrightarrow> y \<le> i) \<Longrightarrow> y \<le> x"  | 
|
2255  | 
shows "Inf A = x"  | 
|
| 43920 | 2256  | 
unfolding Inf_ereal_def  | 
| 41973 | 2257  | 
using assms by (auto intro!: Greatest_equality)  | 
2258  | 
||
2259  | 
lemma Limsup_const:  | 
|
| 43941 | 2260  | 
fixes c :: "'a::complete_linorder"  | 
| 41973 | 2261  | 
assumes ntriv: "\<not> trivial_limit net"  | 
2262  | 
shows "Limsup net (\<lambda>x. c) = c"  | 
|
2263  | 
unfolding Limsup_Inf  | 
|
2264  | 
proof (safe intro!: antisym complete_lattice_class.Inf_greatest complete_lattice_class.Inf_lower)  | 
|
2265  | 
fix x assume *: "\<forall>y>x. eventually (\<lambda>_. c < y) net"  | 
|
2266  | 
show "c \<le> x"  | 
|
2267  | 
proof (rule ccontr)  | 
|
2268  | 
assume "\<not> c \<le> x" then have "x < c" by auto  | 
|
2269  | 
then show False using ntriv * by (auto simp: trivial_limit_def)  | 
|
2270  | 
qed  | 
|
2271  | 
qed auto  | 
|
2272  | 
||
2273  | 
lemma Liminf_const:  | 
|
| 43941 | 2274  | 
fixes c :: "'a::complete_linorder"  | 
| 41973 | 2275  | 
assumes ntriv: "\<not> trivial_limit net"  | 
2276  | 
shows "Liminf net (\<lambda>x. c) = c"  | 
|
2277  | 
unfolding Liminf_Sup  | 
|
2278  | 
proof (safe intro!: antisym complete_lattice_class.Sup_least complete_lattice_class.Sup_upper)  | 
|
2279  | 
fix x assume *: "\<forall>y<x. eventually (\<lambda>_. y < c) net"  | 
|
2280  | 
show "x \<le> c"  | 
|
2281  | 
proof (rule ccontr)  | 
|
2282  | 
assume "\<not> x \<le> c" then have "c < x" by auto  | 
|
2283  | 
then show False using ntriv * by (auto simp: trivial_limit_def)  | 
|
2284  | 
qed  | 
|
2285  | 
qed auto  | 
|
2286  | 
||
| 
44170
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
44142 
diff
changeset
 | 
2287  | 
definition (in order) mono_set:  | 
| 
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
44142 
diff
changeset
 | 
2288  | 
"mono_set S \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> x \<in> S \<longrightarrow> y \<in> S)"  | 
| 41973 | 2289  | 
|
| 
44170
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
44142 
diff
changeset
 | 
2290  | 
lemma (in order) mono_greaterThan [intro, simp]: "mono_set {B<..}" unfolding mono_set by auto
 | 
| 
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
44142 
diff
changeset
 | 
2291  | 
lemma (in order) mono_atLeast [intro, simp]: "mono_set {B..}" unfolding mono_set by auto
 | 
| 
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
44142 
diff
changeset
 | 
2292  | 
lemma (in order) mono_UNIV [intro, simp]: "mono_set UNIV" unfolding mono_set by auto  | 
| 
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
44142 
diff
changeset
 | 
2293  | 
lemma (in order) mono_empty [intro, simp]: "mono_set {}" unfolding mono_set by auto
 | 
| 41973 | 2294  | 
|
| 43941 | 2295  | 
lemma (in complete_linorder) mono_set_iff:  | 
2296  | 
fixes S :: "'a set"  | 
|
| 41973 | 2297  | 
defines "a \<equiv> Inf S"  | 
| 
44170
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
44142 
diff
changeset
 | 
2298  | 
  shows "mono_set S \<longleftrightarrow> (S = {a <..} \<or> S = {a..})" (is "_ = ?c")
 | 
| 41973 | 2299  | 
proof  | 
| 
44170
 
510ac30f44c0
make Multivariate_Analysis work with separate set type
 
huffman 
parents: 
44142 
diff
changeset
 | 
2300  | 
assume "mono_set S"  | 
| 41973 | 2301  | 
then have mono: "\<And>x y. x \<le> y \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S" by (auto simp: mono_set)  | 
2302  | 
show ?c  | 
|
2303  | 
proof cases  | 
|
2304  | 
assume "a \<in> S"  | 
|
2305  | 
show ?c  | 
|
2306  | 
using mono[OF _ `a \<in> S`]  | 
|
| 43941 | 2307  | 
by (auto intro: Inf_lower simp: a_def)  | 
| 41973 | 2308  | 
next  | 
2309  | 
assume "a \<notin> S"  | 
|
2310  | 
    have "S = {a <..}"
 | 
|
2311  | 
proof safe  | 
|
2312  | 
fix x assume "x \<in> S"  | 
|
| 43941 | 2313  | 
then have "a \<le> x" unfolding a_def by (rule Inf_lower)  | 
| 41973 | 2314  | 
then show "a < x" using `x \<in> S` `a \<notin> S` by (cases "a = x") auto  | 
2315  | 
next  | 
|
2316  | 
fix x assume "a < x"  | 
|
2317  | 
then obtain y where "y < x" "y \<in> S" unfolding a_def Inf_less_iff ..  | 
|
2318  | 
with mono[of y x] show "x \<in> S" by auto  | 
|
2319  | 
qed  | 
|
2320  | 
then show ?c ..  | 
|
2321  | 
qed  | 
|
2322  | 
qed auto  | 
|
2323  | 
||
2324  | 
lemma lim_imp_Liminf:  | 
|
| 43920 | 2325  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
| 41973 | 2326  | 
assumes ntriv: "\<not> trivial_limit net"  | 
2327  | 
assumes lim: "(f ---> f0) net"  | 
|
2328  | 
shows "Liminf net f = f0"  | 
|
2329  | 
unfolding Liminf_Sup  | 
|
| 43920 | 2330  | 
proof (safe intro!: ereal_SupI)  | 
| 41973 | 2331  | 
fix y assume *: "\<forall>y'<y. eventually (\<lambda>x. y' < f x) net"  | 
2332  | 
show "y \<le> f0"  | 
|
| 43920 | 2333  | 
proof (rule ereal_le_ereal)  | 
| 41973 | 2334  | 
fix B assume "B < y"  | 
2335  | 
    { assume "f0 < B"
 | 
|
2336  | 
then have "eventually (\<lambda>x. f x < B \<and> B < f x) net"  | 
|
2337  | 
         using topological_tendstoD[OF lim, of "{..<B}"] *[rule_format, OF `B < y`]
 | 
|
2338  | 
by (auto intro: eventually_conj)  | 
|
2339  | 
also have "(\<lambda>x. f x < B \<and> B < f x) = (\<lambda>x. False)" by (auto simp: fun_eq_iff)  | 
|
2340  | 
finally have False using ntriv[unfolded trivial_limit_def] by auto  | 
|
2341  | 
} then show "B \<le> f0" by (metis linorder_le_less_linear)  | 
|
2342  | 
qed  | 
|
2343  | 
next  | 
|
2344  | 
  fix y assume *: "\<forall>z. z \<in> {l. \<forall>y<l. eventually (\<lambda>x. y < f x) net} \<longrightarrow> z \<le> y"
 | 
|
2345  | 
show "f0 \<le> y"  | 
|
2346  | 
proof (safe intro!: *[rule_format])  | 
|
2347  | 
fix y assume "y < f0" then show "eventually (\<lambda>x. y < f x) net"  | 
|
2348  | 
      using lim[THEN topological_tendstoD, of "{y <..}"] by auto
 | 
|
2349  | 
qed  | 
|
2350  | 
qed  | 
|
2351  | 
||
| 43920 | 2352  | 
lemma ereal_Liminf_le_Limsup:  | 
2353  | 
fixes f :: "'a \<Rightarrow> ereal"  | 
|
| 41973 | 2354  | 
assumes ntriv: "\<not> trivial_limit net"  | 
2355  | 
shows "Liminf net f \<le> Limsup net f"  | 
|
2356  | 
unfolding Limsup_Inf Liminf_Sup  | 
|
2357  | 
proof (safe intro!: complete_lattice_class.Inf_greatest complete_lattice_class.Sup_least)  | 
|
2358  | 
fix u v assume *: "\<forall>y<u. eventually (\<lambda>x. y < f x) net" "\<forall>y>v. eventually (\<lambda>x. f x < y) net"  | 
|
2359  | 
show "u \<le> v"  | 
|
2360  | 
proof (rule ccontr)  | 
|
2361  | 
assume "\<not> u \<le> v"  | 
|
2362  | 
then obtain t where "t < u" "v < t"  | 
|
| 43920 | 2363  | 
using ereal_dense[of v u] by (auto simp: not_le)  | 
| 41973 | 2364  | 
then have "eventually (\<lambda>x. t < f x \<and> f x < t) net"  | 
2365  | 
using * by (auto intro: eventually_conj)  | 
|
2366  | 
also have "(\<lambda>x. t < f x \<and> f x < t) = (\<lambda>x. False)" by (auto simp: fun_eq_iff)  | 
|
2367  | 
finally show False using ntriv by (auto simp: trivial_limit_def)  | 
|
2368  | 
qed  | 
|
2369  | 
qed  | 
|
2370  | 
||
2371  | 
lemma Liminf_mono:  | 
|
| 43920 | 2372  | 
fixes f g :: "'a => ereal"  | 
| 41973 | 2373  | 
assumes ev: "eventually (\<lambda>x. f x \<le> g x) net"  | 
2374  | 
shows "Liminf net f \<le> Liminf net g"  | 
|
2375  | 
unfolding Liminf_Sup  | 
|
2376  | 
proof (safe intro!: Sup_mono bexI)  | 
|
2377  | 
fix a y assume "\<forall>y<a. eventually (\<lambda>x. y < f x) net" and "y < a"  | 
|
2378  | 
then have "eventually (\<lambda>x. y < f x) net" by auto  | 
|
2379  | 
then show "eventually (\<lambda>x. y < g x) net"  | 
|
2380  | 
by (rule eventually_rev_mp) (rule eventually_mono[OF _ ev], auto)  | 
|
2381  | 
qed simp  | 
|
2382  | 
||
2383  | 
lemma Liminf_eq:  | 
|
| 43920 | 2384  | 
fixes f g :: "'a \<Rightarrow> ereal"  | 
| 41973 | 2385  | 
assumes "eventually (\<lambda>x. f x = g x) net"  | 
2386  | 
shows "Liminf net f = Liminf net g"  | 
|
2387  | 
by (intro antisym Liminf_mono eventually_mono[OF _ assms]) auto  | 
|
2388  | 
||
2389  | 
lemma Liminf_mono_all:  | 
|
| 43920 | 2390  | 
fixes f g :: "'a \<Rightarrow> ereal"  | 
| 41973 | 2391  | 
assumes "\<And>x. f x \<le> g x"  | 
2392  | 
shows "Liminf net f \<le> Liminf net g"  | 
|
2393  | 
using assms by (intro Liminf_mono always_eventually) auto  | 
|
2394  | 
||
2395  | 
lemma Limsup_mono:  | 
|
| 43920 | 2396  | 
fixes f g :: "'a \<Rightarrow> ereal"  | 
| 41973 | 2397  | 
assumes ev: "eventually (\<lambda>x. f x \<le> g x) net"  | 
2398  | 
shows "Limsup net f \<le> Limsup net g"  | 
|
2399  | 
unfolding Limsup_Inf  | 
|
2400  | 
proof (safe intro!: Inf_mono bexI)  | 
|
2401  | 
fix a y assume "\<forall>y>a. eventually (\<lambda>x. g x < y) net" and "a < y"  | 
|
2402  | 
then have "eventually (\<lambda>x. g x < y) net" by auto  | 
|
2403  | 
then show "eventually (\<lambda>x. f x < y) net"  | 
|
2404  | 
by (rule eventually_rev_mp) (rule eventually_mono[OF _ ev], auto)  | 
|
2405  | 
qed simp  | 
|
2406  | 
||
2407  | 
lemma Limsup_mono_all:  | 
|
| 43920 | 2408  | 
fixes f g :: "'a \<Rightarrow> ereal"  | 
| 41973 | 2409  | 
assumes "\<And>x. f x \<le> g x"  | 
2410  | 
shows "Limsup net f \<le> Limsup net g"  | 
|
2411  | 
using assms by (intro Limsup_mono always_eventually) auto  | 
|
2412  | 
||
2413  | 
lemma Limsup_eq:  | 
|
| 43920 | 2414  | 
fixes f g :: "'a \<Rightarrow> ereal"  | 
| 41973 | 2415  | 
assumes "eventually (\<lambda>x. f x = g x) net"  | 
2416  | 
shows "Limsup net f = Limsup net g"  | 
|
2417  | 
by (intro antisym Limsup_mono eventually_mono[OF _ assms]) auto  | 
|
2418  | 
||
2419  | 
abbreviation "liminf \<equiv> Liminf sequentially"  | 
|
2420  | 
||
2421  | 
abbreviation "limsup \<equiv> Limsup sequentially"  | 
|
2422  | 
||
2423  | 
lemma liminf_SUPR_INFI:  | 
|
| 43920 | 2424  | 
fixes f :: "nat \<Rightarrow> ereal"  | 
| 41973 | 2425  | 
  shows "liminf f = (SUP n. INF m:{n..}. f m)"
 | 
2426  | 
unfolding Liminf_Sup eventually_sequentially  | 
|
2427  | 
proof (safe intro!: antisym complete_lattice_class.Sup_least)  | 
|
2428  | 
  fix x assume *: "\<forall>y<x. \<exists>N. \<forall>n\<ge>N. y < f n" show "x \<le> (SUP n. INF m:{n..}. f m)"
 | 
|
| 43920 | 2429  | 
proof (rule ereal_le_ereal)  | 
| 41973 | 2430  | 
fix y assume "y < x"  | 
2431  | 
with * obtain N where "\<And>n. N \<le> n \<Longrightarrow> y < f n" by auto  | 
|
2432  | 
    then have "y \<le> (INF m:{N..}. f m)" by (force simp: le_INF_iff)
 | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
2433  | 
    also have "\<dots> \<le> (SUP n. INF m:{n..}. f m)" by (intro SUP_upper) auto
 | 
| 41973 | 2434  | 
    finally show "y \<le> (SUP n. INF m:{n..}. f m)" .
 | 
2435  | 
qed  | 
|
2436  | 
next  | 
|
2437  | 
  show "(SUP n. INF m:{n..}. f m) \<le> Sup {l. \<forall>y<l. \<exists>N. \<forall>n\<ge>N. y < f n}"
 | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
2438  | 
proof (unfold SUP_def, safe intro!: Sup_mono bexI)  | 
| 41973 | 2439  | 
    fix y n assume "y < INFI {n..} f"
 | 
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
2440  | 
from less_INF_D[OF this] show "\<exists>N. \<forall>n\<ge>N. y < f n" by (intro exI[of _ n]) auto  | 
| 41973 | 2441  | 
qed (rule order_refl)  | 
2442  | 
qed  | 
|
2443  | 
||
2444  | 
lemma tail_same_limsup:  | 
|
| 43920 | 2445  | 
fixes X Y :: "nat => ereal"  | 
| 41973 | 2446  | 
assumes "\<And>n. N \<le> n \<Longrightarrow> X n = Y n"  | 
2447  | 
shows "limsup X = limsup Y"  | 
|
2448  | 
using Limsup_eq[of X Y sequentially] eventually_sequentially assms by auto  | 
|
2449  | 
||
2450  | 
lemma tail_same_liminf:  | 
|
| 43920 | 2451  | 
fixes X Y :: "nat => ereal"  | 
| 41973 | 2452  | 
assumes "\<And>n. N \<le> n \<Longrightarrow> X n = Y n"  | 
2453  | 
shows "liminf X = liminf Y"  | 
|
2454  | 
using Liminf_eq[of X Y sequentially] eventually_sequentially assms by auto  | 
|
2455  | 
||
2456  | 
lemma liminf_mono:  | 
|
| 43920 | 2457  | 
fixes X Y :: "nat \<Rightarrow> ereal"  | 
| 41973 | 2458  | 
assumes "\<And>n. N \<le> n \<Longrightarrow> X n <= Y n"  | 
2459  | 
shows "liminf X \<le> liminf Y"  | 
|
2460  | 
using Liminf_mono[of X Y sequentially] eventually_sequentially assms by auto  | 
|
2461  | 
||
2462  | 
lemma limsup_mono:  | 
|
| 43920 | 2463  | 
fixes X Y :: "nat => ereal"  | 
| 41973 | 2464  | 
assumes "\<And>n. N \<le> n \<Longrightarrow> X n <= Y n"  | 
2465  | 
shows "limsup X \<le> limsup Y"  | 
|
2466  | 
using Limsup_mono[of X Y sequentially] eventually_sequentially assms by auto  | 
|
2467  | 
||
| 41978 | 2468  | 
lemma  | 
| 43920 | 2469  | 
fixes X :: "nat \<Rightarrow> ereal"  | 
2470  | 
shows ereal_incseq_uminus[simp]: "incseq (\<lambda>i. - X i) = decseq X"  | 
|
2471  | 
and ereal_decseq_uminus[simp]: "decseq (\<lambda>i. - X i) = incseq X"  | 
|
| 41978 | 2472  | 
unfolding incseq_def decseq_def by auto  | 
2473  | 
||
| 41973 | 2474  | 
lemma liminf_bounded:  | 
| 43920 | 2475  | 
fixes X Y :: "nat \<Rightarrow> ereal"  | 
| 41973 | 2476  | 
assumes "\<And>n. N \<le> n \<Longrightarrow> C \<le> X n"  | 
2477  | 
shows "C \<le> liminf X"  | 
|
2478  | 
using liminf_mono[of N "\<lambda>n. C" X] assms Liminf_const[of sequentially C] by simp  | 
|
2479  | 
||
2480  | 
lemma limsup_bounded:  | 
|
| 43920 | 2481  | 
fixes X Y :: "nat => ereal"  | 
| 41973 | 2482  | 
assumes "\<And>n. N \<le> n \<Longrightarrow> X n <= C"  | 
2483  | 
shows "limsup X \<le> C"  | 
|
2484  | 
using limsup_mono[of N X "\<lambda>n. C"] assms Limsup_const[of sequentially C] by simp  | 
|
2485  | 
||
2486  | 
lemma liminf_bounded_iff:  | 
|
| 43920 | 2487  | 
fixes x :: "nat \<Rightarrow> ereal"  | 
| 41973 | 2488  | 
shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)" (is "?lhs <-> ?rhs")  | 
2489  | 
proof safe  | 
|
2490  | 
fix B assume "B < C" "C \<le> liminf x"  | 
|
2491  | 
then have "B < liminf x" by auto  | 
|
2492  | 
  then obtain N where "B < (INF m:{N..}. x m)"
 | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
2493  | 
unfolding liminf_SUPR_INFI SUP_def less_Sup_iff by auto  | 
| 
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
2494  | 
from less_INF_D[OF this] show "\<exists>N. \<forall>n\<ge>N. B < x n" by auto  | 
| 41973 | 2495  | 
next  | 
2496  | 
assume *: "\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n"  | 
|
2497  | 
  { fix B assume "B<C"
 | 
|
2498  | 
then obtain N where "\<forall>n\<ge>N. B < x n" using `?rhs` by auto  | 
|
| 
44928
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
2499  | 
    hence "B \<le> (INF m:{N..}. x m)" by (intro INF_greatest) auto
 | 
| 
 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 
hoelzl 
parents: 
44918 
diff
changeset
 | 
2500  | 
also have "... \<le> liminf x" unfolding liminf_SUPR_INFI by (intro SUP_upper) simp  | 
| 41973 | 2501  | 
finally have "B \<le> liminf x" .  | 
2502  | 
} then show "?lhs" by (metis * leD liminf_bounded linorder_le_less_linear)  | 
|
2503  | 
qed  | 
|
2504  | 
||
2505  | 
lemma liminf_subseq_mono:  | 
|
| 43920 | 2506  | 
fixes X :: "nat \<Rightarrow> ereal"  | 
| 41973 | 2507  | 
assumes "subseq r"  | 
2508  | 
shows "liminf X \<le> liminf (X \<circ> r) "  | 
|
2509  | 
proof-  | 
|
2510  | 
  have "\<And>n. (INF m:{n..}. X m) \<le> (INF m:{n..}. (X \<circ> r) m)"
 | 
|
2511  | 
proof (safe intro!: INF_mono)  | 
|
2512  | 
    fix n m :: nat assume "n \<le> m" then show "\<exists>ma\<in>{n..}. X ma \<le> (X \<circ> r) m"
 | 
|
2513  | 
using seq_suble[OF `subseq r`, of m] by (intro bexI[of _ "r m"]) auto  | 
|
2514  | 
qed  | 
|
2515  | 
then show ?thesis by (auto intro!: SUP_mono simp: liminf_SUPR_INFI comp_def)  | 
|
2516  | 
qed  | 
|
2517  | 
||
| 43920 | 2518  | 
lemma ereal_real': assumes "\<bar>x\<bar> \<noteq> \<infinity>" shows "ereal (real x) = x"  | 
| 41976 | 2519  | 
using assms by auto  | 
| 41973 | 2520  | 
|
| 43920 | 2521  | 
lemma ereal_le_ereal_bounded:  | 
2522  | 
fixes x y z :: ereal  | 
|
| 41978 | 2523  | 
assumes "z \<le> y"  | 
2524  | 
assumes *: "\<And>B. z < B \<Longrightarrow> B < x \<Longrightarrow> B \<le> y"  | 
|
2525  | 
shows "x \<le> y"  | 
|
| 43920 | 2526  | 
proof (rule ereal_le_ereal)  | 
| 41978 | 2527  | 
fix B assume "B < x"  | 
2528  | 
show "B \<le> y"  | 
|
2529  | 
proof cases  | 
|
2530  | 
assume "z < B" from *[OF this `B < x`] show "B \<le> y" .  | 
|
| 41976 | 2531  | 
next  | 
| 41978 | 2532  | 
assume "\<not> z < B" with `z \<le> y` show "B \<le> y" by auto  | 
| 41976 | 2533  | 
qed  | 
| 41973 | 2534  | 
qed  | 
2535  | 
||
| 43920 | 2536  | 
lemma fixes x y :: ereal  | 
| 41978 | 2537  | 
  shows Sup_atMost[simp]: "Sup {.. y} = y"
 | 
2538  | 
    and Sup_lessThan[simp]: "Sup {..< y} = y"
 | 
|
2539  | 
    and Sup_atLeastAtMost[simp]: "x \<le> y \<Longrightarrow> Sup { x .. y} = y"
 | 
|
2540  | 
    and Sup_greaterThanAtMost[simp]: "x < y \<Longrightarrow> Sup { x <.. y} = y"
 | 
|
2541  | 
    and Sup_atLeastLessThan[simp]: "x < y \<Longrightarrow> Sup { x ..< y} = y"
 | 
|
| 43920 | 2542  | 
by (auto simp: Sup_ereal_def intro!: Least_equality  | 
2543  | 
intro: ereal_le_ereal ereal_le_ereal_bounded[of x])  | 
|
| 41978 | 2544  | 
|
2545  | 
lemma Sup_greaterThanlessThan[simp]:  | 
|
| 43920 | 2546  | 
  fixes x y :: ereal assumes "x < y" shows "Sup { x <..< y} = y"
 | 
2547  | 
unfolding Sup_ereal_def  | 
|
2548  | 
proof (intro Least_equality ereal_le_ereal_bounded[of _ _ y])  | 
|
| 41978 | 2549  | 
  fix z assume z: "\<forall>u\<in>{x<..<y}. u \<le> z"
 | 
| 43920 | 2550  | 
from ereal_dense[OF `x < y`] guess w .. note w = this  | 
| 41978 | 2551  | 
with z[THEN bspec, of w] show "x \<le> z" by auto  | 
2552  | 
qed auto  | 
|
2553  | 
||
| 43920 | 2554  | 
lemma real_ereal_id: "real o ereal = id"  | 
| 41973 | 2555  | 
proof-  | 
| 47082 | 2556  | 
  { fix x have "(real o ereal) x = id x" by auto }
 | 
2557  | 
then show ?thesis using ext by blast  | 
|
| 41973 | 2558  | 
qed  | 
2559  | 
||
| 43923 | 2560  | 
lemma open_image_ereal: "open(UNIV-{ \<infinity> , (-\<infinity> :: ereal)})"
 | 
| 43920 | 2561  | 
by (metis range_ereal open_ereal open_UNIV)  | 
| 41973 | 2562  | 
|
| 43920 | 2563  | 
lemma ereal_le_distrib:  | 
2564  | 
fixes a b c :: ereal shows "c * (a + b) \<le> c * a + c * b"  | 
|
2565  | 
by (cases rule: ereal3_cases[of a b c])  | 
|
| 41973 | 2566  | 
(auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)  | 
2567  | 
||
| 43920 | 2568  | 
lemma ereal_pos_distrib:  | 
2569  | 
fixes a b c :: ereal assumes "0 \<le> c" "c \<noteq> \<infinity>" shows "c * (a + b) = c * a + c * b"  | 
|
2570  | 
using assms by (cases rule: ereal3_cases[of a b c])  | 
|
| 41973 | 2571  | 
(auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)  | 
2572  | 
||
| 43920 | 2573  | 
lemma ereal_pos_le_distrib:  | 
2574  | 
fixes a b c :: ereal  | 
|
| 41973 | 2575  | 
assumes "c>=0"  | 
2576  | 
shows "c * (a + b) <= c * a + c * b"  | 
|
| 43920 | 2577  | 
using assms by (cases rule: ereal3_cases[of a b c])  | 
| 41973 | 2578  | 
(auto simp add: field_simps)  | 
2579  | 
||
| 43920 | 2580  | 
lemma ereal_max_mono:  | 
2581  | 
"[| (a::ereal) <= b; c <= d |] ==> max a c <= max b d"  | 
|
2582  | 
by (metis sup_ereal_def sup_mono)  | 
|
| 41973 | 2583  | 
|
2584  | 
||
| 43920 | 2585  | 
lemma ereal_max_least:  | 
2586  | 
"[| (a::ereal) <= x; c <= x |] ==> max a c <= x"  | 
|
2587  | 
by (metis sup_ereal_def sup_least)  | 
|
| 41973 | 2588  | 
|
| 43933 | 2589  | 
subsubsection {* Tests for code generator *}
 | 
2590  | 
||
2591  | 
(* A small list of simple arithmetic expressions *)  | 
|
2592  | 
||
2593  | 
value [code] "- \<infinity> :: ereal"  | 
|
2594  | 
value [code] "\<bar>-\<infinity>\<bar> :: ereal"  | 
|
2595  | 
value [code] "4 + 5 / 4 - ereal 2 :: ereal"  | 
|
2596  | 
value [code] "ereal 3 < \<infinity>"  | 
|
2597  | 
value [code] "real (\<infinity>::ereal) = 0"  | 
|
2598  | 
||
| 41973 | 2599  | 
end  |