| author | bulwahn | 
| Thu, 23 Sep 2010 14:50:14 +0200 | |
| changeset 39650 | 2a35950ec495 | 
| parent 39035 | 094848cf7ef3 | 
| child 41447 | 537b290bbe38 | 
| permissions | -rw-r--r-- | 
| 17618 | 1 | (* Title: HOL/Tools/cnf_funcs.ML | 
| 2 | Author: Alwen Tiu, QSL Team, LORIA (http://qsl.loria.fr) | |
| 29265 
5b4247055bd7
moved old add_term_vars, add_term_frees etc. to structure OldTerm;
 wenzelm parents: 
26341diff
changeset | 3 | Author: Tjark Weber, TU Muenchen | 
| 17618 | 4 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 5 | FIXME: major overlaps with the code in meson.ML | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 6 | |
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 7 | Functions and tactics to transform a formula into Conjunctive Normal | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 8 | Form (CNF). | 
| 24958 | 9 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 10 | A formula in CNF is of the following form: | 
| 17618 | 11 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 12 | (x11 | x12 | ... | x1n) & ... & (xm1 | xm2 | ... | xmk) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 13 | False | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 14 | True | 
| 17618 | 15 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 16 | where each xij is a literal (a positive or negative atomic Boolean | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 17 | term), i.e. the formula is a conjunction of disjunctions of literals, | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 18 | or "False", or "True". | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 19 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 20 | A (non-empty) disjunction of literals is referred to as "clause". | 
| 17618 | 21 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 22 | For the purpose of SAT proof reconstruction, we also make use of | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 23 | another representation of clauses, which we call the "raw clauses". | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 24 | Raw clauses are of the form | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 25 | |
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 26 | [..., x1', x2', ..., xn'] |- False , | 
| 17618 | 27 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 28 | where each xi is a literal, and each xi' is the negation normal form | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 29 | of ~xi. | 
| 19236 
150e8b0fb991
clauses now use (meta-)hyps instead of (meta-)implications; significant speedup
 webertj parents: 
17809diff
changeset | 30 | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 31 | Literals are successively removed from the hyps of raw clauses by | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32740diff
changeset | 32 | resolution during SAT proof reconstruction. | 
| 17618 | 33 | *) | 
| 34 | ||
| 35 | signature CNF = | |
| 36 | sig | |
| 32232 | 37 | val is_atom: term -> bool | 
| 38 | val is_literal: term -> bool | |
| 39 | val is_clause: term -> bool | |
| 40 | val clause_is_trivial: term -> bool | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 41 | |
| 32232 | 42 | val clause2raw_thm: thm -> thm | 
| 17618 | 43 | |
| 32232 | 44 | val weakening_tac: int -> tactic (* removes the first hypothesis of a subgoal *) | 
| 17618 | 45 | |
| 32232 | 46 | val make_cnf_thm: theory -> term -> thm | 
| 47 | val make_cnfx_thm: theory -> term -> thm | |
| 48 | val cnf_rewrite_tac: Proof.context -> int -> tactic (* converts all prems of a subgoal to CNF *) | |
| 49 | val cnfx_rewrite_tac: Proof.context -> int -> tactic | |
| 50 | (* converts all prems of a subgoal to (almost) definitional CNF *) | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 51 | end; | 
| 17618 | 52 | |
| 53 | structure cnf : CNF = | |
| 54 | struct | |
| 55 | ||
| 30607 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 56 | val clause2raw_notE      = @{lemma "[| P; ~P |] ==> False" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 57 | val clause2raw_not_disj  = @{lemma "[| ~P; ~Q |] ==> ~(P | Q)" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 58 | val clause2raw_not_not   = @{lemma "P ==> ~~P" by auto};
 | 
| 17618 | 59 | |
| 30607 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 60 | val iff_refl             = @{lemma "(P::bool) = P" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 61 | val iff_trans            = @{lemma "[| (P::bool) = Q; Q = R |] ==> P = R" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 62 | val conj_cong            = @{lemma "[| P = P'; Q = Q' |] ==> (P & Q) = (P' & Q')" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 63 | val disj_cong            = @{lemma "[| P = P'; Q = Q' |] ==> (P | Q) = (P' | Q')" by auto};
 | 
| 17618 | 64 | |
| 30607 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 65 | val make_nnf_imp         = @{lemma "[| (~P) = P'; Q = Q' |] ==> (P --> Q) = (P' | Q')" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 66 | val make_nnf_iff         = @{lemma "[| P = P'; (~P) = NP; Q = Q'; (~Q) = NQ |] ==> (P = Q) = ((P' | NQ) & (NP | Q'))" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 67 | val make_nnf_not_false   = @{lemma "(~False) = True" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 68 | val make_nnf_not_true    = @{lemma "(~True) = False" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 69 | val make_nnf_not_conj    = @{lemma "[| (~P) = P'; (~Q) = Q' |] ==> (~(P & Q)) = (P' | Q')" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 70 | val make_nnf_not_disj    = @{lemma "[| (~P) = P'; (~Q) = Q' |] ==> (~(P | Q)) = (P' & Q')" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 71 | val make_nnf_not_imp     = @{lemma "[| P = P'; (~Q) = Q' |] ==> (~(P --> Q)) = (P' & Q')" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 72 | val make_nnf_not_iff     = @{lemma "[| P = P'; (~P) = NP; Q = Q'; (~Q) = NQ |] ==> (~(P = Q)) = ((P' | Q') & (NP | NQ))" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 73 | val make_nnf_not_not     = @{lemma "P = P' ==> (~~P) = P'" by auto};
 | 
| 17618 | 74 | |
| 30607 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 75 | val simp_TF_conj_True_l  = @{lemma "[| P = True; Q = Q' |] ==> (P & Q) = Q'" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 76 | val simp_TF_conj_True_r  = @{lemma "[| P = P'; Q = True |] ==> (P & Q) = P'" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 77 | val simp_TF_conj_False_l = @{lemma "P = False ==> (P & Q) = False" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 78 | val simp_TF_conj_False_r = @{lemma "Q = False ==> (P & Q) = False" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 79 | val simp_TF_disj_True_l  = @{lemma "P = True ==> (P | Q) = True" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 80 | val simp_TF_disj_True_r  = @{lemma "Q = True ==> (P | Q) = True" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 81 | val simp_TF_disj_False_l = @{lemma "[| P = False; Q = Q' |] ==> (P | Q) = Q'" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 82 | val simp_TF_disj_False_r = @{lemma "[| P = P'; Q = False |] ==> (P | Q) = P'" by auto};
 | 
| 17618 | 83 | |
| 30607 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 84 | val make_cnf_disj_conj_l = @{lemma "[| (P | R) = PR; (Q | R) = QR |] ==> ((P & Q) | R) = (PR & QR)" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 85 | val make_cnf_disj_conj_r = @{lemma "[| (P | Q) = PQ; (P | R) = PR |] ==> (P | (Q & R)) = (PQ & PR)" by auto};
 | 
| 17618 | 86 | |
| 30607 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 87 | val make_cnfx_disj_ex_l  = @{lemma "((EX (x::bool). P x) | Q) = (EX x. P x | Q)" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 88 | val make_cnfx_disj_ex_r  = @{lemma "(P | (EX (x::bool). Q x)) = (EX x. P | Q x)" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 89 | val make_cnfx_newlit     = @{lemma "(P | Q) = (EX x. (P | x) & (Q | ~x))" by auto};
 | 
| 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 90 | val make_cnfx_ex_cong    = @{lemma "(ALL (x::bool). P x = Q x) ==> (EX x. P x) = (EX x. Q x)" by auto};
 | 
| 17618 | 91 | |
| 30607 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 92 | val weakening_thm        = @{lemma "[| P; Q |] ==> Q" by auto};
 | 
| 17618 | 93 | |
| 30607 
c3d1590debd8
eliminated global SIMPSET, CLASET etc. -- refer to explicit context;
 wenzelm parents: 
29265diff
changeset | 94 | val cnftac_eq_imp        = @{lemma "[| P = Q; P |] ==> Q" by auto};
 | 
| 17618 | 95 | |
| 38558 | 96 | fun is_atom (Const (@{const_name False}, _))                                           = false
 | 
| 97 |   | is_atom (Const (@{const_name True}, _))                                            = false
 | |
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 98 |   | is_atom (Const (@{const_name HOL.conj}, _) $ _ $ _)                                    = false
 | 
| 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 99 |   | is_atom (Const (@{const_name HOL.disj}, _) $ _ $ _)                                    = false
 | 
| 38786 
e46e7a9cb622
formerly unnamed infix impliciation now named HOL.implies
 haftmann parents: 
38558diff
changeset | 100 |   | is_atom (Const (@{const_name HOL.implies}, _) $ _ $ _)                                  = false
 | 
| 38864 
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
 haftmann parents: 
38795diff
changeset | 101 |   | is_atom (Const (@{const_name HOL.eq}, Type ("fun", @{typ bool} :: _)) $ _ $ _)       = false
 | 
| 38558 | 102 |   | is_atom (Const (@{const_name Not}, _) $ _)                                         = false
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 103 | | is_atom _ = true; | 
| 17618 | 104 | |
| 38558 | 105 | fun is_literal (Const (@{const_name Not}, _) $ x) = is_atom x
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 106 | | is_literal x = is_atom x; | 
| 17618 | 107 | |
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 108 | fun is_clause (Const (@{const_name HOL.disj}, _) $ x $ y) = is_clause x andalso is_clause y
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 109 | | is_clause x = is_literal x; | 
| 17618 | 110 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 111 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 112 | (* clause_is_trivial: a clause is trivially true if it contains both an atom *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 113 | (* and the atom's negation *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 114 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 115 | |
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 116 | (* Term.term -> bool *) | 
| 17618 | 117 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 118 | fun clause_is_trivial c = | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 119 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 120 | (* Term.term -> Term.term *) | 
| 38558 | 121 | 		fun dual (Const (@{const_name Not}, _) $ x) = x
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 122 | | dual x = HOLogic.Not $ x | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 123 | (* Term.term list -> bool *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 124 | fun has_duals [] = false | 
| 36692 
54b64d4ad524
farewell to old-style mem infixes -- type inference in situations with mem_int and mem_string should provide enough information to resolve the type of (op =)
 haftmann parents: 
36614diff
changeset | 125 | | has_duals (x::xs) = member (op =) xs (dual x) orelse has_duals xs | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 126 | in | 
| 24958 | 127 | has_duals (HOLogic.disjuncts c) | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 128 | end; | 
| 17618 | 129 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 130 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 131 | (* clause2raw_thm: translates a clause into a raw clause, i.e. *) | 
| 20440 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 132 | (* [...] |- x1 | ... | xn *) | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 133 | (* (where each xi is a literal) is translated to *) | 
| 20440 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 134 | (* [..., x1', ..., xn'] |- False , *) | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 135 | (* where each xi' is the negation normal form of ~xi *) | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 136 | (* ------------------------------------------------------------------------- *) | 
| 17618 | 137 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 138 | (* Thm.thm -> Thm.thm *) | 
| 17618 | 139 | |
| 20440 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 140 | fun clause2raw_thm clause = | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 141 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 142 | (* eliminates negated disjunctions from the i-th premise, possibly *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 143 | (* adding new premises, then continues with the (i+1)-th premise *) | 
| 20440 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 144 | (* int -> Thm.thm -> Thm.thm *) | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 145 | fun not_disj_to_prem i thm = | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 146 | if i > nprems_of thm then | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 147 | thm | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 148 | else | 
| 20440 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 149 | not_disj_to_prem (i+1) (Seq.hd (REPEAT_DETERM (rtac clause2raw_not_disj i) thm)) | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 150 | (* moves all premises to hyps, i.e. "[...] |- A1 ==> ... ==> An ==> B" *) | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 151 | (* becomes "[..., A1, ..., An] |- B" *) | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 152 | (* Thm.thm -> Thm.thm *) | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 153 | fun prems_to_hyps thm = | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 154 | fold (fn cprem => fn thm' => | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 155 | Thm.implies_elim thm' (Thm.assume cprem)) (cprems_of thm) thm | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 156 | in | 
| 20440 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 157 | (* [...] |- ~(x1 | ... | xn) ==> False *) | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 158 | (clause2raw_notE OF [clause]) | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 159 | (* [...] |- ~x1 ==> ... ==> ~xn ==> False *) | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 160 | |> not_disj_to_prem 1 | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 161 | (* [...] |- x1' ==> ... ==> xn' ==> False *) | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 162 | |> Seq.hd o TRYALL (rtac clause2raw_not_not) | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 163 | (* [..., x1', ..., xn'] |- False *) | 
| 
e6fe74eebda3
faster clause representation (again): full CNF formula as a hypothesis, instead of separate clauses
 webertj parents: 
19236diff
changeset | 164 | |> prems_to_hyps | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 165 | end; | 
| 17618 | 166 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 167 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 168 | (* inst_thm: instantiates a theorem with a list of terms *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 169 | (* ------------------------------------------------------------------------- *) | 
| 17618 | 170 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 171 | fun inst_thm thy ts thm = | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 172 | instantiate' [] (map (SOME o cterm_of thy) ts) thm; | 
| 17618 | 173 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 174 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 175 | (* Naive CNF transformation *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 176 | (* ------------------------------------------------------------------------- *) | 
| 17618 | 177 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 178 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 179 | (* make_nnf_thm: produces a theorem of the form t = t', where t' is the *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 180 | (* negation normal form (i.e. negation only occurs in front of atoms) *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 181 | (*      of t; implications ("-->") and equivalences ("=" on bool) are        *)
 | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 182 | (* eliminated (possibly causing an exponential blowup) *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 183 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 184 | |
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 185 | (* Theory.theory -> Term.term -> Thm.thm *) | 
| 17618 | 186 | |
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 187 | fun make_nnf_thm thy (Const (@{const_name HOL.conj}, _) $ x $ y) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 188 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 189 | val thm1 = make_nnf_thm thy x | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 190 | val thm2 = make_nnf_thm thy y | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 191 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 192 | conj_cong OF [thm1, thm2] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 193 | end | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 194 |   | make_nnf_thm thy (Const (@{const_name HOL.disj}, _) $ x $ y) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 195 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 196 | val thm1 = make_nnf_thm thy x | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 197 | val thm2 = make_nnf_thm thy y | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 198 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 199 | disj_cong OF [thm1, thm2] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 200 | end | 
| 38786 
e46e7a9cb622
formerly unnamed infix impliciation now named HOL.implies
 haftmann parents: 
38558diff
changeset | 201 |   | make_nnf_thm thy (Const (@{const_name HOL.implies}, _) $ x $ y) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 202 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 203 | val thm1 = make_nnf_thm thy (HOLogic.Not $ x) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 204 | val thm2 = make_nnf_thm thy y | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 205 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 206 | make_nnf_imp OF [thm1, thm2] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 207 | end | 
| 38864 
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
 haftmann parents: 
38795diff
changeset | 208 |   | make_nnf_thm thy (Const (@{const_name HOL.eq}, Type ("fun", @{typ bool} :: _)) $ x $ y) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 209 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 210 | val thm1 = make_nnf_thm thy x | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 211 | val thm2 = make_nnf_thm thy (HOLogic.Not $ x) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 212 | val thm3 = make_nnf_thm thy y | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 213 | val thm4 = make_nnf_thm thy (HOLogic.Not $ y) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 214 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 215 | make_nnf_iff OF [thm1, thm2, thm3, thm4] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 216 | end | 
| 38558 | 217 |   | make_nnf_thm thy (Const (@{const_name Not}, _) $ Const (@{const_name False}, _)) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 218 | make_nnf_not_false | 
| 38558 | 219 |   | make_nnf_thm thy (Const (@{const_name Not}, _) $ Const (@{const_name True}, _)) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 220 | make_nnf_not_true | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 221 |   | make_nnf_thm thy (Const (@{const_name Not}, _) $ (Const (@{const_name HOL.conj}, _) $ x $ y)) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 222 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 223 | val thm1 = make_nnf_thm thy (HOLogic.Not $ x) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 224 | val thm2 = make_nnf_thm thy (HOLogic.Not $ y) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 225 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 226 | make_nnf_not_conj OF [thm1, thm2] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 227 | end | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 228 |   | make_nnf_thm thy (Const (@{const_name Not}, _) $ (Const (@{const_name HOL.disj}, _) $ x $ y)) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 229 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 230 | val thm1 = make_nnf_thm thy (HOLogic.Not $ x) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 231 | val thm2 = make_nnf_thm thy (HOLogic.Not $ y) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 232 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 233 | make_nnf_not_disj OF [thm1, thm2] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 234 | end | 
| 38786 
e46e7a9cb622
formerly unnamed infix impliciation now named HOL.implies
 haftmann parents: 
38558diff
changeset | 235 |   | make_nnf_thm thy (Const (@{const_name Not}, _) $ (Const (@{const_name HOL.implies}, _) $ x $ y)) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 236 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 237 | val thm1 = make_nnf_thm thy x | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 238 | val thm2 = make_nnf_thm thy (HOLogic.Not $ y) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 239 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 240 | make_nnf_not_imp OF [thm1, thm2] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 241 | end | 
| 38864 
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
 haftmann parents: 
38795diff
changeset | 242 |   | make_nnf_thm thy (Const (@{const_name Not}, _) $ (Const (@{const_name HOL.eq}, Type ("fun", @{typ bool} :: _)) $ x $ y)) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 243 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 244 | val thm1 = make_nnf_thm thy x | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 245 | val thm2 = make_nnf_thm thy (HOLogic.Not $ x) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 246 | val thm3 = make_nnf_thm thy y | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 247 | val thm4 = make_nnf_thm thy (HOLogic.Not $ y) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 248 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 249 | make_nnf_not_iff OF [thm1, thm2, thm3, thm4] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 250 | end | 
| 38558 | 251 |   | make_nnf_thm thy (Const (@{const_name Not}, _) $ (Const (@{const_name Not}, _) $ x)) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 252 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 253 | val thm1 = make_nnf_thm thy x | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 254 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 255 | make_nnf_not_not OF [thm1] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 256 | end | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 257 | | make_nnf_thm thy t = | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 258 | inst_thm thy [t] iff_refl; | 
| 17618 | 259 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 260 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 261 | (* simp_True_False_thm: produces a theorem t = t', where t' is equivalent to *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 262 | (* t, but simplified wrt. the following theorems: *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 263 | (* (True & x) = x *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 264 | (* (x & True) = x *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 265 | (* (False & x) = False *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 266 | (* (x & False) = False *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 267 | (* (True | x) = True *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 268 | (* (x | True) = True *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 269 | (* (False | x) = x *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 270 | (* (x | False) = x *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 271 | (* No simplification is performed below connectives other than & and |. *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 272 | (* Optimization: The right-hand side of a conjunction (disjunction) is *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 273 | (* simplified only if the left-hand side does not simplify to False *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 274 | (* (True, respectively). *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 275 | (* ------------------------------------------------------------------------- *) | 
| 17618 | 276 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 277 | (* Theory.theory -> Term.term -> Thm.thm *) | 
| 17618 | 278 | |
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 279 | fun simp_True_False_thm thy (Const (@{const_name HOL.conj}, _) $ x $ y) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 280 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 281 | val thm1 = simp_True_False_thm thy x | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 282 | val x' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm1 | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 283 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 284 | if x' = HOLogic.false_const then | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 285 | simp_TF_conj_False_l OF [thm1] (* (x & y) = False *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 286 | else | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 287 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 288 | val thm2 = simp_True_False_thm thy y | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 289 | val y' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm2 | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 290 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 291 | if x' = HOLogic.true_const then | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 292 | simp_TF_conj_True_l OF [thm1, thm2] (* (x & y) = y' *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 293 | else if y' = HOLogic.false_const then | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 294 | simp_TF_conj_False_r OF [thm2] (* (x & y) = False *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 295 | else if y' = HOLogic.true_const then | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 296 | simp_TF_conj_True_r OF [thm1, thm2] (* (x & y) = x' *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 297 | else | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 298 | conj_cong OF [thm1, thm2] (* (x & y) = (x' & y') *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 299 | end | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 300 | end | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 301 |   | simp_True_False_thm thy (Const (@{const_name HOL.disj}, _) $ x $ y) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 302 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 303 | val thm1 = simp_True_False_thm thy x | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 304 | val x' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm1 | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 305 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 306 | if x' = HOLogic.true_const then | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 307 | simp_TF_disj_True_l OF [thm1] (* (x | y) = True *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 308 | else | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 309 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 310 | val thm2 = simp_True_False_thm thy y | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 311 | val y' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm2 | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 312 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 313 | if x' = HOLogic.false_const then | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 314 | simp_TF_disj_False_l OF [thm1, thm2] (* (x | y) = y' *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 315 | else if y' = HOLogic.true_const then | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 316 | simp_TF_disj_True_r OF [thm2] (* (x | y) = True *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 317 | else if y' = HOLogic.false_const then | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 318 | simp_TF_disj_False_r OF [thm1, thm2] (* (x | y) = x' *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 319 | else | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 320 | disj_cong OF [thm1, thm2] (* (x | y) = (x' | y') *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 321 | end | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 322 | end | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 323 | | simp_True_False_thm thy t = | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 324 | inst_thm thy [t] iff_refl; (* t = t *) | 
| 17618 | 325 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 326 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 327 | (* make_cnf_thm: given any HOL term 't', produces a theorem t = t', where t' *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 328 | (* is in conjunction normal form. May cause an exponential blowup *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 329 | (* in the length of the term. *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 330 | (* ------------------------------------------------------------------------- *) | 
| 17618 | 331 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 332 | (* Theory.theory -> Term.term -> Thm.thm *) | 
| 17618 | 333 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 334 | fun make_cnf_thm thy t = | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 335 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 336 | (* Term.term -> Thm.thm *) | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 337 | 	fun make_cnf_thm_from_nnf (Const (@{const_name HOL.conj}, _) $ x $ y) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 338 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 339 | val thm1 = make_cnf_thm_from_nnf x | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 340 | val thm2 = make_cnf_thm_from_nnf y | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 341 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 342 | conj_cong OF [thm1, thm2] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 343 | end | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 344 | 	  | make_cnf_thm_from_nnf (Const (@{const_name HOL.disj}, _) $ x $ y) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 345 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 346 | (* produces a theorem "(x' | y') = t'", where x', y', and t' are in CNF *) | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 347 | 			fun make_cnf_disj_thm (Const (@{const_name HOL.conj}, _) $ x1 $ x2) y' =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 348 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 349 | val thm1 = make_cnf_disj_thm x1 y' | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 350 | val thm2 = make_cnf_disj_thm x2 y' | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 351 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 352 | make_cnf_disj_conj_l OF [thm1, thm2] (* ((x1 & x2) | y') = ((x1 | y')' & (x2 | y')') *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 353 | end | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 354 | 			  | make_cnf_disj_thm x' (Const (@{const_name HOL.conj}, _) $ y1 $ y2) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 355 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 356 | val thm1 = make_cnf_disj_thm x' y1 | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 357 | val thm2 = make_cnf_disj_thm x' y2 | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 358 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 359 | make_cnf_disj_conj_r OF [thm1, thm2] (* (x' | (y1 & y2)) = ((x' | y1)' & (x' | y2)') *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 360 | end | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 361 | | make_cnf_disj_thm x' y' = | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 362 | inst_thm thy [HOLogic.mk_disj (x', y')] iff_refl (* (x' | y') = (x' | y') *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 363 | val thm1 = make_cnf_thm_from_nnf x | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 364 | val thm2 = make_cnf_thm_from_nnf y | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 365 | val x' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm1 | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 366 | val y' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm2 | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 367 | val disj_thm = disj_cong OF [thm1, thm2] (* (x | y) = (x' | y') *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 368 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 369 | iff_trans OF [disj_thm, make_cnf_disj_thm x' y'] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 370 | end | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 371 | | make_cnf_thm_from_nnf t = | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 372 | inst_thm thy [t] iff_refl | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 373 | (* convert 't' to NNF first *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 374 | val nnf_thm = make_nnf_thm thy t | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 375 | val nnf = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) nnf_thm | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 376 | (* then simplify wrt. True/False (this should preserve NNF) *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 377 | val simp_thm = simp_True_False_thm thy nnf | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 378 | val simp = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) simp_thm | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 379 | (* finally, convert to CNF (this should preserve the simplification) *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 380 | val cnf_thm = make_cnf_thm_from_nnf simp | 
| 17618 | 381 | in | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 382 | iff_trans OF [iff_trans OF [nnf_thm, simp_thm], cnf_thm] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 383 | end; | 
| 17618 | 384 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 385 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 386 | (* CNF transformation by introducing new literals *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 387 | (* ------------------------------------------------------------------------- *) | 
| 17618 | 388 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 389 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 390 | (* make_cnfx_thm: given any HOL term 't', produces a theorem t = t', where *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 391 | (* t' is almost in conjunction normal form, except that conjunctions *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 392 | (* and existential quantifiers may be nested. (Use e.g. 'REPEAT_DETERM *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 393 | (* (etac exE i ORELSE etac conjE i)' afterwards to normalize.) May *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 394 | (* introduce new (existentially bound) literals. Note: the current *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 395 | (* implementation calls 'make_nnf_thm', causing an exponential blowup *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 396 | (* in the case of nested equivalences. *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 397 | (* ------------------------------------------------------------------------- *) | 
| 17618 | 398 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 399 | (* Theory.theory -> Term.term -> Thm.thm *) | 
| 17618 | 400 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 401 | fun make_cnfx_thm thy t = | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 402 | let | 
| 32740 | 403 | val var_id = Unsynchronized.ref 0 (* properly initialized below *) | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 404 | fun new_free () = | 
| 32740 | 405 | 		Free ("cnfx_" ^ string_of_int (Unsynchronized.inc var_id), HOLogic.boolT)
 | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 406 | 	fun make_cnfx_thm_from_nnf (Const (@{const_name HOL.conj}, _) $ x $ y) : thm =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 407 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 408 | val thm1 = make_cnfx_thm_from_nnf x | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 409 | val thm2 = make_cnfx_thm_from_nnf y | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 410 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 411 | conj_cong OF [thm1, thm2] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 412 | end | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 413 | 	  | make_cnfx_thm_from_nnf (Const (@{const_name HOL.disj}, _) $ x $ y) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 414 | if is_clause x andalso is_clause y then | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 415 | inst_thm thy [HOLogic.mk_disj (x, y)] iff_refl | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 416 | else if is_literal y orelse is_literal x then let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 417 | (* produces a theorem "(x' | y') = t'", where x', y', and t' are *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 418 | (* almost in CNF, and x' or y' is a literal *) | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 419 | 			fun make_cnfx_disj_thm (Const (@{const_name HOL.conj}, _) $ x1 $ x2) y' =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 420 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 421 | val thm1 = make_cnfx_disj_thm x1 y' | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 422 | val thm2 = make_cnfx_disj_thm x2 y' | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 423 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 424 | make_cnf_disj_conj_l OF [thm1, thm2] (* ((x1 & x2) | y') = ((x1 | y')' & (x2 | y')') *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 425 | end | 
| 38795 
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
 haftmann parents: 
38786diff
changeset | 426 | 			  | make_cnfx_disj_thm x' (Const (@{const_name HOL.conj}, _) $ y1 $ y2) =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 427 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 428 | val thm1 = make_cnfx_disj_thm x' y1 | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 429 | val thm2 = make_cnfx_disj_thm x' y2 | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 430 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 431 | make_cnf_disj_conj_r OF [thm1, thm2] (* (x' | (y1 & y2)) = ((x' | y1)' & (x' | y2)') *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 432 | end | 
| 39035 
094848cf7ef3
make definitional CNF translation code more robust in the presence of existential quantifiers in the "literals"
 blanchet parents: 
38864diff
changeset | 433 | 			  | make_cnfx_disj_thm (@{term "Ex::(bool => bool) => bool"} $ x') y' =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 434 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 435 | val thm1 = inst_thm thy [x', y'] make_cnfx_disj_ex_l (* ((Ex x') | y') = (Ex (x' | y')) *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 436 | val var = new_free () | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 437 | val thm2 = make_cnfx_disj_thm (betapply (x', var)) y' (* (x' | y') = body' *) | 
| 36945 | 438 | val thm3 = Thm.forall_intr (cterm_of thy var) thm2 (* !!v. (x' | y') = body' *) | 
| 439 | val thm4 = Thm.strip_shyps (thm3 COMP allI) (* ALL v. (x' | y') = body' *) | |
| 440 | val thm5 = Thm.strip_shyps (thm4 RS make_cnfx_ex_cong) (* (EX v. (x' | y')) = (EX v. body') *) | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 441 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 442 | iff_trans OF [thm1, thm5] (* ((Ex x') | y') = (Ex v. body') *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 443 | end | 
| 39035 
094848cf7ef3
make definitional CNF translation code more robust in the presence of existential quantifiers in the "literals"
 blanchet parents: 
38864diff
changeset | 444 | 			  | make_cnfx_disj_thm x' (@{term "Ex::(bool => bool) => bool"} $ y') =
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 445 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 446 | val thm1 = inst_thm thy [x', y'] make_cnfx_disj_ex_r (* (x' | (Ex y')) = (Ex (x' | y')) *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 447 | val var = new_free () | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 448 | val thm2 = make_cnfx_disj_thm x' (betapply (y', var)) (* (x' | y') = body' *) | 
| 36945 | 449 | val thm3 = Thm.forall_intr (cterm_of thy var) thm2 (* !!v. (x' | y') = body' *) | 
| 450 | val thm4 = Thm.strip_shyps (thm3 COMP allI) (* ALL v. (x' | y') = body' *) | |
| 451 | val thm5 = Thm.strip_shyps (thm4 RS make_cnfx_ex_cong) (* (EX v. (x' | y')) = (EX v. body') *) | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 452 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 453 | iff_trans OF [thm1, thm5] (* (x' | (Ex y')) = (EX v. body') *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 454 | end | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 455 | | make_cnfx_disj_thm x' y' = | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 456 | inst_thm thy [HOLogic.mk_disj (x', y')] iff_refl (* (x' | y') = (x' | y') *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 457 | val thm1 = make_cnfx_thm_from_nnf x | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 458 | val thm2 = make_cnfx_thm_from_nnf y | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 459 | val x' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm1 | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 460 | val y' = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) thm2 | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 461 | val disj_thm = disj_cong OF [thm1, thm2] (* (x | y) = (x' | y') *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 462 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 463 | iff_trans OF [disj_thm, make_cnfx_disj_thm x' y'] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 464 | end else let (* neither 'x' nor 'y' is a literal: introduce a fresh variable *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 465 | val thm1 = inst_thm thy [x, y] make_cnfx_newlit (* (x | y) = EX v. (x | v) & (y | ~v) *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 466 | val var = new_free () | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 467 | val body = HOLogic.mk_conj (HOLogic.mk_disj (x, var), HOLogic.mk_disj (y, HOLogic.Not $ var)) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 468 | val thm2 = make_cnfx_thm_from_nnf body (* (x | v) & (y | ~v) = body' *) | 
| 36945 | 469 | val thm3 = Thm.forall_intr (cterm_of thy var) thm2 (* !!v. (x | v) & (y | ~v) = body' *) | 
| 470 | val thm4 = Thm.strip_shyps (thm3 COMP allI) (* ALL v. (x | v) & (y | ~v) = body' *) | |
| 36614 
b6c031ad3690
minor tuning of Thm.strip_shyps -- no longer pervasive;
 wenzelm parents: 
33035diff
changeset | 471 | val thm5 = Thm.strip_shyps (thm4 RS make_cnfx_ex_cong) (* (EX v. (x | v) & (y | ~v)) = (EX v. body') *) | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 472 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 473 | iff_trans OF [thm1, thm5] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 474 | end | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 475 | | make_cnfx_thm_from_nnf t = | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 476 | inst_thm thy [t] iff_refl | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 477 | (* convert 't' to NNF first *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 478 | val nnf_thm = make_nnf_thm thy t | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 479 | val nnf = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) nnf_thm | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 480 | (* then simplify wrt. True/False (this should preserve NNF) *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 481 | val simp_thm = simp_True_False_thm thy nnf | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 482 | val simp = (snd o HOLogic.dest_eq o HOLogic.dest_Trueprop o prop_of) simp_thm | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 483 | (* initialize var_id, in case the term already contains variables of the form "cnfx_<int>" *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 484 | val _ = (var_id := fold (fn free => fn max => | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 485 | let | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 486 | val (name, _) = dest_Free free | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 487 | val idx = if String.isPrefix "cnfx_" name then | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 488 | (Int.fromString o String.extract) (name, String.size "cnfx_", NONE) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 489 | else | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 490 | NONE | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 491 | in | 
| 33035 | 492 | Int.max (max, the_default 0 idx) | 
| 29265 
5b4247055bd7
moved old add_term_vars, add_term_frees etc. to structure OldTerm;
 wenzelm parents: 
26341diff
changeset | 493 | end) (OldTerm.term_frees simp) 0) | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 494 | (* finally, convert to definitional CNF (this should preserve the simplification) *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 495 | val cnfx_thm = make_cnfx_thm_from_nnf simp | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 496 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 497 | iff_trans OF [iff_trans OF [nnf_thm, simp_thm], cnfx_thm] | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 498 | end; | 
| 17618 | 499 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 500 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 501 | (* Tactics *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 502 | (* ------------------------------------------------------------------------- *) | 
| 17618 | 503 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 504 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 505 | (* weakening_tac: removes the first hypothesis of the 'i'-th subgoal *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 506 | (* ------------------------------------------------------------------------- *) | 
| 17618 | 507 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 508 | fun weakening_tac i = | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 509 | dtac weakening_thm i THEN atac (i+1); | 
| 17618 | 510 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 511 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 512 | (* cnf_rewrite_tac: converts all premises of the 'i'-th subgoal to CNF *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 513 | (* (possibly causing an exponential blowup in the length of each *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 514 | (* premise) *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 515 | (* ------------------------------------------------------------------------- *) | 
| 17618 | 516 | |
| 32232 | 517 | fun cnf_rewrite_tac ctxt i = | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 518 | (* cut the CNF formulas as new premises *) | 
| 32283 | 519 | 	Subgoal.FOCUS (fn {prems, ...} =>
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 520 | let | 
| 32232 | 521 | val thy = ProofContext.theory_of ctxt | 
| 522 | val cnf_thms = map (make_cnf_thm thy o HOLogic.dest_Trueprop o Thm.prop_of) prems | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 523 | val cut_thms = map (fn (th, pr) => cnftac_eq_imp OF [th, pr]) (cnf_thms ~~ prems) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 524 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 525 | cut_facts_tac cut_thms 1 | 
| 32232 | 526 | end) ctxt i | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 527 | (* remove the original premises *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 528 | THEN SELECT_GOAL (fn thm => | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 529 | let | 
| 21576 | 530 | val n = Logic.count_prems ((Term.strip_all_body o fst o Logic.dest_implies o prop_of) thm) | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 531 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 532 | PRIMITIVE (funpow (n div 2) (Seq.hd o weakening_tac 1)) thm | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 533 | end) i; | 
| 17618 | 534 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 535 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 536 | (* cnfx_rewrite_tac: converts all premises of the 'i'-th subgoal to CNF *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 537 | (* (possibly introducing new literals) *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 538 | (* ------------------------------------------------------------------------- *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 539 | |
| 32232 | 540 | fun cnfx_rewrite_tac ctxt i = | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 541 | (* cut the CNF formulas as new premises *) | 
| 32283 | 542 | 	Subgoal.FOCUS (fn {prems, ...} =>
 | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 543 | let | 
| 32232 | 544 | val thy = ProofContext.theory_of ctxt; | 
| 545 | val cnfx_thms = map (make_cnfx_thm thy o HOLogic.dest_Trueprop o prop_of) prems | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 546 | val cut_thms = map (fn (th, pr) => cnftac_eq_imp OF [th, pr]) (cnfx_thms ~~ prems) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 547 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 548 | cut_facts_tac cut_thms 1 | 
| 32232 | 549 | end) ctxt i | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 550 | (* remove the original premises *) | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 551 | THEN SELECT_GOAL (fn thm => | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 552 | let | 
| 21576 | 553 | val n = Logic.count_prems ((Term.strip_all_body o fst o Logic.dest_implies o prop_of) thm) | 
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 554 | in | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 555 | PRIMITIVE (funpow (n div 2) (Seq.hd o weakening_tac 1)) thm | 
| 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 556 | end) i; | 
| 17618 | 557 | |
| 17809 
195045659c06
Tactics sat and satx reimplemented, several improvements
 webertj parents: 
17618diff
changeset | 558 | end; (* of structure *) |