| author | wenzelm | 
| Fri, 05 Jul 2024 12:53:45 +0200 | |
| changeset 80509 | 2a9abd6a164e | 
| parent 80090 | 646cd337bb08 | 
| child 81874 | 067462a6a652 | 
| permissions | -rw-r--r-- | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1 | section \<open>Cauchy's Integral Formula\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2 | theory Cauchy_Integral_Formula | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 3 | imports Winding_Numbers | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 4 | begin | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 5 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 6 | subsection\<open>Proof\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 7 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 8 | lemma Cauchy_integral_formula_weak: | 
| 72266 | 9 | assumes S: "convex S" and "finite k" and conf: "continuous_on S f" | 
| 10 | and fcd: "(\<And>x. x \<in> interior S - k \<Longrightarrow> f field_differentiable at x)" | |
| 11 | and z: "z \<in> interior S - k" and vpg: "valid_path \<gamma>" | |
| 12 |         and pasz: "path_image \<gamma> \<subseteq> S - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
 | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 13 | shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 14 | proof - | 
| 72266 | 15 | let ?fz = "\<lambda>w. (f w - f z)/(w - z)" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 16 | obtain f' where f': "(f has_field_derivative f') (at z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 17 | using fcd [OF z] by (auto simp: field_differentiable_def) | 
| 72266 | 18 | have pas: "path_image \<gamma> \<subseteq> S" and znotin: "z \<notin> path_image \<gamma>" using pasz by blast+ | 
| 19 | have c: "continuous (at x within S) (\<lambda>w. if w = z then f' else (f w - f z) / (w - z))" if "x \<in> S" for x | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 20 | proof (cases "x = z") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 21 | case True then show ?thesis | 
| 72266 | 22 | using LIM_equal [of "z" ?fz "\<lambda>w. if w = z then f' else ?fz w"] has_field_derivativeD [OF f'] | 
| 23 | by (force simp add: continuous_within Lim_at_imp_Lim_at_within) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 24 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 25 | case False | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 26 | then have dxz: "dist x z > 0" by auto | 
| 72266 | 27 | have cf: "continuous (at x within S) f" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 28 | using conf continuous_on_eq_continuous_within that by blast | 
| 72266 | 29 | have "continuous (at x within S) (\<lambda>w. (f w - f z) / (w - z))" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 30 | by (rule cf continuous_intros | simp add: False)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 31 | then show ?thesis | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 32 | using continuous_transform_within [OF _ dxz that] by (force simp: dist_commute) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 33 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 34 | have fink': "finite (insert z k)" using \<open>finite k\<close> by blast | 
| 72266 | 35 | have *: "((\<lambda>w. if w = z then f' else ?fz w) has_contour_integral 0) \<gamma>" | 
| 36 | proof (rule Cauchy_theorem_convex [OF _ S fink' _ vpg pas loop]) | |
| 37 | show "(\<lambda>w. if w = z then f' else ?fz w) field_differentiable at w" | |
| 38 | if "w \<in> interior S - insert z k" for w | |
| 39 | proof (rule field_differentiable_transform_within) | |
| 40 | show "(\<lambda>w. ?fz w) field_differentiable at w" | |
| 41 | using that by (intro derivative_intros fcd; simp) | |
| 42 | qed (use that in \<open>auto simp add: dist_pos_lt dist_commute\<close>) | |
| 43 | qed (use c in \<open>force simp: continuous_on_eq_continuous_within\<close>) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 44 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 45 | apply (rule has_contour_integral_eq) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 46 | using znotin has_contour_integral_add [OF has_contour_integral_lmul [OF has_contour_integral_winding_number [OF vpg znotin], of "f z"] *] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 47 | apply (auto simp: ac_simps divide_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 48 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 49 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 50 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 51 | theorem Cauchy_integral_formula_convex_simple: | 
| 72266 | 52 |   assumes "convex S" and holf: "f holomorphic_on S" and "z \<in> interior S" "valid_path \<gamma>" "path_image \<gamma> \<subseteq> S - {z}"
 | 
| 53 | "pathfinish \<gamma> = pathstart \<gamma>" | |
| 54 | shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>" | |
| 55 | proof - | |
| 56 | have "\<And>x. x \<in> interior S \<Longrightarrow> f field_differentiable at x" | |
| 57 | using holf at_within_interior holomorphic_onD interior_subset by fastforce | |
| 58 | then show ?thesis | |
| 59 | using assms | |
| 60 |     by (intro Cauchy_integral_formula_weak [where k = "{}"]) (auto simp: holomorphic_on_imp_continuous_on)
 | |
| 61 | qed | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 62 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 63 | text\<open> Hence the Cauchy formula for points inside a circle.\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 64 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 65 | theorem Cauchy_integral_circlepath: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 66 | assumes contf: "continuous_on (cball z r) f" and holf: "f holomorphic_on (ball z r)" and wz: "norm(w - z) < r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 67 | shows "((\<lambda>u. f u/(u - w)) has_contour_integral (2 * of_real pi * \<i> * f w)) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 68 | (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 69 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 70 | have "r > 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 71 | using assms le_less_trans norm_ge_zero by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 72 | have "((\<lambda>u. f u / (u - w)) has_contour_integral (2 * pi) * \<i> * winding_number (circlepath z r) w * f w) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 73 | (circlepath z r)" | 
| 72266 | 74 |   proof (rule Cauchy_integral_formula_weak [where S = "cball z r" and k = "{}"])
 | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 75 |     show "\<And>x. x \<in> interior (cball z r) - {} \<Longrightarrow>
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 76 | f field_differentiable at x" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 77 | using holf holomorphic_on_imp_differentiable_at by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 78 | have "w \<notin> sphere z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 79 | by simp (metis dist_commute dist_norm not_le order_refl wz) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 80 |     then show "path_image (circlepath z r) \<subseteq> cball z r - {w}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 81 | using \<open>r > 0\<close> by (auto simp add: cball_def sphere_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 82 | qed (use wz in \<open>simp_all add: dist_norm norm_minus_commute contf\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 83 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 84 | by (simp add: winding_number_circlepath assms) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 85 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 86 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 87 | corollary\<^marker>\<open>tag unimportant\<close> Cauchy_integral_circlepath_simple: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 88 | assumes "f holomorphic_on cball z r" "norm(w - z) < r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 89 | shows "((\<lambda>u. f u/(u - w)) has_contour_integral (2 * of_real pi * \<i> * f w)) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 90 | (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 91 | using assms by (force simp: holomorphic_on_imp_continuous_on holomorphic_on_subset Cauchy_integral_circlepath) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 92 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 93 | subsection\<^marker>\<open>tag unimportant\<close> \<open>General stepping result for derivative formulas\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 94 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 95 | lemma Cauchy_next_derivative: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 96 | assumes "continuous_on (path_image \<gamma>) f'" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 97 |       and leB: "\<And>t. t \<in> {0..1} \<Longrightarrow> norm (vector_derivative \<gamma> (at t)) \<le> B"
 | 
| 72266 | 98 | and int: "\<And>w. w \<in> S - path_image \<gamma> \<Longrightarrow> ((\<lambda>u. f' u / (u - w)^k) has_contour_integral f w) \<gamma>" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 99 | and k: "k \<noteq> 0" | 
| 72266 | 100 | and "open S" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 101 | and \<gamma>: "valid_path \<gamma>" | 
| 72266 | 102 | and w: "w \<in> S - path_image \<gamma>" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 103 | shows "(\<lambda>u. f' u / (u - w)^(Suc k)) contour_integrable_on \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 104 | and "(f has_field_derivative (k * contour_integral \<gamma> (\<lambda>u. f' u/(u - w)^(Suc k)))) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 105 | (at w)" (is "?thes2") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 106 | proof - | 
| 72266 | 107 | have "open (S - path_image \<gamma>)" using \<open>open S\<close> closed_valid_path_image \<gamma> by blast | 
| 108 | then obtain d where "d>0" and d: "ball w d \<subseteq> S - path_image \<gamma>" using w | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 109 | using open_contains_ball by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 110 | have [simp]: "\<And>n. cmod (1 + of_nat n) = 1 + of_nat n" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 111 | by (metis norm_of_nat of_nat_Suc) | 
| 80090 | 112 | have cint: "(\<lambda>z. (f' z / (z - x) ^ k - f' z / (z - w) ^ k) / (x * k - w * k)) contour_integrable_on \<gamma>" | 
| 113 | if "x \<noteq> w" "cmod (x - w) < d" for x | |
| 114 | proof - | |
| 115 | have "x \<in> S - path_image \<gamma>" | |
| 116 | by (metis d dist_commute dist_norm mem_ball subsetD that(2)) | |
| 117 | then show ?thesis | |
| 118 | using contour_integrable_diff contour_integrable_div contour_integrable_on_def int w | |
| 119 | by meson | |
| 120 | qed | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 121 | have 1: "\<forall>\<^sub>F n in at w. (\<lambda>x. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 122 | contour_integrable_on \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 123 | unfolding eventually_at | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 124 | apply (rule_tac x=d in exI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 125 | apply (simp add: \<open>d > 0\<close> dist_norm field_simps cint) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 126 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 127 | have bim_g: "bounded (image f' (path_image \<gamma>))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 128 | by (simp add: compact_imp_bounded compact_continuous_image compact_valid_path_image assms) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 129 | then obtain C where "C > 0" and C: "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cmod (f' (\<gamma> x)) \<le> C" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 130 | by (force simp: bounded_pos path_image_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 131 | have twom: "\<forall>\<^sub>F n in at w. | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 132 | \<forall>x\<in>path_image \<gamma>. | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 133 | cmod ((inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / k - inverse (x - w) ^ Suc k) < e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 134 | if "0 < e" for e | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 135 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 136 | have *: "cmod ((inverse (x - u) ^ k - inverse (x - w) ^ k) / ((u - w) * k) - inverse (x - w) ^ Suc k) < e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 137 | if x: "x \<in> path_image \<gamma>" and "u \<noteq> w" and uwd: "cmod (u - w) < d/2" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 138 | and uw_less: "cmod (u - w) < e * (d/2) ^ (k+2) / (1 + real k)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 139 | for u x | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 140 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 141 | define ff where [abs_def]: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 142 | "ff n w = | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 143 | (if n = 0 then inverse(x - w)^k | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 144 | else if n = 1 then k / (x - w)^(Suc k) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 145 | else (k * of_real(Suc k)) / (x - w)^(k + 2))" for n :: nat and w | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 146 | have km1: "\<And>z::complex. z \<noteq> 0 \<Longrightarrow> z ^ (k - Suc 0) = z ^ k / z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 147 | by (simp add: field_simps) (metis Suc_pred \<open>k \<noteq> 0\<close> neq0_conv power_Suc) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 148 | have ff1: "(ff i has_field_derivative ff (Suc i) z) (at z within ball w (d/2))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 149 | if "z \<in> ball w (d/2)" "i \<le> 1" for i z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 150 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 151 | have "z \<notin> path_image \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 152 | using \<open>x \<in> path_image \<gamma>\<close> d that ball_divide_subset_numeral by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 153 | then have xz[simp]: "x \<noteq> z" using \<open>x \<in> path_image \<gamma>\<close> by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 154 | then have neq: "x * x + z * z \<noteq> x * (z * 2)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 155 | by (blast intro: dest!: sum_sqs_eq) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 156 | with xz have "\<And>v. v \<noteq> 0 \<Longrightarrow> (x * x + z * z) * v \<noteq> (x * (z * 2) * v)" by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 157 | then have neqq: "\<And>v. v \<noteq> 0 \<Longrightarrow> x * (x * v) + z * (z * v) \<noteq> x * (z * (2 * v))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 158 | by (simp add: algebra_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 159 | show ?thesis using \<open>i \<le> 1\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 160 | apply (simp add: ff_def dist_norm Nat.le_Suc_eq km1, safe) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 161 | apply (rule derivative_eq_intros | simp add: km1 | simp add: field_simps neq neqq)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 162 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 163 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 164 |       { fix a::real and b::real assume ab: "a > 0" "b > 0"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 165 | then have "k * (1 + real k) * (1 / a) \<le> k * (1 + real k) * (4 / b) \<longleftrightarrow> b \<le> 4 * a" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 166 | by (subst mult_le_cancel_left_pos) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 167 | (use \<open>k \<noteq> 0\<close> in \<open>auto simp: divide_simps\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 168 | with ab have "real k * (1 + real k) / a \<le> (real k * 4 + real k * real k * 4) / b \<longleftrightarrow> b \<le> 4 * a" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 169 | by (simp add: field_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 170 | } note canc = this | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 171 | have ff2: "cmod (ff (Suc 1) v) \<le> real (k * (k + 1)) / (d/2) ^ (k + 2)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 172 | if "v \<in> ball w (d/2)" for v | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 173 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 174 | have lessd: "\<And>z. cmod (\<gamma> z - v) < d/2 \<Longrightarrow> cmod (w - \<gamma> z) < d" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 175 | by (metis that norm_minus_commute norm_triangle_half_r dist_norm mem_ball) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 176 | have "d/2 \<le> cmod (x - v)" using d x that | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 177 | using lessd d x | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 178 | by (auto simp add: dist_norm path_image_def ball_def not_less [symmetric] del: divide_const_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 179 | then have "d \<le> cmod (x - v) * 2" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 180 | by (simp add: field_split_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 181 | then have dpow_le: "d ^ (k+2) \<le> (cmod (x - v) * 2) ^ (k+2)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 182 | using \<open>0 < d\<close> order_less_imp_le power_mono by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 183 | have "x \<noteq> v" using that | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 184 | using \<open>x \<in> path_image \<gamma>\<close> ball_divide_subset_numeral d by fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 185 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 186 | using \<open>d > 0\<close> apply (simp add: ff_def norm_mult norm_divide norm_power dist_norm canc) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 187 | using dpow_le apply (simp add: field_split_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 188 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 189 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 190 | have ub: "u \<in> ball w (d/2)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 191 | using uwd by (simp add: dist_commute dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 192 | have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k))) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 193 | \<le> (real k * 4 + real k * real k * 4) * (cmod (u - w) * cmod (u - w)) / (d * (d * (d/2) ^ k))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 194 | using complex_Taylor [OF _ ff1 ff2 _ ub, of w, simplified] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 195 | by (simp add: ff_def \<open>0 < d\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 196 | then have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k))) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 197 | \<le> (cmod (u - w) * real k) * (1 + real k) * cmod (u - w) / (d/2) ^ (k+2)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 198 | by (simp add: field_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 199 | then have "cmod (inverse (x - u) ^ k - (inverse (x - w) ^ k + of_nat k * (u - w) / ((x - w) * (x - w) ^ k))) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 200 | / (cmod (u - w) * real k) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 201 | \<le> (1 + real k) * cmod (u - w) / (d/2) ^ (k+2)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 202 | using \<open>k \<noteq> 0\<close> \<open>u \<noteq> w\<close> by (simp add: mult_ac zero_less_mult_iff pos_divide_le_eq) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 203 | also have "\<dots> < e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 204 | using uw_less \<open>0 < d\<close> by (simp add: mult_ac divide_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 205 | finally have e: "cmod (inverse (x-u)^k - (inverse (x-w)^k + of_nat k * (u-w) / ((x-w) * (x-w)^k))) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 206 | / cmod ((u - w) * real k) < e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 207 | by (simp add: norm_mult) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 208 | have "x \<noteq> u" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 209 | using uwd \<open>0 < d\<close> x d by (force simp: dist_norm ball_def norm_minus_commute) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 210 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 211 | apply (rule le_less_trans [OF _ e]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 212 | using \<open>k \<noteq> 0\<close> \<open>x \<noteq> u\<close> \<open>u \<noteq> w\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 213 | apply (simp add: field_simps norm_divide [symmetric]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 214 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 215 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 216 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 217 | unfolding eventually_at | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 218 | apply (rule_tac x = "min (d/2) ((e*(d/2)^(k + 2))/(Suc k))" in exI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 219 | apply (force simp: \<open>d > 0\<close> dist_norm that simp del: power_Suc intro: *) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 220 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 221 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 222 | have 2: "uniform_limit (path_image \<gamma>) (\<lambda>n x. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k) (\<lambda>x. f' x / (x - w) ^ Suc k) (at w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 223 | unfolding uniform_limit_iff dist_norm | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 224 | proof clarify | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 225 | fix e::real | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 226 | assume "0 < e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 227 | have *: "cmod (f' (\<gamma> x) * (inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 228 | f' (\<gamma> x) / ((\<gamma> x - w) * (\<gamma> x - w) ^ k)) < e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 229 | if ec: "cmod ((inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 230 | inverse (\<gamma> x - w) * inverse (\<gamma> x - w) ^ k) < e / C" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 231 | and x: "0 \<le> x" "x \<le> 1" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 232 | for u x | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 233 | proof (cases "(f' (\<gamma> x)) = 0") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 234 | case True then show ?thesis by (simp add: \<open>0 < e\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 235 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 236 | case False | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 237 | have "cmod (f' (\<gamma> x) * (inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 238 | f' (\<gamma> x) / ((\<gamma> x - w) * (\<gamma> x - w) ^ k)) = | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 239 | cmod (f' (\<gamma> x) * ((inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 240 | inverse (\<gamma> x - w) * inverse (\<gamma> x - w) ^ k))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 241 | by (simp add: field_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 242 | also have "\<dots> = cmod (f' (\<gamma> x)) * | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 243 | cmod ((inverse (\<gamma> x - u) ^ k - inverse (\<gamma> x - w) ^ k) / ((u - w) * k) - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 244 | inverse (\<gamma> x - w) * inverse (\<gamma> x - w) ^ k)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 245 | by (simp add: norm_mult) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 246 | also have "\<dots> < cmod (f' (\<gamma> x)) * (e/C)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 247 | using False mult_strict_left_mono [OF ec] by force | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 248 | also have "\<dots> \<le> e" using C | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 249 | by (metis False \<open>0 < e\<close> frac_le less_eq_real_def mult.commute pos_le_divide_eq x zero_less_norm_iff) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 250 | finally show ?thesis . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 251 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 252 | show "\<forall>\<^sub>F n in at w. | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 253 | \<forall>x\<in>path_image \<gamma>. | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 254 | cmod (f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / of_nat k - f' x / (x - w) ^ Suc k) < e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 255 | using twom [OF divide_pos_pos [OF \<open>0 < e\<close> \<open>C > 0\<close>]] unfolding path_image_def | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 256 | by (force intro: * elim: eventually_mono) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 257 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 258 | show "(\<lambda>u. f' u / (u - w) ^ (Suc k)) contour_integrable_on \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 259 | by (rule contour_integral_uniform_limit [OF 1 2 leB \<gamma>]) auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 260 | have *: "(\<lambda>n. contour_integral \<gamma> (\<lambda>x. f' x * (inverse (x - n) ^ k - inverse (x - w) ^ k) / (n - w) / k)) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 261 | \<midarrow>w\<rightarrow> contour_integral \<gamma> (\<lambda>u. f' u / (u - w) ^ (Suc k))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 262 | by (rule contour_integral_uniform_limit [OF 1 2 leB \<gamma>]) auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 263 | have **: "contour_integral \<gamma> (\<lambda>x. f' x * (inverse (x - u) ^ k - inverse (x - w) ^ k) / ((u - w) * k)) = | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 264 | (f u - f w) / (u - w) / k" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 265 | if "dist u w < d" for u | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 266 | proof - | 
| 72266 | 267 | have u: "u \<in> S - path_image \<gamma>" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 268 | by (metis subsetD d dist_commute mem_ball that) | 
| 72266 | 269 | have \<section>: "((\<lambda>x. f' x * inverse (x - u) ^ k) has_contour_integral f u) \<gamma>" | 
| 270 | "((\<lambda>x. f' x * inverse (x - w) ^ k) has_contour_integral f w) \<gamma>" | |
| 271 | using u w by (simp_all add: field_simps int) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 272 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 273 | apply (rule contour_integral_unique) | 
| 72266 | 274 | apply (simp add: diff_divide_distrib algebra_simps \<section> has_contour_integral_diff has_contour_integral_div) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 275 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 276 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 277 | show ?thes2 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 278 | apply (simp add: has_field_derivative_iff del: power_Suc) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 279 | apply (rule Lim_transform_within [OF tendsto_mult_left [OF *] \<open>0 < d\<close> ]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 280 | apply (simp add: \<open>k \<noteq> 0\<close> **) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 281 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 282 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 283 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 284 | lemma Cauchy_next_derivative_circlepath: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 285 | assumes contf: "continuous_on (path_image (circlepath z r)) f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 286 | and int: "\<And>w. w \<in> ball z r \<Longrightarrow> ((\<lambda>u. f u / (u - w)^k) has_contour_integral g w) (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 287 | and k: "k \<noteq> 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 288 | and w: "w \<in> ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 289 | shows "(\<lambda>u. f u / (u - w)^(Suc k)) contour_integrable_on (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 290 | (is "?thes1") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 291 | and "(g has_field_derivative (k * contour_integral (circlepath z r) (\<lambda>u. f u/(u - w)^(Suc k)))) (at w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 292 | (is "?thes2") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 293 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 294 | have "r > 0" using w | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 295 | using ball_eq_empty by fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 296 | have wim: "w \<in> ball z r - path_image (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 297 | using w by (auto simp: dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 298 | show ?thes1 ?thes2 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 299 | by (rule Cauchy_next_derivative [OF contf _ int k open_ball valid_path_circlepath wim, where B = "2 * pi * \<bar>r\<bar>"]; | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 300 | auto simp: vector_derivative_circlepath norm_mult)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 301 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 302 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 303 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 304 | text\<open> In particular, the first derivative formula.\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 305 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 306 | lemma Cauchy_derivative_integral_circlepath: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 307 | assumes contf: "continuous_on (cball z r) f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 308 | and holf: "f holomorphic_on ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 309 | and w: "w \<in> ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 310 | shows "(\<lambda>u. f u/(u - w)^2) contour_integrable_on (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 311 | (is "?thes1") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 312 | and "(f has_field_derivative (1 / (2 * of_real pi * \<i>) * contour_integral(circlepath z r) (\<lambda>u. f u / (u - w)^2))) (at w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 313 | (is "?thes2") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 314 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 315 | have [simp]: "r \<ge> 0" using w | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 316 | using ball_eq_empty by fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 317 | have f: "continuous_on (path_image (circlepath z r)) f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 318 | by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 319 | have int: "\<And>w. dist z w < r \<Longrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 320 | ((\<lambda>u. f u / (u - w)) has_contour_integral (\<lambda>x. 2 * of_real pi * \<i> * f x) w) (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 321 | by (rule Cauchy_integral_circlepath [OF contf holf]) (simp add: dist_norm norm_minus_commute) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 322 | show ?thes1 | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 323 | unfolding power2_eq_square | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 324 | using int Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1] | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 325 | by fastforce | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 326 | have "((\<lambda>x. 2 * of_real pi * \<i> * f x) has_field_derivative contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)^2)) (at w)" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 327 | unfolding power2_eq_square | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 328 | using int Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1 and g = "\<lambda>x. 2 * of_real pi * \<i> * f x"] | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 329 | by fastforce | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 330 | then have fder: "(f has_field_derivative contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)^2) / (2 * of_real pi * \<i>)) (at w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 331 | by (rule DERIV_cdivide [where f = "\<lambda>x. 2 * of_real pi * \<i> * f x" and c = "2 * of_real pi * \<i>", simplified]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 332 | show ?thes2 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 333 | by simp (rule fder) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 334 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 335 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 336 | subsection\<open>Existence of all higher derivatives\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 337 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 338 | proposition derivative_is_holomorphic: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 339 | assumes "open S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 340 | and fder: "\<And>z. z \<in> S \<Longrightarrow> (f has_field_derivative f' z) (at z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 341 | shows "f' holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 342 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 343 | have *: "\<exists>h. (f' has_field_derivative h) (at z)" if "z \<in> S" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 344 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 345 | obtain r where "r > 0" and r: "cball z r \<subseteq> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 346 | using open_contains_cball \<open>z \<in> S\<close> \<open>open S\<close> by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 347 | then have holf_cball: "f holomorphic_on cball z r" | 
| 72266 | 348 | unfolding holomorphic_on_def | 
| 349 | using field_differentiable_at_within field_differentiable_def fder by fastforce | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 350 | then have "continuous_on (path_image (circlepath z r)) f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 351 | using \<open>r > 0\<close> by (force elim: holomorphic_on_subset [THEN holomorphic_on_imp_continuous_on]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 352 | then have contfpi: "continuous_on (path_image (circlepath z r)) (\<lambda>x. 1/(2 * of_real pi*\<i>) * f x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 353 | by (auto intro: continuous_intros)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 354 | have contf_cball: "continuous_on (cball z r) f" using holf_cball | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 355 | by (simp add: holomorphic_on_imp_continuous_on holomorphic_on_subset) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 356 | have holf_ball: "f holomorphic_on ball z r" using holf_cball | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 357 | using ball_subset_cball holomorphic_on_subset by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 358 |     { fix w  assume w: "w \<in> ball z r"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 359 | have intf: "(\<lambda>u. f u / (u - w)\<^sup>2) contour_integrable_on circlepath z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 360 | by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball holf_ball]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 361 | have fder': "(f has_field_derivative 1 / (2 * of_real pi * \<i>) * contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2)) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 362 | (at w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 363 | by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball holf_ball]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 364 | have f'_eq: "f' w = contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2) / (2 * of_real pi * \<i>)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 365 | using fder' ball_subset_cball r w by (force intro: DERIV_unique [OF fder]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 366 | have "((\<lambda>u. f u / (u - w)\<^sup>2 / (2 * of_real pi * \<i>)) has_contour_integral | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 367 | contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2) / (2 * of_real pi * \<i>)) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 368 | (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 369 | by (rule has_contour_integral_div [OF has_contour_integral_integral [OF intf]]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 370 | then have "((\<lambda>u. f u / (2 * of_real pi * \<i> * (u - w)\<^sup>2)) has_contour_integral | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 371 | contour_integral (circlepath z r) (\<lambda>u. f u / (u - w)\<^sup>2) / (2 * of_real pi * \<i>)) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 372 | (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 373 | by (simp add: algebra_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 374 | then have "((\<lambda>u. f u / (2 * of_real pi * \<i> * (u - w)\<^sup>2)) has_contour_integral f' w) (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 375 | by (simp add: f'_eq) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 376 | } note * = this | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 377 | show ?thesis | 
| 72266 | 378 | using Cauchy_next_derivative_circlepath [OF contfpi, of 2 f'] \<open>0 < r\<close> * | 
| 379 | using centre_in_ball mem_ball by force | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 380 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 381 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 382 | by (simp add: holomorphic_on_open [OF \<open>open S\<close>] *) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 383 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 384 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 385 | lemma holomorphic_deriv [holomorphic_intros]: | 
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 386 | "\<lbrakk>f holomorphic_on S; open S\<rbrakk> \<Longrightarrow> (deriv f) holomorphic_on S" | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 387 | by (metis DERIV_deriv_iff_field_differentiable at_within_open derivative_is_holomorphic holomorphic_on_def) | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 388 | |
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 389 | lemma holomorphic_deriv_compose: | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 390 | assumes g: "g holomorphic_on B" and f: "f holomorphic_on A" and "f ` A \<subseteq> B" "open B" | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 391 | shows "(\<lambda>x. deriv g (f x)) holomorphic_on A" | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 392 | using holomorphic_on_compose_gen [OF f holomorphic_deriv[OF g]] assms | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 393 | by (auto simp: o_def) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 394 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 395 | lemma analytic_deriv [analytic_intros]: "f analytic_on S \<Longrightarrow> (deriv f) analytic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 396 | using analytic_on_holomorphic holomorphic_deriv by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 397 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 398 | lemma holomorphic_higher_deriv [holomorphic_intros]: "\<lbrakk>f holomorphic_on S; open S\<rbrakk> \<Longrightarrow> (deriv ^^ n) f holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 399 | by (induction n) (auto simp: holomorphic_deriv) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 400 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 401 | lemma analytic_higher_deriv [analytic_intros]: "f analytic_on S \<Longrightarrow> (deriv ^^ n) f analytic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 402 | unfolding analytic_on_def using holomorphic_higher_deriv by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 403 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 404 | lemma has_field_derivative_higher_deriv: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 405 | "\<lbrakk>f holomorphic_on S; open S; x \<in> S\<rbrakk> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 406 | \<Longrightarrow> ((deriv ^^ n) f has_field_derivative (deriv ^^ (Suc n)) f x) (at x)" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 407 | using holomorphic_derivI holomorphic_higher_deriv by fastforce | 
| 73928 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 408 | |
| 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 409 | lemma higher_deriv_cmult: | 
| 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 410 | assumes "f holomorphic_on A" "x \<in> A" "open A" | 
| 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 411 | shows "(deriv ^^ j) (\<lambda>x. c * f x) x = c * (deriv ^^ j) f x" | 
| 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 412 | using assms | 
| 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 413 | proof (induction j arbitrary: f x) | 
| 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 414 | case (Suc j f x) | 
| 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 415 | have "deriv ((deriv ^^ j) (\<lambda>x. c * f x)) x = deriv (\<lambda>x. c * (deriv ^^ j) f x) x" | 
| 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 416 | using eventually_nhds_in_open[of A x] assms(2,3) Suc.prems | 
| 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 417 | by (intro deriv_cong_ev refl) (auto elim!: eventually_mono simp: Suc.IH) | 
| 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 418 | also have "\<dots> = c * deriv ((deriv ^^ j) f) x" using Suc.prems assms(2,3) | 
| 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 419 | by (intro deriv_cmult holomorphic_on_imp_differentiable_at holomorphic_higher_deriv) auto | 
| 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 420 | finally show ?case by simp | 
| 
3b76524f5a85
Imported lots of material from Stirling_Formula/Gamma_Asymptotics
 paulson <lp15@cam.ac.uk> parents: 
73790diff
changeset | 421 | qed simp_all | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 422 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 423 | lemma valid_path_compose_holomorphic: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 424 | assumes "valid_path g" and holo:"f holomorphic_on S" and "open S" "path_image g \<subseteq> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 425 | shows "valid_path (f \<circ> g)" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 426 | by (meson assms holomorphic_deriv holomorphic_on_imp_continuous_on holomorphic_on_imp_differentiable_at | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 427 | holomorphic_on_subset subsetD valid_path_compose) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 428 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 429 | subsection\<open>Morera's theorem\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 430 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 431 | lemma Morera_local_triangle_ball: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 432 | assumes "\<And>z. z \<in> S | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 433 | \<Longrightarrow> \<exists>e a. 0 < e \<and> z \<in> ball a e \<and> continuous_on (ball a e) f \<and> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 434 | (\<forall>b c. closed_segment b c \<subseteq> ball a e | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 435 | \<longrightarrow> contour_integral (linepath a b) f + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 436 | contour_integral (linepath b c) f + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 437 | contour_integral (linepath c a) f = 0)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 438 | shows "f analytic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 439 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 440 |   { fix z  assume "z \<in> S"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 441 | with assms obtain e a where | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 442 | "0 < e" and z: "z \<in> ball a e" and contf: "continuous_on (ball a e) f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 443 | and 0: "\<And>b c. closed_segment b c \<subseteq> ball a e | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 444 | \<Longrightarrow> contour_integral (linepath a b) f + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 445 | contour_integral (linepath b c) f + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 446 | contour_integral (linepath c a) f = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 447 | by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 448 | have az: "dist a z < e" using mem_ball z by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 449 | have "\<exists>e>0. f holomorphic_on ball z e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 450 | proof (intro exI conjI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 451 | show "f holomorphic_on ball z (e - dist a z)" | 
| 72266 | 452 | proof (rule holomorphic_on_subset) | 
| 453 | show "ball z (e - dist a z) \<subseteq> ball a e" | |
| 454 | by (simp add: dist_commute ball_subset_ball_iff) | |
| 455 | have sub_ball: "\<And>y. dist a y < e \<Longrightarrow> closed_segment a y \<subseteq> ball a e" | |
| 456 | by (meson \<open>0 < e\<close> centre_in_ball convex_ball convex_contains_segment mem_ball) | |
| 457 | show "f holomorphic_on ball a e" | |
| 458 | using triangle_contour_integrals_starlike_primitive [OF contf _ open_ball, of a] | |
| 459 | derivative_is_holomorphic[OF open_ball] | |
| 460 | by (force simp add: 0 \<open>0 < e\<close> sub_ball) | |
| 461 | qed | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 462 | qed (simp add: az) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 463 | } | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 464 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 465 | by (simp add: analytic_on_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 466 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 467 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 468 | lemma Morera_local_triangle: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 469 | assumes "\<And>z. z \<in> S | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 470 | \<Longrightarrow> \<exists>t. open t \<and> z \<in> t \<and> continuous_on t f \<and> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 471 |                   (\<forall>a b c. convex hull {a,b,c} \<subseteq> t
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 472 | \<longrightarrow> contour_integral (linepath a b) f + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 473 | contour_integral (linepath b c) f + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 474 | contour_integral (linepath c a) f = 0)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 475 | shows "f analytic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 476 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 477 |   { fix z  assume "z \<in> S"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 478 | with assms obtain t where | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 479 | "open t" and z: "z \<in> t" and contf: "continuous_on t f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 480 |         and 0: "\<And>a b c. convex hull {a,b,c} \<subseteq> t
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 481 | \<Longrightarrow> contour_integral (linepath a b) f + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 482 | contour_integral (linepath b c) f + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 483 | contour_integral (linepath c a) f = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 484 | by force | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 485 | then obtain e where "e>0" and e: "ball z e \<subseteq> t" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 486 | using open_contains_ball by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 487 | have [simp]: "continuous_on (ball z e) f" using contf | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 488 | using continuous_on_subset e by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 489 | have eq0: "\<And>b c. closed_segment b c \<subseteq> ball z e \<Longrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 490 | contour_integral (linepath z b) f + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 491 | contour_integral (linepath b c) f + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 492 | contour_integral (linepath c z) f = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 493 | by (meson 0 z \<open>0 < e\<close> centre_in_ball closed_segment_subset convex_ball dual_order.trans e starlike_convex_subset) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 494 | have "\<exists>e a. 0 < e \<and> z \<in> ball a e \<and> continuous_on (ball a e) f \<and> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 495 | (\<forall>b c. closed_segment b c \<subseteq> ball a e \<longrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 496 | contour_integral (linepath a b) f + contour_integral (linepath b c) f + contour_integral (linepath c a) f = 0)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 497 | using \<open>e > 0\<close> eq0 by force | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 498 | } | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 499 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 500 | by (simp add: Morera_local_triangle_ball) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 501 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 502 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 503 | proposition Morera_triangle: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 504 | "\<lbrakk>continuous_on S f; open S; | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 505 |       \<And>a b c. convex hull {a,b,c} \<subseteq> S
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 506 | \<longrightarrow> contour_integral (linepath a b) f + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 507 | contour_integral (linepath b c) f + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 508 | contour_integral (linepath c a) f = 0\<rbrakk> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 509 | \<Longrightarrow> f analytic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 510 | using Morera_local_triangle by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 511 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 512 | subsection\<open>Combining theorems for higher derivatives including Leibniz rule\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 513 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 514 | lemma higher_deriv_linear [simp]: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 515 | "(deriv ^^ n) (\<lambda>w. c*w) = (\<lambda>z. if n = 0 then c*z else if n = 1 then c else 0)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 516 | by (induction n) auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 517 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 518 | lemma higher_deriv_const [simp]: "(deriv ^^ n) (\<lambda>w. c) = (\<lambda>w. if n=0 then c else 0)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 519 | by (induction n) auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 520 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 521 | lemma higher_deriv_ident [simp]: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 522 | "(deriv ^^ n) (\<lambda>w. w) z = (if n = 0 then z else if n = 1 then 1 else 0)" | 
| 72266 | 523 | proof (induction n) | 
| 524 | case (Suc n) | |
| 525 | then show ?case by (metis higher_deriv_linear lambda_one) | |
| 526 | qed auto | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 527 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 528 | lemma higher_deriv_id [simp]: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 529 | "(deriv ^^ n) id z = (if n = 0 then z else if n = 1 then 1 else 0)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 530 | by (simp add: id_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 531 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 532 | lemma has_complex_derivative_funpow_1: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 533 | "\<lbrakk>(f has_field_derivative 1) (at z); f z = z\<rbrakk> \<Longrightarrow> (f^^n has_field_derivative 1) (at z)" | 
| 72266 | 534 | proof (induction n) | 
| 535 | case 0 | |
| 536 | then show ?case | |
| 537 | by (simp add: id_def) | |
| 538 | next | |
| 539 | case (Suc n) | |
| 540 | then show ?case | |
| 541 | by (metis DERIV_chain funpow_Suc_right mult.right_neutral) | |
| 542 | qed | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 543 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 544 | lemma higher_deriv_uminus: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 545 | assumes "f holomorphic_on S" "open S" and z: "z \<in> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 546 | shows "(deriv ^^ n) (\<lambda>w. -(f w)) z = - ((deriv ^^ n) f z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 547 | using z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 548 | proof (induction n arbitrary: z) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 549 | case 0 then show ?case by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 550 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 551 | case (Suc n z) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 552 | have *: "((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 553 | using Suc.prems assms has_field_derivative_higher_deriv by auto | 
| 72266 | 554 | have "\<And>x. x \<in> S \<Longrightarrow> - (deriv ^^ n) f x = (deriv ^^ n) (\<lambda>w. - f w) x" | 
| 555 | by (auto simp add: Suc) | |
| 556 | then have "((deriv ^^ n) (\<lambda>w. - f w) has_field_derivative - deriv ((deriv ^^ n) f) z) (at z)" | |
| 557 | using has_field_derivative_transform_within_open [of "\<lambda>w. -((deriv ^^ n) f w)"] | |
| 558 | using "*" DERIV_minus Suc.prems \<open>open S\<close> by blast | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 559 | then show ?case | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 560 | by (simp add: DERIV_imp_deriv) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 561 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 562 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 563 | lemma higher_deriv_add: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 564 | fixes z::complex | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 565 | assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 566 | shows "(deriv ^^ n) (\<lambda>w. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 567 | using z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 568 | proof (induction n arbitrary: z) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 569 | case 0 then show ?case by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 570 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 571 | case (Suc n z) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 572 | have *: "((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 573 | "((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 574 | using Suc.prems assms has_field_derivative_higher_deriv by auto | 
| 72266 | 575 | have "\<And>x. x \<in> S \<Longrightarrow> (deriv ^^ n) f x + (deriv ^^ n) g x = (deriv ^^ n) (\<lambda>w. f w + g w) x" | 
| 576 | by (auto simp add: Suc) | |
| 577 | then have "((deriv ^^ n) (\<lambda>w. f w + g w) has_field_derivative | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 578 | deriv ((deriv ^^ n) f) z + deriv ((deriv ^^ n) g) z) (at z)" | 
| 72266 | 579 | using has_field_derivative_transform_within_open [of "\<lambda>w. (deriv ^^ n) f w + (deriv ^^ n) g w"] | 
| 580 | using "*" Deriv.field_differentiable_add Suc.prems \<open>open S\<close> by blast | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 581 | then show ?case | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 582 | by (simp add: DERIV_imp_deriv) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 583 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 584 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 585 | lemma higher_deriv_diff: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 586 | fixes z::complex | 
| 72266 | 587 | assumes "f holomorphic_on S" "g holomorphic_on S" "open S" "z \<in> S" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 588 | shows "(deriv ^^ n) (\<lambda>w. f w - g w) z = (deriv ^^ n) f z - (deriv ^^ n) g z" | 
| 72266 | 589 | unfolding diff_conv_add_uminus higher_deriv_add | 
| 590 | using assms higher_deriv_add higher_deriv_uminus holomorphic_on_minus by presburger | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 591 | |
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 592 | lemma Suc_choose: "Suc n choose k = (n choose k) + (if k = 0 then 0 else (n choose (k - 1)))" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 593 | by (cases k) simp_all | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 594 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 595 | lemma higher_deriv_mult: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 596 | fixes z::complex | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 597 | assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 598 | shows "(deriv ^^ n) (\<lambda>w. f w * g w) z = | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 599 | (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f z * (deriv ^^ (n - i)) g z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 600 | using z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 601 | proof (induction n arbitrary: z) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 602 | case 0 then show ?case by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 603 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 604 | case (Suc n z) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 605 | have *: "\<And>n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 606 | "\<And>n. ((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 607 | using Suc.prems assms has_field_derivative_higher_deriv by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 608 | have sumeq: "(\<Sum>i = 0..n. | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 609 | of_nat (n choose i) * (deriv ((deriv ^^ i) f) z * (deriv ^^ (n - i)) g z + deriv ((deriv ^^ (n - i)) g) z * (deriv ^^ i) f z)) = | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 610 | g z * deriv ((deriv ^^ n) f) z + (\<Sum>i = 0..n. (deriv ^^ i) f z * (of_nat (Suc n choose i) * (deriv ^^ (Suc n - i)) g z))" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 611 | apply (simp add: Suc_choose algebra_simps sum.distrib) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 612 | apply (subst (4) sum_Suc_reindex) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 613 | apply (auto simp: algebra_simps Suc_diff_le intro: sum.cong) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 614 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 615 | have "((deriv ^^ n) (\<lambda>w. f w * g w) has_field_derivative | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 616 | (\<Sum>i = 0..Suc n. (Suc n choose i) * (deriv ^^ i) f z * (deriv ^^ (Suc n - i)) g z)) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 617 | (at z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 618 | apply (rule has_field_derivative_transform_within_open | 
| 72266 | 619 | [of "\<lambda>w. (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f w * (deriv ^^ (n - i)) g w)" _ _ S]) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 620 | apply (simp add: algebra_simps) | 
| 72266 | 621 | apply (rule derivative_eq_intros | simp)+ | 
| 622 | apply (auto intro: DERIV_mult * \<open>open S\<close> Suc.prems Suc.IH [symmetric]) | |
| 623 | by (metis (no_types, lifting) mult.commute sum.cong sumeq) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 624 | then show ?case | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 625 | unfolding funpow.simps o_apply | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 626 | by (simp add: DERIV_imp_deriv) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 627 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 628 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 629 | lemma higher_deriv_transform_within_open: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 630 | fixes z::complex | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 631 | assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 632 | and fg: "\<And>w. w \<in> S \<Longrightarrow> f w = g w" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 633 | shows "(deriv ^^ i) f z = (deriv ^^ i) g z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 634 | using z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 635 | by (induction i arbitrary: z) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 636 | (auto simp: fg intro: complex_derivative_transform_within_open holomorphic_higher_deriv assms) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 637 | |
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 638 | lemma higher_deriv_compose_linear': | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 639 | fixes z::complex | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 640 | assumes f: "f holomorphic_on T" and S: "open S" and T: "open T" and z: "z \<in> S" | 
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 641 | and fg: "\<And>w. w \<in> S \<Longrightarrow> u*w + c \<in> T" | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 642 | shows "(deriv ^^ n) (\<lambda>w. f (u*w + c)) z = u^n * (deriv ^^ n) f (u*z + c)" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 643 | using z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 644 | proof (induction n arbitrary: z) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 645 | case 0 then show ?case by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 646 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 647 | case (Suc n z) | 
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 648 | have holo0: "f holomorphic_on (\<lambda>w. u * w+c) ` S" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 649 | by (meson fg f holomorphic_on_subset image_subset_iff) | 
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 650 | have holo2: "(deriv ^^ n) f holomorphic_on (\<lambda>w. u * w+c) ` S" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 651 | by (meson f fg holomorphic_higher_deriv holomorphic_on_subset image_subset_iff T) | 
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 652 | have holo3: "(\<lambda>z. u ^ n * (deriv ^^ n) f (u * z+c)) holomorphic_on S" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 653 | by (intro holo2 holomorphic_on_compose [where g="(deriv ^^ n) f", unfolded o_def] holomorphic_intros) | 
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 654 | have "(\<lambda>w. u * w+c) holomorphic_on S" "f holomorphic_on (\<lambda>w. u * w+c) ` S" | 
| 72266 | 655 | by (rule holo0 holomorphic_intros)+ | 
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 656 | then have holo1: "(\<lambda>w. f (u * w+c)) holomorphic_on S" | 
| 72266 | 657 | by (rule holomorphic_on_compose [where g=f, unfolded o_def]) | 
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 658 | have "deriv ((deriv ^^ n) (\<lambda>w. f (u * w+c))) z = deriv (\<lambda>z. u^n * (deriv ^^ n) f (u*z+c)) z" | 
| 72266 | 659 | proof (rule complex_derivative_transform_within_open [OF _ holo3 S Suc.prems]) | 
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 660 | show "(deriv ^^ n) (\<lambda>w. f (u * w+c)) holomorphic_on S" | 
| 72266 | 661 | by (rule holomorphic_higher_deriv [OF holo1 S]) | 
| 662 | qed (simp add: Suc.IH) | |
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 663 | also have "\<dots> = u^n * deriv (\<lambda>z. (deriv ^^ n) f (u * z+c)) z" | 
| 72266 | 664 | proof - | 
| 665 | have "(deriv ^^ n) f analytic_on T" | |
| 666 | by (simp add: analytic_on_open f holomorphic_higher_deriv T) | |
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 667 | then have "(\<lambda>w. (deriv ^^ n) f (u * w+c)) analytic_on S" | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 668 | proof - | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 669 | have "(deriv ^^ n) f \<circ> (\<lambda>w. u * w+c) holomorphic_on S" | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 670 | using holomorphic_on_compose[OF _ holo2] \<open>(\<lambda>w. u * w+c) holomorphic_on S\<close> | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 671 | by simp | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 672 | then show ?thesis | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 673 | by (simp add: S analytic_on_open o_def) | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 674 | qed | 
| 72266 | 675 | then show ?thesis | 
| 676 | by (intro deriv_cmult analytic_on_imp_differentiable_at [OF _ Suc.prems]) | |
| 677 | qed | |
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 678 | also have "\<dots> = u * u ^ n * deriv ((deriv ^^ n) f) (u * z+c)" | 
| 72266 | 679 | proof - | 
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 680 | have "(deriv ^^ n) f field_differentiable at (u * z+c)" | 
| 72266 | 681 | using Suc.prems T f fg holomorphic_higher_deriv holomorphic_on_imp_differentiable_at by blast | 
| 682 | then show ?thesis | |
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 683 | by (simp add: deriv_compose_linear') | 
| 72266 | 684 | qed | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 685 | finally show ?case | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 686 | by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 687 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 688 | |
| 78700 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 689 | lemma higher_deriv_compose_linear: | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 690 | fixes z::complex | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 691 | assumes f: "f holomorphic_on T" and S: "open S" and T: "open T" and z: "z \<in> S" | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 692 | and fg: "\<And>w. w \<in> S \<Longrightarrow> u * w \<in> T" | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 693 | shows "(deriv ^^ n) (\<lambda>w. f (u * w)) z = u^n * (deriv ^^ n) f (u * z)" | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 694 | using higher_deriv_compose_linear' [where c=0] assms by simp | 
| 
4de5b127c124
Importing or moving a few more useful theorems
 paulson <lp15@cam.ac.uk> parents: 
78517diff
changeset | 695 | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 696 | lemma higher_deriv_add_at: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 697 |   assumes "f analytic_on {z}" "g analytic_on {z}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 698 | shows "(deriv ^^ n) (\<lambda>w. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 699 | using analytic_at_two assms higher_deriv_add by blast | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 700 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 701 | lemma higher_deriv_diff_at: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 702 |   assumes "f analytic_on {z}" "g analytic_on {z}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 703 | shows "(deriv ^^ n) (\<lambda>w. f w - g w) z = (deriv ^^ n) f z - (deriv ^^ n) g z" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 704 | using analytic_at_two assms higher_deriv_diff by blast | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 705 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 706 | lemma higher_deriv_uminus_at: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 707 |    "f analytic_on {z}  \<Longrightarrow> (deriv ^^ n) (\<lambda>w. -(f w)) z = - ((deriv ^^ n) f z)"
 | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 708 | using higher_deriv_uminus by (auto simp: analytic_at) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 709 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 710 | lemma higher_deriv_mult_at: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 711 |   assumes "f analytic_on {z}" "g analytic_on {z}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 712 | shows "(deriv ^^ n) (\<lambda>w. f w * g w) z = | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 713 | (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f z * (deriv ^^ (n - i)) g z)" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 714 | using analytic_at_two assms higher_deriv_mult by blast | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 715 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 716 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 717 | text\<open> Nonexistence of isolated singularities and a stronger integral formula.\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 718 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 719 | proposition no_isolated_singularity: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 720 | fixes z::complex | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 721 | assumes f: "continuous_on S f" and holf: "f holomorphic_on (S - K)" and S: "open S" and K: "finite K" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 722 | shows "f holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 723 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 724 |   { fix z
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 725 | assume "z \<in> S" and cdf: "\<And>x. x \<in> S - K \<Longrightarrow> f field_differentiable at x" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 726 | have "f field_differentiable at z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 727 | proof (cases "z \<in> K") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 728 | case False then show ?thesis by (blast intro: cdf \<open>z \<in> S\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 729 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 730 | case True | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 731 | with finite_set_avoid [OF K, of z] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 732 | obtain d where "d>0" and d: "\<And>x. \<lbrakk>x\<in>K; x \<noteq> z\<rbrakk> \<Longrightarrow> d \<le> dist z x" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 733 | by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 734 | obtain e where "e>0" and e: "ball z e \<subseteq> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 735 | using S \<open>z \<in> S\<close> by (force simp: open_contains_ball) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 736 | have fde: "continuous_on (ball z (min d e)) f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 737 | by (metis Int_iff ball_min_Int continuous_on_subset e f subsetI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 738 |       have cont: "{a,b,c} \<subseteq> ball z (min d e) \<Longrightarrow> continuous_on (convex hull {a, b, c}) f" for a b c
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 739 | by (simp add: hull_minimal continuous_on_subset [OF fde]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 740 |       have fd: "\<lbrakk>{a,b,c} \<subseteq> ball z (min d e); x \<in> interior (convex hull {a, b, c}) - K\<rbrakk>
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 741 | \<Longrightarrow> f field_differentiable at x" for a b c x | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 742 | by (metis cdf Diff_iff Int_iff ball_min_Int subsetD convex_ball e interior_mono interior_subset subset_hull) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 743 | obtain g where "\<And>w. w \<in> ball z (min d e) \<Longrightarrow> (g has_field_derivative f w) (at w within ball z (min d e))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 744 | apply (rule contour_integral_convex_primitive | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 745 | [OF convex_ball fde Cauchy_theorem_triangle_cofinite [OF _ K]]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 746 | using cont fd by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 747 | then have "f holomorphic_on ball z (min d e)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 748 | by (metis open_ball at_within_open derivative_is_holomorphic) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 749 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 750 | unfolding holomorphic_on_def | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 751 | by (metis open_ball \<open>0 < d\<close> \<open>0 < e\<close> at_within_open centre_in_ball min_less_iff_conj) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 752 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 753 | } | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 754 | with holf S K show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 755 | by (simp add: holomorphic_on_open open_Diff finite_imp_closed field_differentiable_def [symmetric]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 756 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 757 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 758 | lemma no_isolated_singularity': | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 759 | fixes z::complex | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 760 | assumes f: "\<And>z. z \<in> K \<Longrightarrow> (f \<longlongrightarrow> f z) (at z within S)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 761 | and holf: "f holomorphic_on (S - K)" and S: "open S" and K: "finite K" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 762 | shows "f holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 763 | proof (rule no_isolated_singularity[OF _ assms(2-)]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 764 | show "continuous_on S f" unfolding continuous_on_def | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 765 | proof | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 766 | fix z assume z: "z \<in> S" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 767 | have "continuous_on (S - K) f" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 768 | using holf holomorphic_on_imp_continuous_on by auto | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 769 | then show "(f \<longlongrightarrow> f z) (at z within S)" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 770 | by (metis Diff_iff K S at_within_interior continuous_on_def f finite_imp_closed interior_eq open_Diff z) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 771 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 772 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 773 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 774 | proposition Cauchy_integral_formula_convex: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 775 | assumes S: "convex S" and K: "finite K" and contf: "continuous_on S f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 776 | and fcd: "(\<And>x. x \<in> interior S - K \<Longrightarrow> f field_differentiable at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 777 | and z: "z \<in> interior S" and vpg: "valid_path \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 778 |     and pasz: "path_image \<gamma> \<subseteq> S - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 779 | shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 780 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 781 | have *: "\<And>x. x \<in> interior S \<Longrightarrow> f field_differentiable at x" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 782 | unfolding holomorphic_on_open [symmetric] field_differentiable_def | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 783 | using no_isolated_singularity [where S = "interior S"] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 784 | by (meson K contf continuous_at_imp_continuous_on continuous_on_interior fcd | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 785 | field_differentiable_at_within field_differentiable_def holomorphic_onI | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 786 | holomorphic_on_imp_differentiable_at open_interior) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 787 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 788 | by (rule Cauchy_integral_formula_weak [OF S finite.emptyI contf]) (use * assms in auto) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 789 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 790 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 791 | text\<open> Formula for higher derivatives.\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 792 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 793 | lemma Cauchy_has_contour_integral_higher_derivative_circlepath: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 794 | assumes contf: "continuous_on (cball z r) f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 795 | and holf: "f holomorphic_on ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 796 | and w: "w \<in> ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 797 | shows "((\<lambda>u. f u / (u - w) ^ (Suc k)) has_contour_integral ((2 * pi * \<i>) / (fact k) * (deriv ^^ k) f w)) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 798 | (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 799 | using w | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 800 | proof (induction k arbitrary: w) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 801 | case 0 then show ?case | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 802 | using assms by (auto simp: Cauchy_integral_circlepath dist_commute dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 803 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 804 | case (Suc k) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 805 | have [simp]: "r > 0" using w | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 806 | using ball_eq_empty by fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 807 | have f: "continuous_on (path_image (circlepath z r)) f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 808 | by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def less_imp_le) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 809 | obtain X where X: "((\<lambda>u. f u / (u - w) ^ Suc (Suc k)) has_contour_integral X) (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 810 | using Cauchy_next_derivative_circlepath(1) [OF f Suc.IH _ Suc.prems] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 811 | by (auto simp: contour_integrable_on_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 812 | then have con: "contour_integral (circlepath z r) ((\<lambda>u. f u / (u - w) ^ Suc (Suc k))) = X" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 813 | by (rule contour_integral_unique) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 814 | have "\<And>n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) w) (at w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 815 | using Suc.prems assms has_field_derivative_higher_deriv by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 816 | then have dnf_diff: "\<And>n. (deriv ^^ n) f field_differentiable (at w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 817 | by (force simp: field_differentiable_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 818 | have "deriv (\<lambda>w. complex_of_real (2 * pi) * \<i> / (fact k) * (deriv ^^ k) f w) w = | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 819 | of_nat (Suc k) * contour_integral (circlepath z r) (\<lambda>u. f u / (u - w) ^ Suc (Suc k))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 820 | by (force intro!: DERIV_imp_deriv Cauchy_next_derivative_circlepath [OF f Suc.IH _ Suc.prems]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 821 | also have "\<dots> = of_nat (Suc k) * X" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 822 | by (simp only: con) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 823 | finally have "deriv (\<lambda>w. ((2 * pi) * \<i> / (fact k)) * (deriv ^^ k) f w) w = of_nat (Suc k) * X" . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 824 | then have "((2 * pi) * \<i> / (fact k)) * deriv (\<lambda>w. (deriv ^^ k) f w) w = of_nat (Suc k) * X" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 825 | by (metis deriv_cmult dnf_diff) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 826 | then have "deriv (\<lambda>w. (deriv ^^ k) f w) w = of_nat (Suc k) * X / ((2 * pi) * \<i> / (fact k))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 827 | by (simp add: field_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 828 | then show ?case | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 829 | using of_nat_eq_0_iff X by fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 830 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 831 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 832 | lemma Cauchy_higher_derivative_integral_circlepath: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 833 | assumes contf: "continuous_on (cball z r) f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 834 | and holf: "f holomorphic_on ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 835 | and w: "w \<in> ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 836 | shows "(\<lambda>u. f u / (u - w)^(Suc k)) contour_integrable_on (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 837 | (is "?thes1") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 838 | and "(deriv ^^ k) f w = (fact k) / (2 * pi * \<i>) * contour_integral(circlepath z r) (\<lambda>u. f u/(u - w)^(Suc k))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 839 | (is "?thes2") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 840 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 841 | have *: "((\<lambda>u. f u / (u - w) ^ Suc k) has_contour_integral (2 * pi) * \<i> / (fact k) * (deriv ^^ k) f w) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 842 | (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 843 | using Cauchy_has_contour_integral_higher_derivative_circlepath [OF assms] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 844 | by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 845 | show ?thes1 using * | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 846 | using contour_integrable_on_def by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 847 | show ?thes2 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 848 | unfolding contour_integral_unique [OF *] by (simp add: field_split_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 849 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 850 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 851 | corollary Cauchy_contour_integral_circlepath: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 852 | assumes "continuous_on (cball z r) f" "f holomorphic_on ball z r" "w \<in> ball z r" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 853 | shows "contour_integral(circlepath z r) (\<lambda>u. f u/(u - w)^(Suc k)) = (2 * pi * \<i>) * (deriv ^^ k) f w / (fact k)" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 854 | by (simp add: Cauchy_higher_derivative_integral_circlepath [OF assms]) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 855 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 856 | lemma Cauchy_contour_integral_circlepath_2: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 857 | assumes "continuous_on (cball z r) f" "f holomorphic_on ball z r" "w \<in> ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 858 | shows "contour_integral(circlepath z r) (\<lambda>u. f u/(u - w)^2) = (2 * pi * \<i>) * deriv f w" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 859 | using Cauchy_contour_integral_circlepath [OF assms, of 1] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 860 | by (simp add: power2_eq_square) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 861 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 862 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 863 | subsection\<open>A holomorphic function is analytic, i.e. has local power series\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 864 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 865 | theorem holomorphic_power_series: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 866 | assumes holf: "f holomorphic_on ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 867 | and w: "w \<in> ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 868 | shows "((\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 869 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 870 | \<comment> \<open>Replacing \<^term>\<open>r\<close> and the original (weak) premises with stronger ones\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 871 | obtain r where "r > 0" and holfc: "f holomorphic_on cball z r" and w: "w \<in> ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 872 | proof | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 873 | have "cball z ((r + dist w z) / 2) \<subseteq> ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 874 | using w by (simp add: dist_commute field_sum_of_halves subset_eq) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 875 | then show "f holomorphic_on cball z ((r + dist w z) / 2)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 876 | by (rule holomorphic_on_subset [OF holf]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 877 | have "r > 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 878 | using w by clarsimp (metis dist_norm le_less_trans norm_ge_zero) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 879 | then show "0 < (r + dist w z) / 2" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 880 | by simp (use zero_le_dist [of w z] in linarith) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 881 | qed (use w in \<open>auto simp: dist_commute\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 882 | then have holf: "f holomorphic_on ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 883 | using ball_subset_cball holomorphic_on_subset by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 884 | have contf: "continuous_on (cball z r) f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 885 | by (simp add: holfc holomorphic_on_imp_continuous_on) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 886 | have cint: "\<And>k. (\<lambda>u. f u / (u - z) ^ Suc k) contour_integrable_on circlepath z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 887 | by (rule Cauchy_higher_derivative_integral_circlepath [OF contf holf]) (simp add: \<open>0 < r\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 888 | obtain B where "0 < B" and B: "\<And>u. u \<in> cball z r \<Longrightarrow> norm(f u) \<le> B" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 889 | by (metis (no_types) bounded_pos compact_cball compact_continuous_image compact_imp_bounded contf image_eqI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 890 | obtain k where k: "0 < k" "k \<le> r" and wz_eq: "norm(w - z) = r - k" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 891 | and kle: "\<And>u. norm(u - z) = r \<Longrightarrow> k \<le> norm(u - w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 892 | proof | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 893 | show "\<And>u. cmod (u - z) = r \<Longrightarrow> r - dist z w \<le> cmod (u - w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 894 | by (metis add_diff_eq diff_add_cancel dist_norm norm_diff_ineq) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 895 | qed (use w in \<open>auto simp: dist_norm norm_minus_commute\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 896 | have ul: "uniform_limit (sphere z r) (\<lambda>n x. (\<Sum>k<n. (w - z) ^ k * (f x / (x - z) ^ Suc k))) (\<lambda>x. f x / (x - w)) sequentially" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 897 | unfolding uniform_limit_iff dist_norm | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 898 | proof clarify | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 899 | fix e::real | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 900 | assume "0 < e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 901 | have rr: "0 \<le> (r - k) / r" "(r - k) / r < 1" using k by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 902 | obtain n where n: "((r - k) / r) ^ n < e / B * k" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 903 | using real_arch_pow_inv [of "e/B*k" "(r - k)/r"] \<open>0 < e\<close> \<open>0 < B\<close> k by force | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 904 | have "norm ((\<Sum>k<N. (w - z) ^ k * f u / (u - z) ^ Suc k) - f u / (u - w)) < e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 905 | if "n \<le> N" and r: "r = dist z u" for N u | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 906 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 907 | have N: "((r - k) / r) ^ N < e / B * k" | 
| 72266 | 908 | using le_less_trans [OF power_decreasing n] | 
| 909 | using \<open>n \<le> N\<close> k by auto | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 910 | have u [simp]: "(u \<noteq> z) \<and> (u \<noteq> w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 911 | using \<open>0 < r\<close> r w by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 912 | have wzu_not1: "(w - z) / (u - z) \<noteq> 1" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 913 | by (metis (no_types) dist_norm divide_eq_1_iff less_irrefl mem_ball norm_minus_commute r w) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 914 | have "norm ((\<Sum>k<N. (w - z) ^ k * f u / (u - z) ^ Suc k) * (u - w) - f u) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 915 | = norm ((\<Sum>k<N. (((w - z) / (u - z)) ^ k)) * f u * (u - w) / (u - z) - f u)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 916 | unfolding sum_distrib_right sum_divide_distrib power_divide by (simp add: algebra_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 917 | also have "\<dots> = norm ((((w - z) / (u - z)) ^ N - 1) * (u - w) / (((w - z) / (u - z) - 1) * (u - z)) - 1) * norm (f u)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 918 | using \<open>0 < B\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 919 | apply (auto simp: geometric_sum [OF wzu_not1]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 920 | apply (simp add: field_simps norm_mult [symmetric]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 921 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 922 | also have "\<dots> = norm ((u-z) ^ N * (w - u) - ((w - z) ^ N - (u-z) ^ N) * (u-w)) / (r ^ N * norm (u-w)) * norm (f u)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 923 | using \<open>0 < r\<close> r by (simp add: divide_simps norm_mult norm_divide norm_power dist_norm norm_minus_commute) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 924 | also have "\<dots> = norm ((w - z) ^ N * (w - u)) / (r ^ N * norm (u - w)) * norm (f u)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 925 | by (simp add: algebra_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 926 | also have "\<dots> = norm (w - z) ^ N * norm (f u) / r ^ N" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 927 | by (simp add: norm_mult norm_power norm_minus_commute) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 928 | also have "\<dots> \<le> (((r - k)/r)^N) * B" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 929 | using \<open>0 < r\<close> w k | 
| 72266 | 930 | by (simp add: B divide_simps mult_mono r wz_eq) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 931 | also have "\<dots> < e * k" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 932 | using \<open>0 < B\<close> N by (simp add: divide_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 933 | also have "\<dots> \<le> e * norm (u - w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 934 | using r kle \<open>0 < e\<close> by (simp add: dist_commute dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 935 | finally show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 936 | by (simp add: field_split_simps norm_divide del: power_Suc) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 937 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 938 | with \<open>0 < r\<close> show "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>sphere z r. | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 939 | norm ((\<Sum>k<n. (w - z) ^ k * (f x / (x - z) ^ Suc k)) - f x / (x - w)) < e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 940 | by (auto simp: mult_ac less_imp_le eventually_sequentially Ball_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 941 | qed | 
| 72266 | 942 |   have \<section>: "\<And>x k. k\<in> {..<x} \<Longrightarrow>
 | 
| 943 | (\<lambda>u. (w - z) ^ k * (f u / (u - z) ^ Suc k)) contour_integrable_on circlepath z r" | |
| 944 | using contour_integrable_lmul [OF cint, of "(w - z) ^ a" for a] by (simp add: field_simps) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 945 | have eq: "\<forall>\<^sub>F x in sequentially. | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 946 | contour_integral (circlepath z r) (\<lambda>u. \<Sum>k<x. (w - z) ^ k * (f u / (u - z) ^ Suc k)) = | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 947 | (\<Sum>k<x. contour_integral (circlepath z r) (\<lambda>u. f u / (u - z) ^ Suc k) * (w - z) ^ k)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 948 | apply (rule eventuallyI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 949 | apply (subst contour_integral_sum, simp) | 
| 72266 | 950 | apply (simp_all only: \<section> contour_integral_lmul cint algebra_simps) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 951 | done | 
| 72266 | 952 |   have "\<And>u k. k \<in> {..<u} \<Longrightarrow> (\<lambda>x. f x / (x - z) ^ Suc k) contour_integrable_on circlepath z r"
 | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 953 | using \<open>0 < r\<close> by (force intro!: Cauchy_higher_derivative_integral_circlepath [OF contf holf]) | 
| 72266 | 954 | then have "\<And>u. (\<lambda>y. \<Sum>k<u. (w - z) ^ k * (f y / (y - z) ^ Suc k)) contour_integrable_on circlepath z r" | 
| 955 | by (intro contour_integrable_sum contour_integrable_lmul, simp) | |
| 956 | then have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u/(u - z)^(Suc k)) * (w - z)^k) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 957 | sums contour_integral (circlepath z r) (\<lambda>u. f u/(u - w))" | 
| 72266 | 958 | unfolding sums_def using \<open>0 < r\<close> | 
| 959 | by (intro Lim_transform_eventually [OF _ eq] contour_integral_uniform_limit_circlepath [OF eventuallyI ul]) auto | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 960 | then have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u/(u - z)^(Suc k)) * (w - z)^k) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 961 | sums (2 * of_real pi * \<i> * f w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 962 | using w by (auto simp: dist_commute dist_norm contour_integral_unique [OF Cauchy_integral_circlepath_simple [OF holfc]]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 963 | then have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u / (u - z) ^ Suc k) * (w - z)^k / (\<i> * (of_real pi * 2))) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 964 | sums ((2 * of_real pi * \<i> * f w) / (\<i> * (complex_of_real pi * 2)))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 965 | by (rule sums_divide) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 966 | then have "(\<lambda>n. (w - z) ^ n * contour_integral (circlepath z r) (\<lambda>u. f u / (u - z) ^ Suc n) / (\<i> * (of_real pi * 2))) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 967 | sums f w" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 968 | by (simp add: field_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 969 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 970 | by (simp add: field_simps \<open>0 < r\<close> Cauchy_higher_derivative_integral_circlepath [OF contf holf]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 971 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 972 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 973 | subsection\<open>The Liouville theorem and the Fundamental Theorem of Algebra\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 974 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 975 | text\<open> These weak Liouville versions don't even need the derivative formula.\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 976 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 977 | lemma Liouville_weak_0: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 978 | assumes holf: "f holomorphic_on UNIV" and inf: "(f \<longlongrightarrow> 0) at_infinity" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 979 | shows "f z = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 980 | proof (rule ccontr) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 981 | assume fz: "f z \<noteq> 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 982 | with inf [unfolded Lim_at_infinity, rule_format, of "norm(f z)/2"] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 983 | obtain B where B: "\<And>x. B \<le> cmod x \<Longrightarrow> norm (f x) * 2 < cmod (f z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 984 | by (auto simp: dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 985 | define R where "R = 1 + \<bar>B\<bar> + norm z" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 986 | have "R > 0" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 987 | unfolding R_def by (smt (verit) norm_ge_zero) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 988 | have *: "((\<lambda>u. f u / (u - z)) has_contour_integral 2 * complex_of_real pi * \<i> * f z) (circlepath z R)" | 
| 72266 | 989 | using continuous_on_subset holf holomorphic_on_subset \<open>0 < R\<close> | 
| 990 | by (force intro: holomorphic_on_imp_continuous_on Cauchy_integral_circlepath) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 991 | have "cmod (x - z) = R \<Longrightarrow> cmod (f x) * 2 < cmod (f z)" for x | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 992 | unfolding R_def by (rule B) (use norm_triangle_ineq4 [of x z] in auto) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 993 | with \<open>R > 0\<close> fz show False | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 994 | using has_contour_integral_bound_circlepath [OF *, of "norm(f z)/2/R"] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 995 | by (auto simp: less_imp_le norm_mult norm_divide field_split_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 996 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 997 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 998 | proposition Liouville_weak: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 999 | assumes "f holomorphic_on UNIV" and "(f \<longlongrightarrow> l) at_infinity" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1000 | shows "f z = l" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1001 | using Liouville_weak_0 [of "\<lambda>z. f z - l"] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1002 | by (simp add: assms holomorphic_on_diff LIM_zero) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1003 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1004 | proposition Liouville_weak_inverse: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1005 | assumes "f holomorphic_on UNIV" and unbounded: "\<And>B. eventually (\<lambda>x. norm (f x) \<ge> B) at_infinity" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1006 | obtains z where "f z = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1007 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1008 |   { assume f: "\<And>z. f z \<noteq> 0"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1009 | have 1: "(\<lambda>x. 1 / f x) holomorphic_on UNIV" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1010 | by (simp add: holomorphic_on_divide assms f) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1011 | have 2: "((\<lambda>x. 1 / f x) \<longlongrightarrow> 0) at_infinity" | 
| 72266 | 1012 | proof (rule tendstoI [OF eventually_mono]) | 
| 1013 | fix e::real | |
| 1014 | assume "e > 0" | |
| 1015 | show "eventually (\<lambda>x. 2/e \<le> cmod (f x)) at_infinity" | |
| 1016 | by (rule_tac B="2/e" in unbounded) | |
| 1017 | qed (simp add: dist_norm norm_divide field_split_simps) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1018 | have False | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1019 | using Liouville_weak_0 [OF 1 2] f by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1020 | } | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1021 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1022 | using that by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1023 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1024 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1025 | text\<open> In particular we get the Fundamental Theorem of Algebra.\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1026 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1027 | theorem fundamental_theorem_of_algebra: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1028 | fixes a :: "nat \<Rightarrow> complex" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1029 |   assumes "a 0 = 0 \<or> (\<exists>i \<in> {1..n}. a i \<noteq> 0)"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1030 | obtains z where "(\<Sum>i\<le>n. a i * z^i) = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1031 | using assms | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1032 | proof (elim disjE bexE) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1033 | assume "a 0 = 0" then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1034 | by (auto simp: that [of 0]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1035 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1036 | fix i | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1037 |   assume i: "i \<in> {1..n}" and nz: "a i \<noteq> 0"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1038 | have 1: "(\<lambda>z. \<Sum>i\<le>n. a i * z^i) holomorphic_on UNIV" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1039 | by (rule holomorphic_intros)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1040 | show thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1041 | proof (rule Liouville_weak_inverse [OF 1]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1042 | show "\<forall>\<^sub>F x in at_infinity. B \<le> cmod (\<Sum>i\<le>n. a i * x ^ i)" for B | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1043 | using i nz by (intro polyfun_extremal exI[of _ i]) auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1044 | qed (use that in auto) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1045 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1046 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1047 | subsection\<open>Weierstrass convergence theorem\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1048 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1049 | lemma holomorphic_uniform_limit: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1050 | assumes cont: "eventually (\<lambda>n. continuous_on (cball z r) (f n) \<and> (f n) holomorphic_on ball z r) F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1051 | and ulim: "uniform_limit (cball z r) f g F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1052 | and F: "\<not> trivial_limit F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1053 | obtains "continuous_on (cball z r) g" "g holomorphic_on ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1054 | proof (cases r "0::real" rule: linorder_cases) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1055 | case less then show ?thesis by (force simp: ball_empty less_imp_le continuous_on_def holomorphic_on_def intro: that) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1056 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1057 | case equal then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1058 | by (force simp: holomorphic_on_def intro: that) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1059 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1060 | case greater | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1061 | have contg: "continuous_on (cball z r) g" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1062 | using cont uniform_limit_theorem [OF eventually_mono ulim F] by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1063 | have "path_image (circlepath z r) \<subseteq> cball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1064 | using \<open>0 < r\<close> by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1065 | then have 1: "continuous_on (path_image (circlepath z r)) (\<lambda>x. 1 / (2 * complex_of_real pi * \<i>) * g x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1066 | by (intro continuous_intros continuous_on_subset [OF contg]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1067 | have 2: "((\<lambda>u. 1 / (2 * of_real pi * \<i>) * g u / (u - w) ^ 1) has_contour_integral g w) (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1068 | if w: "w \<in> ball z r" for w | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1069 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1070 | define d where "d = (r - norm(w - z))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1071 | have "0 < d" "d \<le> r" using w by (auto simp: norm_minus_commute d_def dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1072 | have dle: "\<And>u. cmod (z - u) = r \<Longrightarrow> d \<le> cmod (u - w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1073 | unfolding d_def by (metis add_diff_eq diff_add_cancel norm_diff_ineq norm_minus_commute) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1074 | have ev_int: "\<forall>\<^sub>F n in F. (\<lambda>u. f n u / (u - w)) contour_integrable_on circlepath z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1075 | using w | 
| 72266 | 1076 | by (auto intro: eventually_mono [OF cont] Cauchy_higher_derivative_integral_circlepath [where k=0, simplified]) | 
| 1077 | have "\<And>e. \<lbrakk>0 < r; 0 < d; 0 < e\<rbrakk> | |
| 1078 | \<Longrightarrow> \<forall>\<^sub>F n in F. | |
| 1079 | \<forall>x\<in>sphere z r. | |
| 1080 | x \<noteq> w \<longrightarrow> | |
| 1081 | cmod (f n x - g x) < e * cmod (x - w)" | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1082 | apply (rule_tac e1="e * d" in eventually_mono [OF uniform_limitD [OF ulim]]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1083 | apply (force simp: dist_norm intro: dle mult_left_mono less_le_trans)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1084 | done | 
| 72266 | 1085 | then have ul_less: "uniform_limit (sphere z r) (\<lambda>n x. f n x / (x - w)) (\<lambda>x. g x / (x - w)) F" | 
| 1086 | using greater \<open>0 < d\<close> | |
| 1087 | by (auto simp add: uniform_limit_iff dist_norm norm_divide diff_divide_distrib [symmetric] divide_simps) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1088 | have g_cint: "(\<lambda>u. g u/(u - w)) contour_integrable_on circlepath z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1089 | by (rule contour_integral_uniform_limit_circlepath [OF ev_int ul_less F \<open>0 < r\<close>]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1090 | have cif_tends_cig: "((\<lambda>n. contour_integral(circlepath z r) (\<lambda>u. f n u / (u - w))) \<longlongrightarrow> contour_integral(circlepath z r) (\<lambda>u. g u/(u - w))) F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1091 | by (rule contour_integral_uniform_limit_circlepath [OF ev_int ul_less F \<open>0 < r\<close>]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1092 | have f_tends_cig: "((\<lambda>n. 2 * of_real pi * \<i> * f n w) \<longlongrightarrow> contour_integral (circlepath z r) (\<lambda>u. g u / (u - w))) F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1093 | proof (rule Lim_transform_eventually) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1094 | show "\<forall>\<^sub>F x in F. contour_integral (circlepath z r) (\<lambda>u. f x u / (u - w)) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1095 | = 2 * of_real pi * \<i> * f x w" | 
| 72266 | 1096 | using w\<open>0 < d\<close> d_def | 
| 1097 | by (auto intro: eventually_mono [OF cont contour_integral_unique [OF Cauchy_integral_circlepath]]) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1098 | qed (auto simp: cif_tends_cig) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1099 | have "\<And>e. 0 < e \<Longrightarrow> \<forall>\<^sub>F n in F. dist (f n w) (g w) < e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1100 | by (rule eventually_mono [OF uniform_limitD [OF ulim]]) (use w in auto) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1101 | then have "((\<lambda>n. 2 * of_real pi * \<i> * f n w) \<longlongrightarrow> 2 * of_real pi * \<i> * g w) F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1102 | by (rule tendsto_mult_left [OF tendstoI]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1103 | then have "((\<lambda>u. g u / (u - w)) has_contour_integral 2 * of_real pi * \<i> * g w) (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1104 | using has_contour_integral_integral [OF g_cint] tendsto_unique [OF F f_tends_cig] w | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1105 | by fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1106 | then have "((\<lambda>u. g u / (2 * of_real pi * \<i> * (u - w))) has_contour_integral g w) (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1107 | using has_contour_integral_div [where c = "2 * of_real pi * \<i>"] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1108 | by (force simp: field_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1109 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1110 | by (simp add: dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1111 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1112 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1113 | using Cauchy_next_derivative_circlepath(2) [OF 1 2, simplified] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1114 | by (fastforce simp add: holomorphic_on_open contg intro: that) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1115 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1116 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1117 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1118 | text\<open> Version showing that the limit is the limit of the derivatives.\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1119 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1120 | proposition has_complex_derivative_uniform_limit: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1121 | fixes z::complex | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1122 | assumes cont: "eventually (\<lambda>n. continuous_on (cball z r) (f n) \<and> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1123 | (\<forall>w \<in> ball z r. ((f n) has_field_derivative (f' n w)) (at w))) F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1124 | and ulim: "uniform_limit (cball z r) f g F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1125 | and F: "\<not> trivial_limit F" and "0 < r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1126 | obtains g' where | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1127 | "continuous_on (cball z r) g" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1128 | "\<And>w. w \<in> ball z r \<Longrightarrow> (g has_field_derivative (g' w)) (at w) \<and> ((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1129 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1130 | let ?conint = "contour_integral (circlepath z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1131 | have g: "continuous_on (cball z r) g" "g holomorphic_on ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1132 | by (rule holomorphic_uniform_limit [OF eventually_mono [OF cont] ulim F]; | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1133 | auto simp: holomorphic_on_open field_differentiable_def)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1134 | then obtain g' where g': "\<And>x. x \<in> ball z r \<Longrightarrow> (g has_field_derivative g' x) (at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1135 | using DERIV_deriv_iff_has_field_derivative | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1136 | by (fastforce simp add: holomorphic_on_open) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1137 | then have derg: "\<And>x. x \<in> ball z r \<Longrightarrow> deriv g x = g' x" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1138 | by (simp add: DERIV_imp_deriv) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1139 | have tends_f'n_g': "((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F" if w: "w \<in> ball z r" for w | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1140 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1141 | have eq_f': "?conint (\<lambda>x. f n x / (x - w)\<^sup>2) - ?conint (\<lambda>x. g x / (x - w)\<^sup>2) = (f' n w - g' w) * (2 * of_real pi * \<i>)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1142 | if cont_fn: "continuous_on (cball z r) (f n)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1143 | and fnd: "\<And>w. w \<in> ball z r \<Longrightarrow> (f n has_field_derivative f' n w) (at w)" for n | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1144 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1145 | have hol_fn: "f n holomorphic_on ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1146 | using fnd by (force simp: holomorphic_on_open) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1147 | have "(f n has_field_derivative 1 / (2 * of_real pi * \<i>) * ?conint (\<lambda>u. f n u / (u - w)\<^sup>2)) (at w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1148 | by (rule Cauchy_derivative_integral_circlepath [OF cont_fn hol_fn w]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1149 | then have f': "f' n w = 1 / (2 * of_real pi * \<i>) * ?conint (\<lambda>u. f n u / (u - w)\<^sup>2)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1150 | using DERIV_unique [OF fnd] w by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1151 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1152 | by (simp add: f' Cauchy_contour_integral_circlepath_2 [OF g w] derg [OF w] field_split_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1153 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1154 | define d where "d = (r - norm(w - z))^2" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1155 | have "d > 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1156 | using w by (simp add: dist_commute dist_norm d_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1157 | have dle: "d \<le> cmod ((y - w)\<^sup>2)" if "r = cmod (z - y)" for y | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1158 | proof - | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1159 | have "cmod (w - z) \<le> cmod (z - y)" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1160 | by (metis dist_commute dist_norm mem_ball order_less_imp_le that w) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1161 | moreover have "cmod (z - y) - cmod (w - z) \<le> cmod (y - w)" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1162 | by (metis diff_add_cancel diff_diff_eq2 norm_minus_commute norm_triangle_ineq2) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1163 | ultimately show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1164 | using that by (simp add: d_def norm_power power_mono) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1165 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1166 | have 1: "\<forall>\<^sub>F n in F. (\<lambda>x. f n x / (x - w)\<^sup>2) contour_integrable_on circlepath z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1167 | by (force simp: holomorphic_on_open intro: w Cauchy_derivative_integral_circlepath eventually_mono [OF cont]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1168 | have 2: "uniform_limit (sphere z r) (\<lambda>n x. f n x / (x - w)\<^sup>2) (\<lambda>x. g x / (x - w)\<^sup>2) F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1169 | unfolding uniform_limit_iff | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1170 | proof clarify | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1171 | fix e::real | 
| 72266 | 1172 | assume "e > 0" | 
| 1173 | with \<open>r > 0\<close> | |
| 1174 | have "\<forall>\<^sub>F n in F. \<forall>x. x \<noteq> w \<longrightarrow> cmod (z - x) = r \<longrightarrow> cmod (f n x - g x) < e * cmod ((x - w)\<^sup>2)" | |
| 1175 | by (force simp: \<open>0 < d\<close> dist_norm dle intro: less_le_trans eventually_mono [OF uniform_limitD [OF ulim], of "e*d"]) | |
| 1176 | with \<open>r > 0\<close> \<open>e > 0\<close> | |
| 1177 | show "\<forall>\<^sub>F n in F. \<forall>x\<in>sphere z r. dist (f n x / (x - w)\<^sup>2) (g x / (x - w)\<^sup>2) < e" | |
| 1178 | by (simp add: norm_divide field_split_simps sphere_def dist_norm) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1179 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1180 | have "((\<lambda>n. contour_integral (circlepath z r) (\<lambda>x. f n x / (x - w)\<^sup>2)) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1181 | \<longlongrightarrow> contour_integral (circlepath z r) ((\<lambda>x. g x / (x - w)\<^sup>2))) F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1182 | by (rule contour_integral_uniform_limit_circlepath [OF 1 2 F \<open>0 < r\<close>]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1183 | then have tendsto_0: "((\<lambda>n. 1 / (2 * of_real pi * \<i>) * (?conint (\<lambda>x. f n x / (x - w)\<^sup>2) - ?conint (\<lambda>x. g x / (x - w)\<^sup>2))) \<longlongrightarrow> 0) F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1184 | using Lim_null by (force intro!: tendsto_mult_right_zero) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1185 | have "((\<lambda>n. f' n w - g' w) \<longlongrightarrow> 0) F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1186 | apply (rule Lim_transform_eventually [OF tendsto_0]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1187 | apply (force simp: divide_simps intro: eq_f' eventually_mono [OF cont]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1188 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1189 | then show ?thesis using Lim_null by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1190 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1191 | obtain g' where "\<And>w. w \<in> ball z r \<Longrightarrow> (g has_field_derivative (g' w)) (at w) \<and> ((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1192 | by (blast intro: tends_f'n_g' g') | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1193 | then show ?thesis using g | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1194 | using that by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1195 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1196 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1197 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1198 | subsection\<^marker>\<open>tag unimportant\<close> \<open>Some more simple/convenient versions for applications\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1199 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1200 | lemma holomorphic_uniform_sequence: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1201 | assumes S: "open S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1202 | and hol_fn: "\<And>n. (f n) holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1203 | and ulim_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d. 0 < d \<and> cball x d \<subseteq> S \<and> uniform_limit (cball x d) f g sequentially" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1204 | shows "g holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1205 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1206 | have "\<exists>f'. (g has_field_derivative f') (at z)" if "z \<in> S" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1207 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1208 | obtain r where "0 < r" and r: "cball z r \<subseteq> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1209 | and ul: "uniform_limit (cball z r) f g sequentially" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1210 | using ulim_g [OF \<open>z \<in> S\<close>] by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1211 | have *: "\<forall>\<^sub>F n in sequentially. continuous_on (cball z r) (f n) \<and> f n holomorphic_on ball z r" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1212 | by (smt (verit, best) ball_subset_cball hol_fn holomorphic_on_imp_continuous_on | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1213 | holomorphic_on_subset not_eventuallyD r) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1214 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1215 | using \<open>0 < r\<close> centre_in_ball ul | 
| 72266 | 1216 | by (auto simp: holomorphic_on_open intro: holomorphic_uniform_limit [OF *]) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1217 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1218 | with S show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1219 | by (simp add: holomorphic_on_open) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1220 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1221 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1222 | lemma has_complex_derivative_uniform_sequence: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1223 | fixes S :: "complex set" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1224 | assumes S: "open S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1225 | and hfd: "\<And>n x. x \<in> S \<Longrightarrow> ((f n) has_field_derivative f' n x) (at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1226 | and ulim_g: "\<And>x. x \<in> S | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1227 | \<Longrightarrow> \<exists>d. 0 < d \<and> cball x d \<subseteq> S \<and> uniform_limit (cball x d) f g sequentially" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1228 | shows "\<exists>g'. \<forall>x \<in> S. (g has_field_derivative g' x) (at x) \<and> ((\<lambda>n. f' n x) \<longlongrightarrow> g' x) sequentially" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1229 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1230 | have y: "\<exists>y. (g has_field_derivative y) (at z) \<and> (\<lambda>n. f' n z) \<longlonglongrightarrow> y" if "z \<in> S" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1231 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1232 | obtain r where "0 < r" and r: "cball z r \<subseteq> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1233 | and ul: "uniform_limit (cball z r) f g sequentially" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1234 | using ulim_g [OF \<open>z \<in> S\<close>] by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1235 | have *: "\<forall>\<^sub>F n in sequentially. continuous_on (cball z r) (f n) \<and> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1236 | (\<forall>w \<in> ball z r. ((f n) has_field_derivative (f' n w)) (at w))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1237 | proof (intro eventuallyI conjI ballI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1238 | show "continuous_on (cball z r) (f x)" for x | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1239 | by (meson S continuous_on_subset hfd holomorphic_on_imp_continuous_on holomorphic_on_open r) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1240 | show "w \<in> ball z r \<Longrightarrow> (f x has_field_derivative f' x w) (at w)" for w x | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1241 | using ball_subset_cball hfd r by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1242 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1243 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1244 | by (rule has_complex_derivative_uniform_limit [OF *, of g]) (use \<open>0 < r\<close> ul in \<open>force+\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1245 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1246 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1247 | by (rule bchoice) (blast intro: y) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1248 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1249 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1250 | subsection\<open>On analytic functions defined by a series\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1251 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1252 | lemma series_and_derivative_comparison: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1253 | fixes S :: "complex set" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1254 | assumes S: "open S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1255 | and h: "summable h" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1256 | and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1257 | and to_g: "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. norm (f n x) \<le> h n" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1258 | obtains g g' where "\<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1259 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1260 | obtain g where g: "uniform_limit S (\<lambda>n x. \<Sum>i<n. f i x) g sequentially" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1261 | using Weierstrass_m_test_ev [OF to_g h] by force | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1262 | have *: "\<exists>d>0. cball x d \<subseteq> S \<and> uniform_limit (cball x d) (\<lambda>n x. \<Sum>i<n. f i x) g sequentially" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1263 | if "x \<in> S" for x | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1264 | using open_contains_cball [of "S"] \<open>x \<in> S\<close> S g uniform_limit_on_subset by blast | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1265 | have "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>n. \<Sum>i<n. f i x) \<longlonglongrightarrow> g x" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1266 | by (metis tendsto_uniform_limitI [OF g]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1267 | moreover have "\<exists>g'. \<forall>x\<in>S. (g has_field_derivative g' x) (at x) \<and> (\<lambda>n. \<Sum>i<n. f' i x) \<longlonglongrightarrow> g' x" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1268 | by (rule has_complex_derivative_uniform_sequence [OF S]) (auto intro: * hfd DERIV_sum)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1269 | ultimately show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1270 | by (metis sums_def that) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1271 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1272 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1273 | text\<open>A version where we only have local uniform/comparative convergence.\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1274 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1275 | lemma series_and_derivative_comparison_local: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1276 | fixes S :: "complex set" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1277 | assumes S: "open S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1278 | and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1279 | and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. norm (f n y) \<le> h n)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1280 | shows "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1281 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1282 | have "\<exists>y. (\<lambda>n. f n z) sums (\<Sum>n. f n z) \<and> (\<lambda>n. f' n z) sums y \<and> ((\<lambda>x. \<Sum>n. f n x) has_field_derivative y) (at z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1283 | if "z \<in> S" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1284 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1285 | obtain d h where "0 < d" "summable h" and le_h: "\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball z d \<inter> S. norm (f n y) \<le> h n" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1286 | using to_g \<open>z \<in> S\<close> by meson | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1287 | then obtain r where "r>0" and r: "ball z r \<subseteq> ball z d \<inter> S" using \<open>z \<in> S\<close> S | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1288 | by (metis Int_iff open_ball centre_in_ball open_Int open_contains_ball_eq) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1289 | have 1: "open (ball z d \<inter> S)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1290 | by (simp add: open_Int S) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1291 | have 2: "\<And>n x. x \<in> ball z d \<inter> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1292 | by (auto simp: hfd) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1293 | obtain g g' where gg': "\<forall>x \<in> ball z d \<inter> S. ((\<lambda>n. f n x) sums g x) \<and> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1294 | ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1295 | by (auto intro: le_h series_and_derivative_comparison [OF 1 \<open>summable h\<close> hfd]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1296 | then have "(\<lambda>n. f' n z) sums g' z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1297 | by (meson \<open>0 < r\<close> centre_in_ball contra_subsetD r) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1298 | moreover have "(\<lambda>n. f n z) sums (\<Sum>n. f n z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1299 | using summable_sums centre_in_ball \<open>0 < d\<close> \<open>summable h\<close> le_h | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1300 | by (metis (full_types) Int_iff gg' summable_def that) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1301 | moreover have "((\<lambda>x. \<Sum>n. f n x) has_field_derivative g' z) (at z)" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1302 | by (metis (no_types, lifting) "1" r \<open>0 < r\<close> gg' has_field_derivative_transform_within_open | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1303 | open_contains_ball_eq sums_unique) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1304 | ultimately show ?thesis by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1305 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1306 | then show ?thesis | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1307 | by meson | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1308 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1309 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1310 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1311 | text\<open>Sometimes convenient to compare with a complex series of positive reals. (?)\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1312 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1313 | lemma series_and_derivative_comparison_complex: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1314 | fixes S :: "complex set" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1315 | assumes S: "open S" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 1316 | and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 1317 | and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> range h \<subseteq> \<real>\<^sub>\<ge>\<^sub>0 \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. cmod(f n y) \<le> cmod (h n))" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1318 | shows "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 1319 | apply (rule series_and_derivative_comparison_local [OF S hfd], assumption) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 1320 | apply (rule ex_forward [OF to_g], assumption) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 1321 | apply (erule exE) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 1322 | apply (rule_tac x="Re \<circ> h" in exI) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 1323 | apply (force simp: summable_Re o_def nonneg_Reals_cmod_eq_Re image_subset_iff) | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 1324 | done | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1325 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1326 | text\<open>Sometimes convenient to compare with a complex series of positive reals. (?)\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1327 | lemma series_differentiable_comparison_complex: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1328 | fixes S :: "complex set" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1329 | assumes S: "open S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1330 | and hfd: "\<And>n x. x \<in> S \<Longrightarrow> f n field_differentiable (at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1331 | and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> range h \<subseteq> \<real>\<^sub>\<ge>\<^sub>0 \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. cmod(f n y) \<le> cmod (h n))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1332 | obtains g where "\<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> g field_differentiable (at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1333 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1334 | have hfd': "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative deriv (f n) x) (at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1335 | using hfd field_differentiable_derivI by blast | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1336 | show ?thesis | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1337 | by (metis field_differentiable_def that series_and_derivative_comparison_complex [OF S hfd' to_g]) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1338 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1339 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1340 | text\<open>In particular, a power series is analytic inside circle of convergence.\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1341 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1342 | lemma power_series_and_derivative_0: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1343 | fixes a :: "nat \<Rightarrow> complex" and r::real | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1344 | assumes "summable (\<lambda>n. a n * r^n)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1345 | shows "\<exists>g g'. \<forall>z. cmod z < r \<longrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1346 | ((\<lambda>n. a n * z^n) sums g z) \<and> ((\<lambda>n. of_nat n * a n * z^(n - 1)) sums g' z) \<and> (g has_field_derivative g' z) (at z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1347 | proof (cases "0 < r") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1348 | case True | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1349 | have der: "\<And>n z. ((\<lambda>x. a n * x ^ n) has_field_derivative of_nat n * a n * z ^ (n - 1)) (at z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1350 | by (rule derivative_eq_intros | simp)+ | 
| 72266 | 1351 | have y_le: "cmod y \<le> cmod (of_real r + of_real (cmod z)) / 2" | 
| 1352 | if "cmod (z - y) * 2 < r - cmod z" for z y | |
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1353 | by (smt (verit, best) field_sum_of_halves norm_minus_commute norm_of_real norm_triangle_ineq2 of_real_add that) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1354 | have "summable (\<lambda>n. a n * complex_of_real r ^ n)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1355 | using assms \<open>r > 0\<close> by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1356 | moreover have "\<And>z. cmod z < r \<Longrightarrow> cmod ((of_real r + of_real (cmod z)) / 2) < cmod (of_real r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1357 | using \<open>r > 0\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1358 | by (simp flip: of_real_add) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1359 | ultimately have sum: "\<And>z. cmod z < r \<Longrightarrow> summable (\<lambda>n. of_real (cmod (a n)) * ((of_real r + complex_of_real (cmod z)) / 2) ^ n)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1360 | by (rule power_series_conv_imp_absconv_weak) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1361 | have "\<exists>g g'. \<forall>z \<in> ball 0 r. (\<lambda>n. (a n) * z ^ n) sums g z \<and> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1362 | (\<lambda>n. of_nat n * (a n) * z ^ (n - 1)) sums g' z \<and> (g has_field_derivative g' z) (at z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1363 | apply (rule series_and_derivative_comparison_complex [OF open_ball der]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1364 | apply (rule_tac x="(r - norm z)/2" in exI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1365 | apply (rule_tac x="\<lambda>n. of_real(norm(a n)*((r + norm z)/2)^n)" in exI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1366 | using \<open>r > 0\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1367 | apply (auto simp: sum eventually_sequentially norm_mult norm_power dist_norm intro!: mult_left_mono power_mono y_le) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1368 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1369 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1370 | by (simp add: ball_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1371 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1372 | case False then show ?thesis | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1373 | unfolding not_less using less_le_trans norm_not_less_zero by blast | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1374 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1375 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1376 | proposition\<^marker>\<open>tag unimportant\<close> power_series_and_derivative: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1377 | fixes a :: "nat \<Rightarrow> complex" and r::real | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1378 | assumes "summable (\<lambda>n. a n * r^n)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1379 | obtains g g' where "\<forall>z \<in> ball w r. | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1380 | ((\<lambda>n. a n * (z - w) ^ n) sums g z) \<and> ((\<lambda>n. of_nat n * a n * (z - w) ^ (n - 1)) sums g' z) \<and> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1381 | (g has_field_derivative g' z) (at z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1382 | using power_series_and_derivative_0 [OF assms] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1383 | apply clarify | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1384 | apply (rule_tac g="(\<lambda>z. g(z - w))" in that) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1385 | using DERIV_shift [where z="-w"] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1386 | apply (auto simp: norm_minus_commute Ball_def dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1387 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1388 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1389 | proposition\<^marker>\<open>tag unimportant\<close> power_series_holomorphic: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1390 | assumes "\<And>w. w \<in> ball z r \<Longrightarrow> ((\<lambda>n. a n*(w - z)^n) sums f w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1391 | shows "f holomorphic_on ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1392 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1393 | have "\<exists>f'. (f has_field_derivative f') (at w)" if w: "dist z w < r" for w | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1394 | proof - | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1395 | have wz: "cmod (w - z) < r" using w | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1396 | by (auto simp: field_split_simps dist_norm norm_minus_commute) | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1397 | then have "0 \<le> r" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1398 | by (meson less_eq_real_def norm_ge_zero order_trans) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1399 | have inb: "z + complex_of_real ((dist z w + r) / 2) \<in> ball z r" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1400 | using w by (simp add: dist_norm \<open>0\<le>r\<close> flip: of_real_add) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1401 | have sum: "summable (\<lambda>n. a n * of_real (((cmod (z - w) + r) / 2) ^ n))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1402 | using assms [OF inb] by (force simp: summable_def dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1403 | obtain g g' where gg': "\<And>u. u \<in> ball z ((cmod (z - w) + r) / 2) \<Longrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1404 | (\<lambda>n. a n * (u - z) ^ n) sums g u \<and> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1405 | (\<lambda>n. of_nat n * a n * (u - z) ^ (n - 1)) sums g' u \<and> (g has_field_derivative g' u) (at u)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1406 | by (rule power_series_and_derivative [OF sum, of z]) fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1407 | have [simp]: "g u = f u" if "cmod (u - w) < (r - cmod (z - w)) / 2" for u | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1408 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1409 | have less: "cmod (z - u) * 2 < cmod (z - w) + r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1410 | using that dist_triangle2 [of z u w] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1411 | by (simp add: dist_norm [symmetric] algebra_simps) | 
| 72266 | 1412 | have "(\<lambda>n. a n * (u - z) ^ n) sums g u" "(\<lambda>n. a n * (u - z) ^ n) sums f u" | 
| 1413 | using gg' [of u] less w by (auto simp: assms dist_norm) | |
| 1414 | then show ?thesis | |
| 1415 | by (metis sums_unique2) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1416 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1417 | have "(f has_field_derivative g' w) (at w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1418 | by (rule has_field_derivative_transform_within [where d="(r - norm(z - w))/2"]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1419 | (use w gg' [of w] in \<open>(force simp: dist_norm)+\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1420 | then show ?thesis .. | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1421 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1422 | then show ?thesis by (simp add: holomorphic_on_open) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1423 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1424 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1425 | corollary holomorphic_iff_power_series: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1426 | "f holomorphic_on ball z r \<longleftrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1427 | (\<forall>w \<in> ball z r. (\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 1428 | using power_series_holomorphic [where a = "\<lambda>n. (deriv ^^ n) f z / (fact n)"] holomorphic_power_series | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 1429 | by blast | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1430 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1431 | lemma power_series_analytic: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1432 | "(\<And>w. w \<in> ball z r \<Longrightarrow> (\<lambda>n. a n*(w - z)^n) sums f w) \<Longrightarrow> f analytic_on ball z r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1433 | by (force simp: analytic_on_open intro!: power_series_holomorphic) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1434 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1435 | lemma analytic_iff_power_series: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1436 | "f analytic_on ball z r \<longleftrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1437 | (\<forall>w \<in> ball z r. (\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n) sums f w)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1438 | by (simp add: analytic_on_open holomorphic_iff_power_series) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1439 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1440 | subsection\<^marker>\<open>tag unimportant\<close> \<open>Equality between holomorphic functions, on open ball then connected set\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1441 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1442 | lemma holomorphic_fun_eq_on_ball: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1443 | "\<lbrakk>f holomorphic_on ball z r; g holomorphic_on ball z r; | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1444 | w \<in> ball z r; | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1445 | \<And>n. (deriv ^^ n) f z = (deriv ^^ n) g z\<rbrakk> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1446 | \<Longrightarrow> f w = g w" | 
| 72266 | 1447 | by (auto simp: holomorphic_iff_power_series sums_unique2 [of "\<lambda>n. (deriv ^^ n) f z / (fact n) * (w - z)^n"]) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1448 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1449 | lemma holomorphic_fun_eq_0_on_ball: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1450 | "\<lbrakk>f holomorphic_on ball z r; w \<in> ball z r; | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1451 | \<And>n. (deriv ^^ n) f z = 0\<rbrakk> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1452 | \<Longrightarrow> f w = 0" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1453 | using holomorphic_fun_eq_on_ball [where g = "\<lambda>z. 0"] by simp | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1454 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1455 | lemma holomorphic_fun_eq_0_on_connected: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1456 | assumes holf: "f holomorphic_on S" and "open S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1457 | and cons: "connected S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1458 | and der: "\<And>n. (deriv ^^ n) f z = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1459 | and "z \<in> S" "w \<in> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1460 | shows "f w = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1461 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1462 |   have *: "ball x e \<subseteq> (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1463 | if "\<forall>u. (deriv ^^ u) f x = 0" "ball x e \<subseteq> S" for x e | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1464 | proof - | 
| 72266 | 1465 | have "(deriv ^^ m) ((deriv ^^ n) f) x = 0" for m n | 
| 1466 | by (metis funpow_add o_apply that(1)) | |
| 1467 | then have "\<And>x' n. dist x x' < e \<Longrightarrow> (deriv ^^ n) f x' = 0" | |
| 1468 | using \<open>open S\<close> | |
| 1469 | by (meson holf holomorphic_fun_eq_0_on_ball holomorphic_higher_deriv holomorphic_on_subset mem_ball that(2)) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1470 | with that show ?thesis by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1471 | qed | 
| 72266 | 1472 | obtain e where "e>0" and e: "ball w e \<subseteq> S" using openE [OF \<open>open S\<close> \<open>w \<in> S\<close>] . | 
| 1473 | then have holfb: "f holomorphic_on ball w e" | |
| 1474 | using holf holomorphic_on_subset by blast | |
| 1475 |   have "open (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
 | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1476 | using \<open>open S\<close> | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1477 | apply (simp add: open_contains_ball Ball_def image_iff) | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1478 | by (metis (mono_tags) "*" mem_Collect_eq) | 
| 72266 | 1479 |   then have "openin (top_of_set S) (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
 | 
| 1480 | by (force intro: open_subset) | |
| 1481 |   moreover have "closedin (top_of_set S) (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
 | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1482 | using assms | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1483 | by (auto intro: continuous_closedin_preimage_constant holomorphic_on_imp_continuous_on holomorphic_higher_deriv) | 
| 72266 | 1484 |   moreover have "(\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0}) = S \<Longrightarrow> f w = 0"
 | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1485 | using \<open>e>0\<close> e by (force intro: holomorphic_fun_eq_0_on_ball [OF holfb]) | 
| 72266 | 1486 | ultimately show ?thesis | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1487 | using cons der \<open>z \<in> S\<close> | 
| 72266 | 1488 | by (auto simp add: connected_clopen) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1489 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1490 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1491 | lemma holomorphic_fun_eq_on_connected: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1492 | assumes "f holomorphic_on S" "g holomorphic_on S" and "open S" "connected S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1493 | and "\<And>n. (deriv ^^ n) f z = (deriv ^^ n) g z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1494 | and "z \<in> S" "w \<in> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1495 | shows "f w = g w" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1496 | proof (rule holomorphic_fun_eq_0_on_connected [of "\<lambda>x. f x - g x" S z, simplified]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1497 | show "(\<lambda>x. f x - g x) holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1498 | by (intro assms holomorphic_intros) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1499 | show "\<And>n. (deriv ^^ n) (\<lambda>x. f x - g x) z = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1500 | using assms higher_deriv_diff by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1501 | qed (use assms in auto) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1502 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1503 | lemma holomorphic_fun_eq_const_on_connected: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1504 | assumes holf: "f holomorphic_on S" and "open S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1505 | and cons: "connected S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1506 | and der: "\<And>n. 0 < n \<Longrightarrow> (deriv ^^ n) f z = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1507 | and "z \<in> S" "w \<in> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1508 | shows "f w = f z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1509 | proof (rule holomorphic_fun_eq_0_on_connected [of "\<lambda>w. f w - f z" S z, simplified]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1510 | show "(\<lambda>w. f w - f z) holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1511 | by (intro assms holomorphic_intros) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1512 | show "\<And>n. (deriv ^^ n) (\<lambda>w. f w - f z) z = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1513 | by (subst higher_deriv_diff) (use assms in \<open>auto intro: holomorphic_intros\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1514 | qed (use assms in auto) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1515 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1516 | subsection\<^marker>\<open>tag unimportant\<close> \<open>Some basic lemmas about poles/singularities\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1517 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1518 | lemma pole_lemma: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1519 | assumes holf: "f holomorphic_on S" and a: "a \<in> interior S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1520 | shows "(\<lambda>z. if z = a then deriv f a | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1521 | else (f z - f a) / (z - a)) holomorphic_on S" (is "?F holomorphic_on S") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1522 | proof - | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1523 | have *: "?F field_differentiable (at u within S)" if "u \<in> S" "u \<noteq> a" for u | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1524 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1525 | have fcd: "f field_differentiable at u within S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1526 | using holf holomorphic_on_def by (simp add: \<open>u \<in> S\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1527 | have cd: "(\<lambda>z. (f z - f a) / (z - a)) field_differentiable at u within S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1528 | by (rule fcd derivative_intros | simp add: that)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1529 | have "0 < dist a u" using that dist_nz by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1530 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1531 | by (rule field_differentiable_transform_within [OF _ _ _ cd]) (auto simp: \<open>u \<in> S\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1532 | qed | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1533 | moreover | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1534 | have "?F field_differentiable at a" if "0 < e" "ball a e \<subseteq> S" for e | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1535 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1536 | have holfb: "f holomorphic_on ball a e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1537 | by (rule holomorphic_on_subset [OF holf \<open>ball a e \<subseteq> S\<close>]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1538 |     have 2: "?F holomorphic_on ball a e - {a}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1539 | using mem_ball that | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1540 | by (auto simp add: holomorphic_on_def simp flip: field_differentiable_def intro: * field_differentiable_within_subset) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1541 | have "isCont (\<lambda>z. if z = a then deriv f a else (f z - f a) / (z - a)) x" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1542 | if "dist a x < e" for x | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1543 | proof (cases "x=a") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1544 | case True | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1545 | then have "f field_differentiable at a" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1546 | using holfb \<open>0 < e\<close> holomorphic_on_imp_differentiable_at by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1547 | with True show ?thesis | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1548 | by (smt (verit) DERIV_deriv_iff_field_differentiable LIM_equal continuous_at has_field_derivativeD) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1549 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1550 | case False with 2 that show ?thesis | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1551 | by (simp add: field_differentiable_imp_continuous_at holomorphic_on_imp_differentiable_at open_Diff) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1552 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1553 | then have 1: "continuous_on (ball a e) ?F" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1554 | by (clarsimp simp: continuous_on_eq_continuous_at) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1555 | have "?F holomorphic_on ball a e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1556 | by (auto intro: no_isolated_singularity [OF 1 2]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1557 | with that show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1558 | by (simp add: holomorphic_on_open field_differentiable_def [symmetric] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1559 | field_differentiable_at_within) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1560 | qed | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1561 | ultimately show ?thesis | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1562 | by (metis (no_types, lifting) holomorphic_onI a field_differentiable_at_within interior_subset openE open_interior subset_iff) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1563 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1564 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1565 | lemma pole_theorem: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1566 | assumes holg: "g holomorphic_on S" and a: "a \<in> interior S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1567 |       and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1568 | shows "(\<lambda>z. if z = a then deriv g a | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1569 | else f z - g a/(z - a)) holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1570 | using pole_lemma [OF holg a] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1571 | by (rule holomorphic_transform) (simp add: eq field_split_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1572 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1573 | lemma pole_lemma_open: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1574 | assumes "f holomorphic_on S" "open S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1575 | shows "(\<lambda>z. if z = a then deriv f a else (f z - f a)/(z - a)) holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1576 | proof (cases "a \<in> S") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1577 | case True with assms interior_eq pole_lemma | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1578 | show ?thesis by fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1579 | next | 
| 80090 | 1580 | case False | 
| 1581 | then have "(\<lambda>z. (f z - f a) / (z - a)) field_differentiable at x within S" | |
| 1582 | if "x \<in> S" for x | |
| 1583 | using assms that | |
| 1584 | apply (simp add: holomorphic_on_def) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1585 | apply (rule derivative_intros | force)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1586 | done | 
| 80090 | 1587 | with False show ?thesis | 
| 1588 | using holomorphic_on_def holomorphic_transform by presburger | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1589 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1590 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1591 | lemma pole_theorem_open: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1592 | assumes holg: "g holomorphic_on S" and S: "open S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1593 |       and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1594 | shows "(\<lambda>z. if z = a then deriv g a | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1595 | else f z - g a/(z - a)) holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1596 | using pole_lemma_open [OF holg S] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1597 | by (rule holomorphic_transform) (auto simp: eq divide_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1598 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1599 | lemma pole_theorem_0: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1600 | assumes holg: "g holomorphic_on S" and a: "a \<in> interior S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1601 |       and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1602 | and [simp]: "f a = deriv g a" "g a = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1603 | shows "f holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1604 | using pole_theorem [OF holg a eq] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1605 | by (rule holomorphic_transform) (auto simp: eq field_split_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1606 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1607 | lemma pole_theorem_open_0: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1608 | assumes holg: "g holomorphic_on S" and S: "open S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1609 |       and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z - a) * f z"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1610 | and [simp]: "f a = deriv g a" "g a = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1611 | shows "f holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1612 | using pole_theorem_open [OF holg S eq] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1613 | by (rule holomorphic_transform) (auto simp: eq field_split_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1614 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1615 | lemma pole_theorem_analytic: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1616 | assumes g: "g analytic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1617 | and eq: "\<And>z. z \<in> S | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1618 |              \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>w \<in> ball z d - {a}. g w = (w - a) * f w)"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1619 | shows "(\<lambda>z. if z = a then deriv g a else f z - g a/(z - a)) analytic_on S" (is "?F analytic_on S") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1620 | unfolding analytic_on_def | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1621 | proof | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1622 | fix x | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1623 | assume "x \<in> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1624 | with g obtain e where "0 < e" and e: "g holomorphic_on ball x e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1625 | by (auto simp add: analytic_on_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1626 |   obtain d where "0 < d" and d: "\<And>w. w \<in> ball x d - {a} \<Longrightarrow> g w = (w - a) * f w"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1627 | using \<open>x \<in> S\<close> eq by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1628 | have "?F holomorphic_on ball x (min d e)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1629 | using d e \<open>x \<in> S\<close> by (fastforce simp: holomorphic_on_subset subset_ball intro!: pole_theorem_open) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1630 | then show "\<exists>e>0. ?F holomorphic_on ball x e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1631 | using \<open>0 < d\<close> \<open>0 < e\<close> not_le by fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1632 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1633 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1634 | lemma pole_theorem_analytic_0: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1635 | assumes g: "g analytic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1636 |       and eq: "\<And>z. z \<in> S \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>w \<in> ball z d - {a}. g w = (w - a) * f w)"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1637 | and [simp]: "f a = deriv g a" "g a = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1638 | shows "f analytic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1639 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1640 | have [simp]: "(\<lambda>z. if z = a then deriv g a else f z - g a / (z - a)) = f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1641 | by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1642 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1643 | using pole_theorem_analytic [OF g eq] by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1644 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1645 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1646 | lemma pole_theorem_analytic_open_superset: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1647 | assumes g: "g analytic_on S" and "S \<subseteq> T" "open T" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1648 |       and eq: "\<And>z. z \<in> T - {a} \<Longrightarrow> g z = (z - a) * f z"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1649 | shows "(\<lambda>z. if z = a then deriv g a | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1650 | else f z - g a/(z - a)) analytic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1651 | proof (rule pole_theorem_analytic [OF g]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1652 | fix z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1653 | assume "z \<in> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1654 | then obtain e where "0 < e" and e: "ball z e \<subseteq> T" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1655 | using assms openE by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1656 |   then show "\<exists>d>0. \<forall>w\<in>ball z d - {a}. g w = (w - a) * f w"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1657 | using eq by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1658 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1659 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1660 | lemma pole_theorem_analytic_open_superset_0: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1661 |   assumes g: "g analytic_on S" "S \<subseteq> T" "open T" "\<And>z. z \<in> T - {a} \<Longrightarrow> g z = (z - a) * f z"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1662 | and [simp]: "f a = deriv g a" "g a = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1663 | shows "f analytic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1664 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1665 | have [simp]: "(\<lambda>z. if z = a then deriv g a else f z - g a / (z - a)) = f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1666 | by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1667 | have "(\<lambda>z. if z = a then deriv g a else f z - g a/(z - a)) analytic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1668 | by (rule pole_theorem_analytic_open_superset [OF g]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1669 | then show ?thesis by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1670 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1671 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1672 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1673 | subsection\<open>General, homology form of Cauchy's theorem\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1674 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1675 | text\<open>Proof is based on Dixon's, as presented in Lang's "Complex Analysis" book (page 147).\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1676 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1677 | lemma contour_integral_continuous_on_linepath_2D: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1678 | assumes "open U" and cont_dw: "\<And>w. w \<in> U \<Longrightarrow> F w contour_integrable_on (linepath a b)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1679 | and cond_uu: "continuous_on (U \<times> U) (\<lambda>(x,y). F x y)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1680 | and abu: "closed_segment a b \<subseteq> U" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1681 | shows "continuous_on U (\<lambda>w. contour_integral (linepath a b) (F w))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1682 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1683 | have *: "\<exists>d>0. \<forall>x'\<in>U. dist x' w < d \<longrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1684 | dist (contour_integral (linepath a b) (F x')) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1685 | (contour_integral (linepath a b) (F w)) \<le> \<epsilon>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1686 | if "w \<in> U" "0 < \<epsilon>" "a \<noteq> b" for w \<epsilon> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1687 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1688 | obtain \<delta> where "\<delta>>0" and \<delta>: "cball w \<delta> \<subseteq> U" using open_contains_cball \<open>open U\<close> \<open>w \<in> U\<close> by force | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1689 | let ?TZ = "cball w \<delta> \<times> closed_segment a b" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1690 | have "uniformly_continuous_on ?TZ (\<lambda>(x,y). F x y)" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 1691 | by (metis Sigma_mono \<delta> abu compact_Times compact_cball compact_segment compact_uniformly_continuous | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 1692 | cond_uu continuous_on_subset) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1693 | then obtain \<eta> where "\<eta>>0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1694 | and \<eta>: "\<And>x x'. \<lbrakk>x\<in>?TZ; x'\<in>?TZ; dist x' x < \<eta>\<rbrakk> \<Longrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1695 | dist ((\<lambda>(x,y). F x y) x') ((\<lambda>(x,y). F x y) x) < \<epsilon>/norm(b - a)" | 
| 72266 | 1696 | using \<open>0 < \<epsilon>\<close> \<open>a \<noteq> b\<close> | 
| 1697 | by (auto elim: uniformly_continuous_onE [where e = "\<epsilon>/norm(b - a)"]) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1698 | have \<eta>: "\<lbrakk>norm (w - x1) \<le> \<delta>; x2 \<in> closed_segment a b; | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1699 | norm (w - x1') \<le> \<delta>; x2' \<in> closed_segment a b; norm ((x1', x2') - (x1, x2)) < \<eta>\<rbrakk> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1700 | \<Longrightarrow> norm (F x1' x2' - F x1 x2) \<le> \<epsilon> / cmod (b - a)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1701 | for x1 x2 x1' x2' | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1702 | using \<eta> [of "(x1,x2)" "(x1',x2')"] by (force simp: dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1703 | have le_ee: "cmod (contour_integral (linepath a b) (\<lambda>x. F x' x - F w x)) \<le> \<epsilon>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1704 | if "x' \<in> U" "cmod (x' - w) < \<delta>" "cmod (x' - w) < \<eta>" for x' | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1705 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1706 | have "(\<lambda>x. F x' x - F w x) contour_integrable_on linepath a b" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1707 | by (simp add: \<open>w \<in> U\<close> cont_dw contour_integrable_diff that) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1708 | then have "cmod (contour_integral (linepath a b) (\<lambda>x. F x' x - F w x)) \<le> \<epsilon>/norm(b - a) * norm(b - a)" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1709 | using has_contour_integral_bound_linepath [OF has_contour_integral_integral _ \<eta>] | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1710 | using \<open>0 < \<epsilon>\<close> \<open>0 < \<delta>\<close> that by (force simp: norm_minus_commute) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1711 | also have "\<dots> = \<epsilon>" using \<open>a \<noteq> b\<close> by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1712 | finally show ?thesis . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1713 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1714 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1715 | apply (rule_tac x="min \<delta> \<eta>" in exI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1716 | using \<open>0 < \<delta>\<close> \<open>0 < \<eta>\<close> | 
| 72266 | 1717 | by (auto simp: dist_norm contour_integral_diff [OF cont_dw cont_dw, symmetric] \<open>w \<in> U\<close> intro: le_ee) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1718 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1719 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1720 | proof (cases "a=b") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1721 | case False | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1722 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1723 | by (rule continuous_onI) (use False in \<open>auto intro: *\<close>) | 
| 72266 | 1724 | qed auto | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1725 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1726 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1727 | text\<open>This version has \<^term>\<open>polynomial_function \<gamma>\<close> as an additional assumption.\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1728 | lemma Cauchy_integral_formula_global_weak: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1729 | assumes "open U" and holf: "f holomorphic_on U" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1730 | and z: "z \<in> U" and \<gamma>: "polynomial_function \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1731 |         and pasz: "path_image \<gamma> \<subseteq> U - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1732 | and zero: "\<And>w. w \<notin> U \<Longrightarrow> winding_number \<gamma> w = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1733 | shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1734 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1735 | obtain \<gamma>' where pf\<gamma>': "polynomial_function \<gamma>'" and \<gamma>': "\<And>x. (\<gamma> has_vector_derivative (\<gamma>' x)) (at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1736 | using has_vector_derivative_polynomial_function [OF \<gamma>] by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1737 | then have "bounded(path_image \<gamma>')" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1738 | by (simp add: path_image_def compact_imp_bounded compact_continuous_image continuous_on_polymonial_function) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1739 | then obtain B where "B>0" and B: "\<And>x. x \<in> path_image \<gamma>' \<Longrightarrow> norm x \<le> B" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1740 | using bounded_pos by force | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1741 | define d where [abs_def]: "d z w = (if w = z then deriv f z else (f w - f z)/(w - z))" for z w | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1742 |   define v where "v = {w. w \<notin> path_image \<gamma> \<and> winding_number \<gamma> w = 0}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1743 | have "path \<gamma>" "valid_path \<gamma>" using \<gamma> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1744 | by (auto simp: path_polynomial_function valid_path_polynomial_function) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1745 | then have ov: "open v" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1746 | by (simp add: v_def open_winding_number_levelsets loop) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1747 | have uv_Un: "U \<union> v = UNIV" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1748 | using pasz zero by (auto simp: v_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1749 | have conf: "continuous_on U f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1750 | by (metis holf holomorphic_on_imp_continuous_on) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1751 | have hol_d: "(d y) holomorphic_on U" if "y \<in> U" for y | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1752 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1753 | have *: "(\<lambda>c. if c = y then deriv f y else (f c - f y) / (c - y)) holomorphic_on U" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1754 | by (simp add: holf pole_lemma_open \<open>open U\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1755 | then have "isCont (\<lambda>x. if x = y then deriv f y else (f x - f y) / (x - y)) y" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1756 | using at_within_open field_differentiable_imp_continuous_at holomorphic_on_def that \<open>open U\<close> by fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1757 | then have "continuous_on U (d y)" | 
| 72266 | 1758 | using "*" d_def holomorphic_on_imp_continuous_on by auto | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1759 |     moreover have "d y holomorphic_on U - {y}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1760 | proof - | 
| 72266 | 1761 | have "(\<lambda>w. if w = y then deriv f y else (f w - f y) / (w - y)) field_differentiable at w" | 
| 1762 |         if "w \<in> U - {y}" for w
 | |
| 1763 | proof (rule field_differentiable_transform_within) | |
| 1764 | show "(\<lambda>w. (f w - f y) / (w - y)) field_differentiable at w" | |
| 1765 | using that \<open>open U\<close> holf | |
| 1766 | by (auto intro!: holomorphic_on_imp_differentiable_at derivative_intros) | |
| 1767 | show "dist w y > 0" | |
| 1768 | using that by auto | |
| 1769 | qed (auto simp: dist_commute) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1770 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1771 | unfolding field_differentiable_def by (simp add: d_def holomorphic_on_open \<open>open U\<close> open_delete) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1772 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1773 | ultimately show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1774 | by (rule no_isolated_singularity) (auto simp: \<open>open U\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1775 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1776 | have cint_fxy: "(\<lambda>x. (f x - f y) / (x - y)) contour_integrable_on \<gamma>" if "y \<notin> path_image \<gamma>" for y | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1777 |   proof (rule contour_integrable_holomorphic_simple [where S = "U-{y}"])
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1778 |     show "(\<lambda>x. (f x - f y) / (x - y)) holomorphic_on U - {y}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1779 | by (force intro: holomorphic_intros holomorphic_on_subset [OF holf]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1780 |     show "path_image \<gamma> \<subseteq> U - {y}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1781 | using pasz that by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1782 | qed (auto simp: \<open>open U\<close> open_delete \<open>valid_path \<gamma>\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1783 | define h where | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1784 | "h z = (if z \<in> U then contour_integral \<gamma> (d z) else contour_integral \<gamma> (\<lambda>w. f w/(w - z)))" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1785 | have U: "((d z) has_contour_integral h z) \<gamma>" if "z \<in> U" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1786 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1787 | have "d z holomorphic_on U" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1788 | by (simp add: hol_d that) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1789 | with that show ?thesis | 
| 72266 | 1790 | by (metis Diff_subset \<open>valid_path \<gamma>\<close> \<open>open U\<close> contour_integrable_holomorphic_simple h_def has_contour_integral_integral pasz subset_trans) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1791 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1792 | have V: "((\<lambda>w. f w / (w - z)) has_contour_integral h z) \<gamma>" if z: "z \<in> v" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1793 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1794 | have 0: "0 = (f z) * 2 * of_real (2 * pi) * \<i> * winding_number \<gamma> z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1795 | using v_def z by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1796 | then have "((\<lambda>x. 1 / (x - z)) has_contour_integral 0) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1797 | using z v_def has_contour_integral_winding_number [OF \<open>valid_path \<gamma>\<close>] by fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1798 | then have "((\<lambda>x. f z * (1 / (x - z))) has_contour_integral 0) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1799 | using has_contour_integral_lmul by fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1800 | then have "((\<lambda>x. f z / (x - z)) has_contour_integral 0) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1801 | by (simp add: field_split_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1802 | moreover have "((\<lambda>x. (f x - f z) / (x - z)) has_contour_integral contour_integral \<gamma> (d z)) \<gamma>" | 
| 80090 | 1803 | by (metis (no_types, lifting) z cint_fxy contour_integral_eq d_def has_contour_integral_integral mem_Collect_eq v_def) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1804 | ultimately have *: "((\<lambda>x. f z / (x - z) + (f x - f z) / (x - z)) has_contour_integral (0 + contour_integral \<gamma> (d z))) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1805 | by (rule has_contour_integral_add) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1806 | have "((\<lambda>w. f w / (w - z)) has_contour_integral contour_integral \<gamma> (d z)) \<gamma>" | 
| 72266 | 1807 | if "z \<in> U" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1808 | using * by (auto simp: divide_simps has_contour_integral_eq) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1809 | moreover have "((\<lambda>w. f w / (w - z)) has_contour_integral contour_integral \<gamma> (\<lambda>w. f w / (w - z))) \<gamma>" | 
| 72266 | 1810 | if "z \<notin> U" | 
| 1811 | proof (rule has_contour_integral_integral [OF contour_integrable_holomorphic_simple [where S=U]]) | |
| 1812 | show "(\<lambda>w. f w / (w - z)) holomorphic_on U" | |
| 1813 | by (rule holomorphic_intros assms | use that in force)+ | |
| 1814 | qed (use \<open>open U\<close> pasz \<open>valid_path \<gamma>\<close> in auto) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1815 | ultimately show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1816 | using z by (simp add: h_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1817 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1818 | have znot: "z \<notin> path_image \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1819 | using pasz by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1820 | obtain d0 where "d0>0" and d0: "\<And>x y. x \<in> path_image \<gamma> \<Longrightarrow> y \<in> - U \<Longrightarrow> d0 \<le> dist x y" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1821 | using separate_compact_closed [of "path_image \<gamma>" "-U"] pasz \<open>open U\<close> \<open>path \<gamma>\<close> compact_path_image | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1822 | by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1823 |   obtain dd where "0 < dd" and dd: "{y + k | y k. y \<in> path_image \<gamma> \<and> k \<in> ball 0 dd} \<subseteq> U"
 | 
| 72266 | 1824 | proof | 
| 1825 | show "0 < d0 / 2" using \<open>0 < d0\<close> by auto | |
| 1826 | qed (use \<open>0 < d0\<close> d0 in \<open>force simp: dist_norm\<close>) | |
| 1827 |   define T where "T \<equiv> {y + k |y k. y \<in> path_image \<gamma> \<and> k \<in> cball 0 (dd / 2)}"
 | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1828 | have "\<And>x x'. \<lbrakk>x \<in> path_image \<gamma>; dist x x' * 2 < dd\<rbrakk> \<Longrightarrow> \<exists>y k. x' = y + k \<and> y \<in> path_image \<gamma> \<and> dist 0 k * 2 \<le> dd" | 
| 80090 | 1829 | by (metis add.commute diff_add_cancel dist_0_norm dist_commute dist_norm less_eq_real_def) | 
| 72266 | 1830 | then have subt: "path_image \<gamma> \<subseteq> interior T" | 
| 1831 | using \<open>0 < dd\<close> | |
| 1832 | apply (clarsimp simp add: mem_interior T_def) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1833 | apply (rule_tac x="dd/2" in exI, auto) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1834 | done | 
| 72266 | 1835 | have "compact T" | 
| 1836 | unfolding T_def | |
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1837 | using \<open>valid_path \<gamma>\<close> compact_cball compact_sums compact_valid_path_image by blast | 
| 72266 | 1838 | have T: "T \<subseteq> U" | 
| 1839 | unfolding T_def using \<open>0 < dd\<close> dd by fastforce | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1840 | obtain L where "L>0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1841 | and L: "\<And>f B. \<lbrakk>f holomorphic_on interior T; \<And>z. z\<in>interior T \<Longrightarrow> cmod (f z) \<le> B\<rbrakk> \<Longrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1842 | cmod (contour_integral \<gamma> f) \<le> L * B" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1843 | using contour_integral_bound_exists [OF open_interior \<open>valid_path \<gamma>\<close> subt] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1844 | by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1845 | have "bounded(f ` T)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1846 | by (meson \<open>compact T\<close> compact_continuous_image compact_imp_bounded conf continuous_on_subset T) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1847 | then obtain D where "D>0" and D: "\<And>x. x \<in> T \<Longrightarrow> norm (f x) \<le> D" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1848 | by (auto simp: bounded_pos) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1849 | obtain C where "C>0" and C: "\<And>x. x \<in> T \<Longrightarrow> norm x \<le> C" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1850 | using \<open>compact T\<close> bounded_pos compact_imp_bounded by force | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1851 | have "dist (h y) 0 \<le> e" if "0 < e" and le: "D * L / e + C \<le> cmod y" for e y | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1852 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1853 | have "D * L / e > 0" using \<open>D>0\<close> \<open>L>0\<close> \<open>e>0\<close> by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1854 | with le have ybig: "norm y > C" by force | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1855 | with C have "y \<notin> T" by force | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1856 | then have ynot: "y \<notin> path_image \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1857 | using subt interior_subset by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1858 | have [simp]: "winding_number \<gamma> y = 0" | 
| 72266 | 1859 | proof (rule winding_number_zero_outside) | 
| 1860 | show "path_image \<gamma> \<subseteq> cball 0 C" | |
| 1861 | by (meson C interior_subset mem_cball_0 subset_eq subt) | |
| 1862 | qed (use ybig loop \<open>path \<gamma>\<close> in auto) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1863 | have [simp]: "h y = contour_integral \<gamma> (\<lambda>w. f w/(w - y))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1864 | by (rule contour_integral_unique [symmetric]) (simp add: v_def ynot V) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1865 | have holint: "(\<lambda>w. f w / (w - y)) holomorphic_on interior T" | 
| 72266 | 1866 | proof (intro holomorphic_intros) | 
| 1867 | show "f holomorphic_on interior T" | |
| 1868 | using holf holomorphic_on_subset interior_subset T by blast | |
| 1869 | qed (use \<open>y \<notin> T\<close> interior_subset in auto) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1870 | have leD: "cmod (f z / (z - y)) \<le> D * (e / L / D)" if z: "z \<in> interior T" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1871 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1872 | have "D * L / e + cmod z \<le> cmod y" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1873 | using le C [of z] z using interior_subset by force | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1874 | then have DL2: "D * L / e \<le> cmod (z - y)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1875 | using norm_triangle_ineq2 [of y z] by (simp add: norm_minus_commute) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1876 | have "cmod (f z / (z - y)) = cmod (f z) * inverse (cmod (z - y))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1877 | by (simp add: norm_mult norm_inverse Fields.field_class.field_divide_inverse) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1878 | also have "\<dots> \<le> D * (e / L / D)" | 
| 72266 | 1879 | proof (rule mult_mono) | 
| 1880 | show "cmod (f z) \<le> D" | |
| 1881 | using D interior_subset z by blast | |
| 1882 | show "inverse (cmod (z - y)) \<le> e / L / D" "D \<ge> 0" | |
| 1883 | using \<open>L>0\<close> \<open>e>0\<close> \<open>D>0\<close> DL2 by (auto simp: norm_divide field_split_simps) | |
| 1884 | qed auto | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1885 | finally show ?thesis . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1886 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1887 | have "dist (h y) 0 = cmod (contour_integral \<gamma> (\<lambda>w. f w / (w - y)))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1888 | by (simp add: dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1889 | also have "\<dots> \<le> L * (D * (e / L / D))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1890 | by (rule L [OF holint leD]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1891 | also have "\<dots> = e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1892 | using \<open>L>0\<close> \<open>0 < D\<close> by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1893 | finally show ?thesis . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1894 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1895 | then have "(h \<longlongrightarrow> 0) at_infinity" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1896 | by (meson Lim_at_infinityI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1897 | moreover have "h holomorphic_on UNIV" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1898 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1899 | have con_ff: "continuous (at (x,z)) (\<lambda>(x,y). (f y - f x) / (y - x))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1900 | if "x \<in> U" "z \<in> U" "x \<noteq> z" for x z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1901 | using that conf | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1902 | apply (simp add: split_def continuous_on_eq_continuous_at \<open>open U\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1903 | apply (simp | rule continuous_intros continuous_within_compose2 [where g=f])+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1904 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1905 | have con_fstsnd: "continuous_on UNIV (\<lambda>x. (fst x - snd x) ::complex)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1906 | by (rule continuous_intros)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1907 | have open_uu_Id: "open (U \<times> U - Id)" | 
| 72266 | 1908 | proof (rule open_Diff) | 
| 1909 | show "open (U \<times> U)" | |
| 1910 | by (simp add: open_Times \<open>open U\<close>) | |
| 1911 | show "closed (Id :: complex rel)" | |
| 1912 | using continuous_closed_preimage_constant [OF con_fstsnd closed_UNIV, of 0] | |
| 1913 | by (auto simp: Id_fstsnd_eq algebra_simps) | |
| 1914 | qed | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1915 | have con_derf: "continuous (at z) (deriv f)" if "z \<in> U" for z | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 1916 | by (meson analytic_at analytic_at_imp_isCont assms(1) holf holomorphic_deriv that) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1917 | have tendsto_f': "((\<lambda>(x,y). if y = x then deriv f (x) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1918 | else (f (y) - f (x)) / (y - x)) \<longlongrightarrow> deriv f x) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1919 | (at (x, x) within U \<times> U)" if "x \<in> U" for x | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1920 | proof (rule Lim_withinI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1921 | fix e::real assume "0 < e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1922 | obtain k1 where "k1>0" and k1: "\<And>x'. norm (x' - x) \<le> k1 \<Longrightarrow> norm (deriv f x' - deriv f x) < e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1923 | using \<open>0 < e\<close> continuous_within_E [OF con_derf [OF \<open>x \<in> U\<close>]] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1924 | by (metis UNIV_I dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1925 | obtain k2 where "k2>0" and k2: "ball x k2 \<subseteq> U" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1926 | by (blast intro: openE [OF \<open>open U\<close>] \<open>x \<in> U\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1927 | have neq: "norm ((f z' - f x') / (z' - x') - deriv f x) \<le> e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1928 | if "z' \<noteq> x'" and less_k1: "norm (x'-x, z'-x) < k1" and less_k2: "norm (x'-x, z'-x) < k2" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1929 | for x' z' | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1930 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1931 | have cs_less: "w \<in> closed_segment x' z' \<Longrightarrow> cmod (w - x) \<le> norm (x'-x, z'-x)" for w | 
| 72266 | 1932 | using segment_furthest_le [of w x' z' x] | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1933 | by (metis (no_types) dist_commute dist_norm norm_fst_le norm_snd_le order_trans) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1934 | have derf_le: "w \<in> closed_segment x' z' \<Longrightarrow> z' \<noteq> x' \<Longrightarrow> cmod (deriv f w - deriv f x) \<le> e" for w | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1935 | by (blast intro: cs_less less_k1 k1 [unfolded divide_const_simps dist_norm] less_imp_le le_less_trans) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1936 | have f_has_der: "\<And>x. x \<in> U \<Longrightarrow> (f has_field_derivative deriv f x) (at x within U)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1937 | by (metis DERIV_deriv_iff_field_differentiable at_within_open holf holomorphic_on_def \<open>open U\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1938 | have "closed_segment x' z' \<subseteq> U" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1939 | by (rule order_trans [OF _ k2]) (simp add: cs_less le_less_trans [OF _ less_k2] dist_complex_def norm_minus_commute subset_iff) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1940 | then have cint_derf: "(deriv f has_contour_integral f z' - f x') (linepath x' z')" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1941 | using contour_integral_primitive [OF f_has_der valid_path_linepath] pasz by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1942 | then have *: "((\<lambda>x. deriv f x / (z' - x')) has_contour_integral (f z' - f x') / (z' - x')) (linepath x' z')" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1943 | by (rule has_contour_integral_div) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1944 | have "norm ((f z' - f x') / (z' - x') - deriv f x) \<le> e/norm(z' - x') * norm(z' - x')" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1945 | apply (rule has_contour_integral_bound_linepath [OF has_contour_integral_diff [OF *]]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1946 | using has_contour_integral_div [where c = "z' - x'", OF has_contour_integral_const_linepath [of "deriv f x" z' x']] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1947 | \<open>e > 0\<close> \<open>z' \<noteq> x'\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1948 | apply (auto simp: norm_divide divide_simps derf_le) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1949 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1950 | also have "\<dots> \<le> e" using \<open>0 < e\<close> by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1951 | finally show ?thesis . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1952 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1953 | show "\<exists>d>0. \<forall>xa\<in>U \<times> U. | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1954 | 0 < dist xa (x, x) \<and> dist xa (x, x) < d \<longrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1955 | dist (case xa of (x, y) \<Rightarrow> if y = x then deriv f x else (f y - f x) / (y - x)) (deriv f x) \<le> e" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1956 | apply (rule_tac x="min k1 k2" in exI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1957 | using \<open>k1>0\<close> \<open>k2>0\<close> \<open>e>0\<close> | 
| 72266 | 1958 | by (force simp: dist_norm neq intro: dual_order.strict_trans2 k1 less_imp_le norm_fst_le) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1959 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1960 | have con_pa_f: "continuous_on (path_image \<gamma>) f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1961 | by (meson holf holomorphic_on_imp_continuous_on holomorphic_on_subset interior_subset subt T) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1962 |     have le_B: "\<And>T. T \<in> {0..1} \<Longrightarrow> cmod (vector_derivative \<gamma> (at T)) \<le> B"
 | 
| 72266 | 1963 | using \<gamma>' B by (simp add: path_image_def vector_derivative_at rev_image_eqI) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1964 | have f_has_cint: "\<And>w. w \<in> v - path_image \<gamma> \<Longrightarrow> ((\<lambda>u. f u / (u - w) ^ 1) has_contour_integral h w) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1965 | by (simp add: V) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1966 | have cond_uu: "continuous_on (U \<times> U) (\<lambda>(x,y). d x y)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1967 | apply (simp add: continuous_on_eq_continuous_within d_def continuous_within tendsto_f') | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1968 | apply (simp add: tendsto_within_open_NO_MATCH open_Times \<open>open U\<close>, clarify) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1969 | apply (rule Lim_transform_within_open [OF _ open_uu_Id, where f = "(\<lambda>(x,y). (f y - f x) / (y - x))"]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1970 | using con_ff | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1971 | apply (auto simp: continuous_within) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1972 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1973 | have hol_dw: "(\<lambda>z. d z w) holomorphic_on U" if "w \<in> U" for w | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1974 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1975 | have "continuous_on U ((\<lambda>(x,y). d x y) \<circ> (\<lambda>z. (w,z)))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1976 | by (rule continuous_on_compose continuous_intros continuous_on_subset [OF cond_uu] | force intro: that)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1977 | then have *: "continuous_on U (\<lambda>z. if w = z then deriv f z else (f w - f z) / (w - z))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1978 | by (rule rev_iffD1 [OF _ continuous_on_cong [OF refl]]) (simp add: d_def field_simps) | 
| 72266 | 1979 | have **: "(\<lambda>z. if w = z then deriv f z else (f w - f z) / (w - z)) field_differentiable at x" | 
| 1980 | if "x \<in> U" "x \<noteq> w" for x | |
| 1981 | proof (rule_tac f = "\<lambda>x. (f w - f x)/(w - x)" and d = "dist x w" in field_differentiable_transform_within) | |
| 1982 | show "(\<lambda>x. (f w - f x) / (w - x)) field_differentiable at x" | |
| 1983 | using that \<open>open U\<close> | |
| 1984 | by (intro derivative_intros holomorphic_on_imp_differentiable_at [OF holf]; force) | |
| 1985 | qed (use that \<open>open U\<close> in \<open>auto simp: dist_commute\<close>) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1986 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1987 | unfolding d_def | 
| 72266 | 1988 | proof (rule no_isolated_singularity [OF * _ \<open>open U\<close>]) | 
| 1989 |         show "(\<lambda>z. if w = z then deriv f z else (f w - f z) / (w - z)) holomorphic_on U - {w}"
 | |
| 1990 | by (auto simp: field_differentiable_def [symmetric] holomorphic_on_open open_Diff \<open>open U\<close> **) | |
| 1991 | qed auto | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1992 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1993 |     { fix a b
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 1994 | assume abu: "closed_segment a b \<subseteq> U" | 
| 72266 | 1995 | have cont_cint_d: "continuous_on U (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))" | 
| 1996 | proof (rule contour_integral_continuous_on_linepath_2D [OF \<open>open U\<close> _ _ abu]) | |
| 1997 | show "\<And>w. w \<in> U \<Longrightarrow> (\<lambda>z. d z w) contour_integrable_on (linepath a b)" | |
| 1998 | by (metis abu hol_dw continuous_on_subset contour_integrable_continuous_linepath holomorphic_on_imp_continuous_on) | |
| 1999 | show "continuous_on (U \<times> U) (\<lambda>(x, y). d y x)" | |
| 2000 | by (auto intro: continuous_on_swap_args cond_uu) | |
| 2001 | qed | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2002 |       have cont_cint_d\<gamma>: "continuous_on {0..1} ((\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w)) \<circ> \<gamma>)"
 | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 2003 | by (metis Diff_subset \<open>path \<gamma>\<close> cont_cint_d continuous_on_compose continuous_on_subset pasz path_def path_image_def) | 
| 72266 | 2004 |       have "continuous_on {0..1} (\<lambda>x. vector_derivative \<gamma> (at x))"
 | 
| 2005 | using pf\<gamma>' by (simp add: continuous_on_polymonial_function vector_derivative_at [OF \<gamma>']) | |
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 2006 | then have cint_cint: "(\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w)) contour_integrable_on \<gamma>" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2007 | apply (simp add: contour_integrable_on) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2008 | apply (rule integrable_continuous_real) | 
| 72266 | 2009 | by (rule continuous_on_mult [OF cont_cint_d\<gamma> [unfolded o_def]]) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2010 | have "contour_integral (linepath a b) h = contour_integral (linepath a b) (\<lambda>z. contour_integral \<gamma> (d z))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2011 | using abu by (force simp: h_def intro: contour_integral_eq) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2012 | also have "\<dots> = contour_integral \<gamma> (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))" | 
| 72266 | 2013 | proof (rule contour_integral_swap) | 
| 2014 | show "continuous_on (path_image (linepath a b) \<times> path_image \<gamma>) (\<lambda>(y1, y2). d y1 y2)" | |
| 2015 | using abu pasz by (auto intro: continuous_on_subset [OF cond_uu]) | |
| 2016 |         show "continuous_on {0..1} (\<lambda>t. vector_derivative (linepath a b) (at t))"
 | |
| 2017 | by (auto intro!: continuous_intros) | |
| 2018 |         show "continuous_on {0..1} (\<lambda>t. vector_derivative \<gamma> (at t))"
 | |
| 2019 | by (metis \<gamma>' continuous_on_eq path_def path_polynomial_function pf\<gamma>' vector_derivative_at) | |
| 2020 | qed (use \<open>valid_path \<gamma>\<close> in auto) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2021 | finally have cint_h_eq: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2022 | "contour_integral (linepath a b) h = | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2023 | contour_integral \<gamma> (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))" . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2024 | note cint_cint cint_h_eq | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2025 | } note cint_h = this | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2026 | have conthu: "continuous_on U h" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2027 | proof (simp add: continuous_on_sequentially, clarify) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2028 | fix a x | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2029 | assume x: "x \<in> U" and au: "\<forall>n. a n \<in> U" and ax: "a \<longlonglongrightarrow> x" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2030 | then have A1: "\<forall>\<^sub>F n in sequentially. d (a n) contour_integrable_on \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2031 | by (meson U contour_integrable_on_def eventuallyI) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2032 | obtain dd where "dd>0" and dd: "cball x dd \<subseteq> U" using open_contains_cball \<open>open U\<close> x by force | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2033 | have A2: "uniform_limit (path_image \<gamma>) (\<lambda>n. d (a n)) (d x) sequentially" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2034 | unfolding uniform_limit_iff dist_norm | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2035 | proof clarify | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2036 | fix ee::real | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2037 | assume "0 < ee" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2038 | show "\<forall>\<^sub>F n in sequentially. \<forall>\<xi>\<in>path_image \<gamma>. cmod (d (a n) \<xi> - d x \<xi>) < ee" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2039 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2040 |           let ?ddpa = "{(w,z) |w z. w \<in> cball x dd \<and> z \<in> path_image \<gamma>}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2041 | have "uniformly_continuous_on ?ddpa (\<lambda>(x,y). d x y)" | 
| 72266 | 2042 | proof (rule compact_uniformly_continuous [OF continuous_on_subset[OF cond_uu]]) | 
| 2043 |             show "compact {(w, z) |w z. w \<in> cball x dd \<and> z \<in> path_image \<gamma>}"
 | |
| 2044 | using \<open>valid_path \<gamma>\<close> | |
| 2045 | by (auto simp: compact_Times compact_valid_path_image simp del: mem_cball) | |
| 2046 | qed (use dd pasz in auto) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2047 | then obtain kk where "kk>0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2048 | and kk: "\<And>x x'. \<lbrakk>x \<in> ?ddpa; x' \<in> ?ddpa; dist x' x < kk\<rbrakk> \<Longrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2049 | dist ((\<lambda>(x,y). d x y) x') ((\<lambda>(x,y). d x y) x) < ee" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2050 | by (rule uniformly_continuous_onE [where e = ee]) (use \<open>0 < ee\<close> in auto) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2051 | have kk: "\<lbrakk>norm (w - x) \<le> dd; z \<in> path_image \<gamma>; norm ((w, z) - (x, z)) < kk\<rbrakk> \<Longrightarrow> norm (d w z - d x z) < ee" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2052 | for w z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2053 | using \<open>dd>0\<close> kk [of "(x,z)" "(w,z)"] by (force simp: norm_minus_commute dist_norm) | 
| 72266 | 2054 | obtain no where "\<forall>n\<ge>no. dist (a n) x < min dd kk" | 
| 2055 | using ax unfolding lim_sequentially | |
| 2056 | by (meson \<open>0 < dd\<close> \<open>0 < kk\<close> min_less_iff_conj) | |
| 2057 | then show ?thesis | |
| 2058 | using \<open>dd > 0\<close> \<open>kk > 0\<close> by (fastforce simp: eventually_sequentially kk dist_norm) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2059 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2060 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2061 | have "(\<lambda>n. contour_integral \<gamma> (d (a n))) \<longlonglongrightarrow> contour_integral \<gamma> (d x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2062 | by (rule contour_integral_uniform_limit [OF A1 A2 le_B]) (auto simp: \<open>valid_path \<gamma>\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2063 | then have tendsto_hx: "(\<lambda>n. contour_integral \<gamma> (d (a n))) \<longlonglongrightarrow> h x" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2064 | by (simp add: h_def x) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2065 | then show "(h \<circ> a) \<longlonglongrightarrow> h x" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2066 | by (simp add: h_def x au o_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2067 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2068 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2069 | proof (simp add: holomorphic_on_open field_differentiable_def [symmetric], clarify) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2070 | fix z0 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2071 | consider "z0 \<in> v" | "z0 \<in> U" using uv_Un by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2072 | then show "h field_differentiable at z0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2073 | proof cases | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2074 | assume "z0 \<in> v" then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2075 | using Cauchy_next_derivative [OF con_pa_f le_B f_has_cint _ ov] V f_has_cint \<open>valid_path \<gamma>\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2076 | by (auto simp: field_differentiable_def v_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2077 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2078 | assume "z0 \<in> U" then | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2079 | obtain e where "e>0" and e: "ball z0 e \<subseteq> U" by (blast intro: openE [OF \<open>open U\<close>]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2080 | have *: "contour_integral (linepath a b) h + contour_integral (linepath b c) h + contour_integral (linepath c a) h = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2081 |                 if abc_subset: "convex hull {a, b, c} \<subseteq> ball z0 e"  for a b c
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2082 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2083 | have *: "\<And>x1 x2 z. z \<in> U \<Longrightarrow> closed_segment x1 x2 \<subseteq> U \<Longrightarrow> (\<lambda>w. d w z) contour_integrable_on linepath x1 x2" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2084 | using hol_dw holomorphic_on_imp_continuous_on \<open>open U\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2085 | by (auto intro!: contour_integrable_holomorphic_simple) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2086 | have abc: "closed_segment a b \<subseteq> U" "closed_segment b c \<subseteq> U" "closed_segment c a \<subseteq> U" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2087 | using that e segments_subset_convex_hull by fastforce+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2088 | have eq0: "\<And>w. w \<in> U \<Longrightarrow> contour_integral (linepath a b +++ linepath b c +++ linepath c a) (\<lambda>z. d z w) = 0" | 
| 72266 | 2089 | proof (rule contour_integral_unique [OF Cauchy_theorem_triangle]) | 
| 2090 |             show "\<And>w. w \<in> U \<Longrightarrow> (\<lambda>z. d z w) holomorphic_on convex hull {a, b, c}"
 | |
| 2091 | using e abc_subset by (auto intro: holomorphic_on_subset [OF hol_dw]) | |
| 2092 | qed | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2093 | have "contour_integral \<gamma> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2094 | (\<lambda>x. contour_integral (linepath a b) (\<lambda>z. d z x) + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2095 | (contour_integral (linepath b c) (\<lambda>z. d z x) + | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2096 | contour_integral (linepath c a) (\<lambda>z. d z x))) = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2097 | apply (rule contour_integral_eq_0) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2098 | using abc pasz U | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2099 | apply (subst contour_integral_join [symmetric], auto intro: eq0 *)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2100 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2101 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2102 | by (simp add: cint_h abc contour_integrable_add contour_integral_add [symmetric] add_ac) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2103 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2104 | show ?thesis | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2105 | using e \<open>e > 0\<close> | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2106 | by (auto intro!: holomorphic_on_imp_differentiable_at [OF _ open_ball] analytic_imp_holomorphic | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2107 | Morera_triangle continuous_on_subset [OF conthu] *) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2108 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2109 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2110 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2111 | ultimately have [simp]: "h z = 0" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2112 | by (meson Liouville_weak) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2113 | have "((\<lambda>w. 1 / (w - z)) has_contour_integral complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2114 | by (rule has_contour_integral_winding_number [OF \<open>valid_path \<gamma>\<close> znot]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2115 | then have "((\<lambda>w. f z * (1 / (w - z))) has_contour_integral complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z * f z) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2116 | by (metis mult.commute has_contour_integral_lmul) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2117 | then have 1: "((\<lambda>w. f z / (w - z)) has_contour_integral complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z * f z) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2118 | by (simp add: field_split_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2119 | moreover have 2: "((\<lambda>w. (f w - f z) / (w - z)) has_contour_integral 0) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2120 | using U [OF z] pasz d_def by (force elim: has_contour_integral_eq [where g = "\<lambda>w. (f w - f z)/(w - z)"]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2121 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2122 | using has_contour_integral_add [OF 1 2] by (simp add: diff_divide_distrib) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2123 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2124 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2125 | theorem Cauchy_integral_formula_global: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2126 | assumes S: "open S" and holf: "f holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2127 | and z: "z \<in> S" and vpg: "valid_path \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2128 |         and pasz: "path_image \<gamma> \<subseteq> S - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2129 | and zero: "\<And>w. w \<notin> S \<Longrightarrow> winding_number \<gamma> w = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2130 | shows "((\<lambda>w. f w / (w - z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2131 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2132 | have "path \<gamma>" using vpg by (blast intro: valid_path_imp_path) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2133 |   have hols: "(\<lambda>w. f w / (w - z)) holomorphic_on S - {z}" "(\<lambda>w. 1 / (w - z)) holomorphic_on S - {z}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2134 | by (rule holomorphic_intros holomorphic_on_subset [OF holf] | force)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2135 | then have cint_fw: "(\<lambda>w. f w / (w - z)) contour_integrable_on \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2136 | by (meson contour_integrable_holomorphic_simple holomorphic_on_imp_continuous_on open_delete S vpg pasz) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2137 | obtain d where "d>0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2138 |       and d: "\<And>g h. \<lbrakk>valid_path g; valid_path h; \<forall>t\<in>{0..1}. cmod (g t - \<gamma> t) < d \<and> cmod (h t - \<gamma> t) < d;
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2139 | pathstart h = pathstart g \<and> pathfinish h = pathfinish g\<rbrakk> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2140 |                      \<Longrightarrow> path_image h \<subseteq> S - {z} \<and> (\<forall>f. f holomorphic_on S - {z} \<longrightarrow> contour_integral h f = contour_integral g f)"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2141 | using contour_integral_nearby_ends [OF _ \<open>path \<gamma>\<close> pasz] S by (simp add: open_Diff) metis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2142 | obtain p where polyp: "polynomial_function p" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2143 |              and ps: "pathstart p = pathstart \<gamma>" and pf: "pathfinish p = pathfinish \<gamma>" and led: "\<forall>t\<in>{0..1}. cmod (p t - \<gamma> t) < d"
 | 
| 72379 | 2144 | using path_approx_polynomial_function [OF \<open>path \<gamma>\<close> \<open>d > 0\<close>] by metis | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2145 | then have ploop: "pathfinish p = pathstart p" using loop by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2146 | have vpp: "valid_path p" using polyp valid_path_polynomial_function by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2147 | have [simp]: "z \<notin> path_image \<gamma>" using pasz by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2148 |   have paps: "path_image p \<subseteq> S - {z}" and cint_eq: "(\<And>f. f holomorphic_on S - {z} \<Longrightarrow> contour_integral p f = contour_integral \<gamma> f)"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2149 | using pf ps led d [OF vpg vpp] \<open>d > 0\<close> by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2150 | have wn_eq: "winding_number p z = winding_number \<gamma> z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2151 | using vpp paps | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2152 | by (simp add: subset_Diff_insert vpg valid_path_polynomial_function winding_number_valid_path cint_eq hols) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2153 | have "winding_number p w = winding_number \<gamma> w" if "w \<notin> S" for w | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2154 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2155 |     have hol: "(\<lambda>v. 1 / (v - w)) holomorphic_on S - {z}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2156 | using that by (force intro: holomorphic_intros holomorphic_on_subset [OF holf]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2157 | have "w \<notin> path_image p" "w \<notin> path_image \<gamma>" using paps pasz that by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2158 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2159 | using vpp vpg by (simp add: subset_Diff_insert valid_path_polynomial_function winding_number_valid_path cint_eq [OF hol]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2160 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2161 | then have wn0: "\<And>w. w \<notin> S \<Longrightarrow> winding_number p w = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2162 | by (simp add: zero) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2163 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2164 | using Cauchy_integral_formula_global_weak [OF S holf z polyp paps ploop wn0] hols | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2165 | by (metis wn_eq cint_eq has_contour_integral_eqpath cint_fw cint_eq) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2166 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2167 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2168 | theorem Cauchy_theorem_global: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2169 | assumes S: "open S" and holf: "f holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2170 | and vpg: "valid_path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2171 | and pas: "path_image \<gamma> \<subseteq> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2172 | and zero: "\<And>w. w \<notin> S \<Longrightarrow> winding_number \<gamma> w = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2173 | shows "(f has_contour_integral 0) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2174 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2175 | obtain z where "z \<in> S" and znot: "z \<notin> path_image \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2176 | proof - | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2177 | have "path_image \<gamma> \<noteq> S" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2178 | by (metis compact_valid_path_image vpg compact_open path_image_nonempty S) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2179 | with pas show ?thesis by (blast intro: that) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2180 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2181 |   then have pasz: "path_image \<gamma> \<subseteq> S - {z}" using pas by blast
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2182 | have hol: "(\<lambda>w. (w - z) * f w) holomorphic_on S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2183 | by (rule holomorphic_intros holf)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2184 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2185 | using Cauchy_integral_formula_global [OF S hol \<open>z \<in> S\<close> vpg pasz loop zero] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2186 | by (auto simp: znot elim!: has_contour_integral_eq) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2187 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2188 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2189 | corollary Cauchy_theorem_global_outside: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2190 | assumes "open S" "f holomorphic_on S" "valid_path \<gamma>" "pathfinish \<gamma> = pathstart \<gamma>" "path_image \<gamma> \<subseteq> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2191 | "\<And>w. w \<notin> S \<Longrightarrow> w \<in> outside(path_image \<gamma>)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2192 | shows "(f has_contour_integral 0) \<gamma>" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2193 | by (metis Cauchy_theorem_global assms winding_number_zero_in_outside valid_path_imp_path) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2194 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2195 | lemma simply_connected_imp_winding_number_zero: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2196 | assumes "simply_connected S" "path g" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2197 | "path_image g \<subseteq> S" "pathfinish g = pathstart g" "z \<notin> S" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2198 | shows "winding_number g z = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2199 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2200 | have hom: "homotopic_loops S g (linepath (pathstart g) (pathstart g))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2201 | by (meson assms homotopic_paths_imp_homotopic_loops pathfinish_linepath simply_connected_eq_contractible_path) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2202 |   then have "homotopic_paths (- {z}) g (linepath (pathstart g) (pathstart g))"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2203 | by (meson \<open>z \<notin> S\<close> homotopic_loops_imp_homotopic_paths_null homotopic_paths_subset subset_Compl_singleton) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2204 | then have "winding_number g z = winding_number(linepath (pathstart g) (pathstart g)) z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2205 | by (rule winding_number_homotopic_paths) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2206 | also have "\<dots> = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2207 | using assms by (force intro: winding_number_trivial) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2208 | finally show ?thesis . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2209 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2210 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2211 | lemma Cauchy_theorem_simply_connected: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2212 | assumes "open S" "simply_connected S" "f holomorphic_on S" "valid_path g" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2213 | "path_image g \<subseteq> S" "pathfinish g = pathstart g" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2214 | shows "(f has_contour_integral 0) g" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2215 | by (meson assms Cauchy_theorem_global simply_connected_imp_winding_number_zero valid_path_imp_path) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2216 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2217 | proposition\<^marker>\<open>tag unimportant\<close> holomorphic_logarithm_exists: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2218 | assumes A: "convex A" "open A" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2219 | and f: "f holomorphic_on A" "\<And>x. x \<in> A \<Longrightarrow> f x \<noteq> 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2220 | and z0: "z0 \<in> A" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2221 | obtains g where "g holomorphic_on A" and "\<And>x. x \<in> A \<Longrightarrow> exp (g x) = f x" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2222 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2223 | note f' = holomorphic_derivI [OF f(1) A(2)] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2224 | obtain g where g: "\<And>x. x \<in> A \<Longrightarrow> (g has_field_derivative deriv f x / f x) (at x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2225 | proof (rule holomorphic_convex_primitive' [OF A]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2226 | show "(\<lambda>x. deriv f x / f x) holomorphic_on A" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2227 | by (intro holomorphic_intros f A) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2228 | qed (auto simp: A at_within_open[of _ A]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2229 | define h where "h = (\<lambda>x. -g z0 + ln (f z0) + g x)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2230 | from g and A have g_holo: "g holomorphic_on A" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2231 | by (auto simp: holomorphic_on_def at_within_open[of _ A] field_differentiable_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2232 | hence h_holo: "h holomorphic_on A" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2233 | by (auto simp: h_def intro!: holomorphic_intros) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2234 | note [simp] = at_within_open[OF _ \<open>open A\<close>] | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2235 | have "\<exists>c. \<forall>x\<in>A. f x / exp (h x) - 1 = c" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2236 | using \<open>convex A\<close> z0 f | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2237 | by (force simp: h_def exp_diff field_simps intro!: has_field_derivative_zero_constant derivative_eq_intros g f') | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2238 | then obtain c where c: "\<And>x. x \<in> A \<Longrightarrow> f x / exp (h x) - 1 = c" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2239 | by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2240 | from c[OF z0] and z0 and f have "c = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2241 | by (simp add: h_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2242 | with c have "\<And>x. x \<in> A \<Longrightarrow> exp (h x) = f x" by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2243 | from that[OF h_holo this] show ?thesis . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2244 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2245 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2246 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2247 | (* FIXME mv to Cauchy_Integral_Theorem.thy *) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2248 | subsection\<open>Cauchy's inequality and more versions of Liouville\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2249 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2250 | lemma Cauchy_higher_deriv_bound: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2251 | assumes holf: "f holomorphic_on (ball z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2252 | and contf: "continuous_on (cball z r) f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2253 | and fin : "\<And>w. w \<in> ball z r \<Longrightarrow> f w \<in> ball y B0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2254 | and "0 < r" and "0 < n" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2255 | shows "norm ((deriv ^^ n) f z) \<le> (fact n) * B0 / r^n" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2256 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2257 | have "0 < B0" using \<open>0 < r\<close> fin [of z] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2258 | by (metis ball_eq_empty ex_in_conv fin not_less) | 
| 72266 | 2259 | have le_B0: "cmod (f w - y) \<le> B0" if "cmod (w - z) \<le> r" for w | 
| 2260 | proof (rule continuous_on_closure_norm_le [of "ball z r" "\<lambda>w. f w - y"], use \<open>0 < r\<close> in simp_all) | |
| 2261 | show "continuous_on (cball z r) (\<lambda>w. f w - y)" | |
| 2262 | by (intro continuous_intros contf) | |
| 2263 | show "dist z w \<le> r" | |
| 2264 | by (simp add: dist_commute dist_norm that) | |
| 2265 | qed (use fin in \<open>auto simp: dist_norm less_eq_real_def norm_minus_commute\<close>) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2266 | have "(deriv ^^ n) f z = (deriv ^^ n) (\<lambda>w. f w) z - (deriv ^^ n) (\<lambda>w. y) z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2267 | using \<open>0 < n\<close> by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2268 | also have "... = (deriv ^^ n) (\<lambda>w. f w - y) z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2269 | by (rule higher_deriv_diff [OF holf, symmetric]) (auto simp: \<open>0 < r\<close>) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2270 | finally have "(deriv ^^ n) f z = (deriv ^^ n) (\<lambda>w. f w - y) z" . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2271 | have contf': "continuous_on (cball z r) (\<lambda>u. f u - y)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2272 | by (rule contf continuous_intros)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2273 | have holf': "(\<lambda>u. (f u - y)) holomorphic_on (ball z r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2274 | by (simp add: holf holomorphic_on_diff) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2275 | define a where "a = (2 * pi)/(fact n)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2276 | have "0 < a" by (simp add: a_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2277 | have "B0/r^(Suc n)*2 * pi * r = a*((fact n)*B0/r^n)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2278 | using \<open>0 < r\<close> by (simp add: a_def field_split_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2279 | have der_dif: "(deriv ^^ n) (\<lambda>w. f w - y) z = (deriv ^^ n) f z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2280 | using \<open>0 < r\<close> \<open>0 < n\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2281 | by (auto simp: higher_deriv_diff [OF holf holomorphic_on_const]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2282 | have "norm ((2 * of_real pi * \<i>)/(fact n) * (deriv ^^ n) (\<lambda>w. f w - y) z) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2283 | \<le> (B0/r^(Suc n)) * (2 * pi * r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2284 | apply (rule has_contour_integral_bound_circlepath [of "(\<lambda>u. (f u - y)/(u - z)^(Suc n))" _ z]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2285 | using Cauchy_has_contour_integral_higher_derivative_circlepath [OF contf' holf'] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2286 | using \<open>0 < B0\<close> \<open>0 < r\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2287 | apply (auto simp: norm_divide norm_mult norm_power divide_simps le_B0) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2288 | done | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2289 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2290 | using \<open>0 < r\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2291 | by (auto simp: norm_divide norm_mult norm_power field_simps der_dif le_B0) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2292 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2293 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2294 | lemma Cauchy_inequality: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2295 | assumes holf: "f holomorphic_on (ball \<xi> r)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2296 | and contf: "continuous_on (cball \<xi> r) f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2297 | and "0 < r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2298 | and nof: "\<And>x. norm(\<xi>-x) = r \<Longrightarrow> norm(f x) \<le> B" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2299 | shows "norm ((deriv ^^ n) f \<xi>) \<le> (fact n) * B / r^n" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2300 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2301 | obtain x where "norm (\<xi>-x) = r" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2302 | by (metis \<open>0 < r\<close> dist_norm order_less_imp_le vector_choose_dist) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2303 | then have "0 \<le> B" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2304 | by (metis nof norm_not_less_zero not_le order_trans) | 
| 72266 | 2305 | have "\<xi> \<in> ball \<xi> r" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2306 | using \<open>0 < r\<close> by simp | 
| 72266 | 2307 | then have "((\<lambda>u. f u / (u-\<xi>) ^ Suc n) has_contour_integral (2 * pi) * \<i> / fact n * (deriv ^^ n) f \<xi>) | 
| 2308 | (circlepath \<xi> r)" | |
| 2309 | by (rule Cauchy_has_contour_integral_higher_derivative_circlepath [OF contf holf]) | |
| 2310 | have "norm ((2 * pi * \<i>)/(fact n) * (deriv ^^ n) f \<xi>) \<le> (B / r^(Suc n)) * (2 * pi * r)" | |
| 2311 | proof (rule has_contour_integral_bound_circlepath) | |
| 2312 | have "\<xi> \<in> ball \<xi> r" | |
| 2313 | using \<open>0 < r\<close> by simp | |
| 2314 | then show "((\<lambda>u. f u / (u-\<xi>) ^ Suc n) has_contour_integral (2 * pi) * \<i> / fact n * (deriv ^^ n) f \<xi>) | |
| 2315 | (circlepath \<xi> r)" | |
| 2316 | by (rule Cauchy_has_contour_integral_higher_derivative_circlepath [OF contf holf]) | |
| 2317 | show "\<And>x. cmod (x-\<xi>) = r \<Longrightarrow> cmod (f x / (x-\<xi>) ^ Suc n) \<le> B / r ^ Suc n" | |
| 2318 | using \<open>0 \<le> B\<close> \<open>0 < r\<close> | |
| 2319 | by (simp add: norm_divide norm_power nof frac_le norm_minus_commute del: power_Suc) | |
| 2320 | qed (use \<open>0 \<le> B\<close> \<open>0 < r\<close> in auto) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2321 | then show ?thesis using \<open>0 < r\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2322 | by (simp add: norm_divide norm_mult field_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2323 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2324 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2325 | lemma Liouville_polynomial: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2326 | assumes holf: "f holomorphic_on UNIV" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2327 | and nof: "\<And>z. A \<le> norm z \<Longrightarrow> norm(f z) \<le> B * norm z ^ n" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2328 | shows "f \<xi> = (\<Sum>k\<le>n. (deriv^^k) f 0 / fact k * \<xi> ^ k)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2329 | proof (cases rule: le_less_linear [THEN disjE]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2330 | assume "B \<le> 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2331 | then have "\<And>z. A \<le> norm z \<Longrightarrow> norm(f z) = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2332 | by (metis nof less_le_trans zero_less_mult_iff neqE norm_not_less_zero norm_power not_le) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2333 | then have f0: "(f \<longlongrightarrow> 0) at_infinity" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2334 | using Lim_at_infinity by force | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2335 | then have [simp]: "f = (\<lambda>w. 0)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2336 | using Liouville_weak [OF holf, of 0] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2337 | by (simp add: eventually_at_infinity f0) meson | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2338 | show ?thesis by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2339 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2340 | assume "0 < B" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2341 | have "((\<lambda>k. (deriv ^^ k) f 0 / (fact k) * (\<xi> - 0)^k) sums f \<xi>)" | 
| 72266 | 2342 | proof (rule holomorphic_power_series [where r = "norm \<xi> + 1"]) | 
| 2343 | show "f holomorphic_on ball 0 (cmod \<xi> + 1)" "\<xi> \<in> ball 0 (cmod \<xi> + 1)" | |
| 2344 | using holf holomorphic_on_subset by auto | |
| 2345 | qed | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2346 | then have sumsf: "((\<lambda>k. (deriv ^^ k) f 0 / (fact k) * \<xi>^k) sums f \<xi>)" by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2347 | have "(deriv ^^ k) f 0 / fact k * \<xi> ^ k = 0" if "k>n" for k | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2348 | proof (cases "(deriv ^^ k) f 0 = 0") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2349 | case True then show ?thesis by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2350 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2351 | case False | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2352 | define w where "w = complex_of_real (fact k * B / cmod ((deriv ^^ k) f 0) + (\<bar>A\<bar> + 1))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2353 | have "1 \<le> abs (fact k * B / cmod ((deriv ^^ k) f 0) + (\<bar>A\<bar> + 1))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2354 | using \<open>0 < B\<close> by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2355 | then have wge1: "1 \<le> norm w" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2356 | by (metis norm_of_real w_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2357 | then have "w \<noteq> 0" by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2358 | have kB: "0 < fact k * B" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2359 | using \<open>0 < B\<close> by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2360 | then have "0 \<le> fact k * B / cmod ((deriv ^^ k) f 0)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2361 | by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2362 | then have wgeA: "A \<le> cmod w" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2363 | by (simp only: w_def norm_of_real) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2364 | have "fact k * B / cmod ((deriv ^^ k) f 0) < abs (fact k * B / cmod ((deriv ^^ k) f 0) + (\<bar>A\<bar> + 1))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2365 | using \<open>0 < B\<close> by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2366 | then have wge: "fact k * B / cmod ((deriv ^^ k) f 0) < norm w" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2367 | by (metis norm_of_real w_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2368 | then have "fact k * B / norm w < cmod ((deriv ^^ k) f 0)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2369 | using False by (simp add: field_split_simps mult.commute split: if_split_asm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2370 | also have "... \<le> fact k * (B * norm w ^ n) / norm w ^ k" | 
| 72266 | 2371 | proof (rule Cauchy_inequality) | 
| 2372 | show "f holomorphic_on ball 0 (cmod w)" | |
| 2373 | using holf holomorphic_on_subset by force | |
| 2374 | show "continuous_on (cball 0 (cmod w)) f" | |
| 2375 | using holf holomorphic_on_imp_continuous_on holomorphic_on_subset by blast | |
| 2376 | show "\<And>x. cmod (0 - x) = cmod w \<Longrightarrow> cmod (f x) \<le> B * cmod w ^ n" | |
| 2377 | by (metis nof wgeA dist_0_norm dist_norm) | |
| 2378 | qed (use \<open>w \<noteq> 0\<close> in auto) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2379 | also have "... = fact k * B / cmod w ^ (k-n)" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2380 | using \<open>k>n\<close> by (simp add: divide_simps flip: power_add) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2381 | finally have "fact k * B / cmod w < fact k * B / cmod w ^ (k - n)" . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2382 | then have "1 / cmod w < 1 / cmod w ^ (k - n)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2383 | by (metis kB divide_inverse inverse_eq_divide mult_less_cancel_left_pos) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2384 | then have "cmod w ^ (k - n) < cmod w" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2385 | by (smt (verit, best) \<open>w \<noteq> 0\<close> frac_le zero_less_norm_iff) | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2386 | with self_le_power [OF wge1] show ?thesis | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2387 | by (meson diff_is_0_eq not_gr0 not_le that) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2388 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2389 | then have "(deriv ^^ (k + Suc n)) f 0 / fact (k + Suc n) * \<xi> ^ (k + Suc n) = 0" for k | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2390 | using not_less_eq by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2391 | then have "(\<lambda>i. (deriv ^^ (i + Suc n)) f 0 / fact (i + Suc n) * \<xi> ^ (i + Suc n)) sums 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2392 | by (rule sums_0) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2393 | with sums_split_initial_segment [OF sumsf, where n = "Suc n"] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2394 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2395 | using atLeast0AtMost lessThan_Suc_atMost sums_unique2 by fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2396 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2397 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2398 | text\<open>Every bounded entire function is a constant function.\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2399 | theorem Liouville_theorem: | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2400 | assumes holf: "f holomorphic_on UNIV" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2401 | and bf: "bounded (range f)" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2402 | shows "f constant_on UNIV" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2403 | using Liouville_polynomial [OF holf, of 0 _ 0, simplified] | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2404 | by (metis bf bounded_iff constant_on_def rangeI) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2405 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2406 | text\<open>A holomorphic function f has only isolated zeros unless f is 0.\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2407 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2408 | lemma powser_0_nonzero: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2409 |   fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2410 | assumes r: "0 < r" | 
| 72266 | 2411 | and sm: "\<And>x. norm (x-\<xi>) < r \<Longrightarrow> (\<lambda>n. a n * (x-\<xi>) ^ n) sums (f x)" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2412 | and [simp]: "f \<xi> = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2413 | and m0: "a m \<noteq> 0" and "m>0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2414 |   obtains s where "0 < s" and "\<And>z. z \<in> cball \<xi> s - {\<xi>} \<Longrightarrow> f z \<noteq> 0"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2415 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2416 | have "r \<le> conv_radius a" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2417 | using sm sums_summable by (auto simp: le_conv_radius_iff [where \<xi>=\<xi>]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2418 | obtain m where am: "a m \<noteq> 0" and az [simp]: "(\<And>n. n<m \<Longrightarrow> a n = 0)" | 
| 72266 | 2419 | proof | 
| 2420 | show "a (LEAST n. a n \<noteq> 0) \<noteq> 0" | |
| 2421 | by (metis (mono_tags, lifting) m0 LeastI) | |
| 2422 | qed (fastforce dest!: not_less_Least) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2423 | define b where "b i = a (i+m) / a m" for i | 
| 72266 | 2424 | define g where "g x = suminf (\<lambda>i. b i * (x-\<xi>) ^ i)" for x | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2425 | have [simp]: "b 0 = 1" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2426 | by (simp add: am b_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2427 |   { fix x::'a
 | 
| 72266 | 2428 | assume "norm (x-\<xi>) < r" | 
| 2429 | then have "(\<lambda>n. (a m * (x-\<xi>)^m) * (b n * (x-\<xi>)^n)) sums (f x)" | |
| 2430 | using am az sm sums_zero_iff_shift [of m "(\<lambda>n. a n * (x-\<xi>) ^ n)" "f x"] | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2431 | by (simp add: b_def monoid_mult_class.power_add algebra_simps) | 
| 72266 | 2432 | then have "x \<noteq> \<xi> \<Longrightarrow> (\<lambda>n. b n * (x-\<xi>)^n) sums (f x / (a m * (x-\<xi>)^m))" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2433 | using am by (simp add: sums_mult_D) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2434 | } note bsums = this | 
| 72266 | 2435 | then have "norm (x-\<xi>) < r \<Longrightarrow> summable (\<lambda>n. b n * (x-\<xi>)^n)" for x | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2436 | using sums_summable by (cases "x=\<xi>") auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2437 | then have "r \<le> conv_radius b" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2438 | by (simp add: le_conv_radius_iff [where \<xi>=\<xi>]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2439 | then have "r/2 < conv_radius b" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2440 | using not_le order_trans r by fastforce | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2441 | then have "continuous_on (cball \<xi> (r/2)) g" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2442 | using powser_continuous_suminf [of "r/2" b \<xi>] by (simp add: g_def) | 
| 72266 | 2443 | then obtain s where "s>0" "\<And>x. \<lbrakk>norm (x-\<xi>) \<le> s; norm (x-\<xi>) \<le> r/2\<rbrakk> \<Longrightarrow> dist (g x) (g \<xi>) < 1/2" | 
| 2444 | proof (rule continuous_onE) | |
| 2445 | show "\<xi> \<in> cball \<xi> (r / 2)" "1/2 > (0::real)" | |
| 2446 | using r by auto | |
| 2447 | qed (auto simp: dist_commute dist_norm) | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2448 | moreover have "g \<xi> = 1" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2449 | by (simp add: g_def) | 
| 72266 | 2450 | ultimately have gnz: "\<And>x. \<lbrakk>norm (x-\<xi>) \<le> s; norm (x-\<xi>) \<le> r/2\<rbrakk> \<Longrightarrow> (g x) \<noteq> 0" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2451 | by fastforce | 
| 72266 | 2452 | have "f x \<noteq> 0" if "x \<noteq> \<xi>" "norm (x-\<xi>) \<le> s" "norm (x-\<xi>) \<le> r/2" for x | 
| 2453 | using bsums [of x] that gnz [of x] r sums_iff unfolding g_def by fastforce | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2454 | then show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2455 | apply (rule_tac s="min s (r/2)" in that) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2456 | using \<open>0 < r\<close> \<open>0 < s\<close> by (auto simp: dist_commute dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2457 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2458 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2459 | subsection \<open>Complex functions and power series\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2460 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2461 | text \<open> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2462 | The following defines the power series expansion of a complex function at a given point | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2463 | (assuming that it is analytic at that point). | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2464 | \<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2465 | definition\<^marker>\<open>tag important\<close> fps_expansion :: "(complex \<Rightarrow> complex) \<Rightarrow> complex \<Rightarrow> complex fps" where | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2466 | "fps_expansion f z0 = Abs_fps (\<lambda>n. (deriv ^^ n) f z0 / fact n)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2467 | |
| 77228 
8c093a4b8ccf
Even more new material from Eberl and Li
 paulson <lp15@cam.ac.uk> parents: 
73933diff
changeset | 2468 | lemma fps_expansion_cong: | 
| 
8c093a4b8ccf
Even more new material from Eberl and Li
 paulson <lp15@cam.ac.uk> parents: 
73933diff
changeset | 2469 | assumes "\<forall>\<^sub>F w in nhds x. f w =g w" | 
| 
8c093a4b8ccf
Even more new material from Eberl and Li
 paulson <lp15@cam.ac.uk> parents: 
73933diff
changeset | 2470 | shows "fps_expansion f x = fps_expansion g x" | 
| 
8c093a4b8ccf
Even more new material from Eberl and Li
 paulson <lp15@cam.ac.uk> parents: 
73933diff
changeset | 2471 | unfolding fps_expansion_def using assms higher_deriv_cong_ev by fastforce | 
| 
8c093a4b8ccf
Even more new material from Eberl and Li
 paulson <lp15@cam.ac.uk> parents: 
73933diff
changeset | 2472 | |
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2473 | lemma | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2474 | fixes r :: ereal | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2475 | assumes "f holomorphic_on eball z0 r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2476 | shows conv_radius_fps_expansion: "fps_conv_radius (fps_expansion f z0) \<ge> r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2477 | and eval_fps_expansion: "\<And>z. z \<in> eball z0 r \<Longrightarrow> eval_fps (fps_expansion f z0) (z - z0) = f z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2478 | and eval_fps_expansion': "\<And>z. norm z < r \<Longrightarrow> eval_fps (fps_expansion f z0) z = f (z0 + z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2479 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2480 | have "(\<lambda>n. fps_nth (fps_expansion f z0) n * (z - z0) ^ n) sums f z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2481 | if "z \<in> ball z0 r'" "ereal r' < r" for z r' | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2482 | proof - | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2483 | have "f holomorphic_on ball z0 r'" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2484 | using holomorphic_on_subset[OF _ ball_eball_mono] assms that by force | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2485 | then show ?thesis | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2486 | using fps_expansion_def holomorphic_power_series that by auto | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2487 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2488 | hence *: "(\<lambda>n. fps_nth (fps_expansion f z0) n * (z - z0) ^ n) sums f z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2489 | if "z \<in> eball z0 r" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2490 | using that by (subst (asm) eball_conv_UNION_balls) blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2491 | show "fps_conv_radius (fps_expansion f z0) \<ge> r" unfolding fps_conv_radius_def | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2492 | proof (rule conv_radius_geI_ex) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2493 | fix r' :: real assume r': "r' > 0" "ereal r' < r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2494 | thus "\<exists>z. norm z = r' \<and> summable (\<lambda>n. fps_nth (fps_expansion f z0) n * z ^ n)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2495 | using *[of "z0 + of_real r'"] | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2496 | by (intro exI[of _ "of_real r'"]) (auto simp: summable_def dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2497 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2498 | show "eval_fps (fps_expansion f z0) (z - z0) = f z" if "z \<in> eball z0 r" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2499 | using *[OF that] by (simp add: eval_fps_def sums_iff) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2500 | show "eval_fps (fps_expansion f z0) z = f (z0 + z)" if "ereal (norm z) < r" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2501 | using *[of "z0 + z"] and that by (simp add: eval_fps_def sums_iff dist_norm) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2502 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2503 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2504 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2505 | text \<open> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2506 | We can now show several more facts about power series expansions (at least in the complex case) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2507 | with relative ease that would have been trickier without complex analysis. | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2508 | \<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2509 | lemma | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2510 | fixes f :: "complex fps" and r :: ereal | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2511 | assumes "\<And>z. ereal (norm z) < r \<Longrightarrow> eval_fps f z \<noteq> 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2512 | shows fps_conv_radius_inverse: "fps_conv_radius (inverse f) \<ge> min r (fps_conv_radius f)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2513 | and eval_fps_inverse: "\<And>z. ereal (norm z) < fps_conv_radius f \<Longrightarrow> ereal (norm z) < r \<Longrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2514 | eval_fps (inverse f) z = inverse (eval_fps f z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2515 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2516 | define R where "R = min (fps_conv_radius f) r" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2517 | have *: "fps_conv_radius (inverse f) \<ge> min r (fps_conv_radius f) \<and> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2518 | (\<forall>z\<in>eball 0 (min (fps_conv_radius f) r). eval_fps (inverse f) z = inverse (eval_fps f z))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2519 | proof (cases "min r (fps_conv_radius f) > 0") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2520 | case True | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2521 | define f' where "f' = fps_expansion (\<lambda>z. inverse (eval_fps f z)) 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2522 | have holo: "(\<lambda>z. inverse (eval_fps f z)) holomorphic_on eball 0 (min r (fps_conv_radius f))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2523 | using assms by (intro holomorphic_intros) auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2524 | from holo have radius: "fps_conv_radius f' \<ge> min r (fps_conv_radius f)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2525 | unfolding f'_def by (rule conv_radius_fps_expansion) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2526 | have eval_f': "eval_fps f' z = inverse (eval_fps f z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2527 | if "norm z < fps_conv_radius f" "norm z < r" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2528 | using that unfolding f'_def by (subst eval_fps_expansion'[OF holo]) auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2529 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2530 | have "f * f' = 1" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2531 | proof (rule eval_fps_eqD) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2532 | from radius and True have "0 < min (fps_conv_radius f) (fps_conv_radius f')" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2533 | by (auto simp: min_def split: if_splits) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2534 | also have "\<dots> \<le> fps_conv_radius (f * f')" by (rule fps_conv_radius_mult) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2535 | finally show "\<dots> > 0" . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2536 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2537 | from True have "R > 0" by (auto simp: R_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2538 | hence "eventually (\<lambda>z. z \<in> eball 0 R) (nhds 0)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2539 | by (intro eventually_nhds_in_open) (auto simp: zero_ereal_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2540 | thus "eventually (\<lambda>z. eval_fps (f * f') z = eval_fps 1 z) (nhds 0)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2541 | proof eventually_elim | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2542 | case (elim z) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2543 | hence "eval_fps (f * f') z = eval_fps f z * eval_fps f' z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2544 | using radius by (intro eval_fps_mult) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2545 | (auto simp: R_def min_def split: if_splits intro: less_trans) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2546 | also have "eval_fps f' z = inverse (eval_fps f z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2547 | using elim by (intro eval_f') (auto simp: R_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2548 | also from elim have "eval_fps f z \<noteq> 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2549 | by (intro assms) (auto simp: R_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2550 | hence "eval_fps f z * inverse (eval_fps f z) = eval_fps 1 z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2551 | by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2552 | finally show "eval_fps (f * f') z = eval_fps 1 z" . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2553 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2554 | qed simp_all | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2555 | hence "f' = inverse f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2556 | by (intro fps_inverse_unique [symmetric]) (simp_all add: mult_ac) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2557 | with eval_f' and radius show ?thesis by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2558 | next | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2559 | case False | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2560 |     hence *: "eball 0 R = {}" 
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2561 | by (intro eball_empty) (auto simp: R_def min_def split: if_splits) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2562 | show ?thesis | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2563 | proof safe | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2564 | from False have "min r (fps_conv_radius f) \<le> 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2565 | by (simp add: min_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2566 | also have "0 \<le> fps_conv_radius (inverse f)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2567 | by (simp add: fps_conv_radius_def conv_radius_nonneg) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2568 | finally show "min r (fps_conv_radius f) \<le> \<dots>" . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2569 | qed (unfold * [unfolded R_def], auto) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2570 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2571 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2572 | from * show "fps_conv_radius (inverse f) \<ge> min r (fps_conv_radius f)" by blast | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2573 | from * show "eval_fps (inverse f) z = inverse (eval_fps f z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2574 | if "ereal (norm z) < fps_conv_radius f" "ereal (norm z) < r" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2575 | using that by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2576 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2577 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2578 | lemma | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2579 | fixes f g :: "complex fps" and r :: ereal | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2580 |   defines "R \<equiv> Min {r, fps_conv_radius f, fps_conv_radius g}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2581 | assumes "fps_conv_radius f > 0" "fps_conv_radius g > 0" "r > 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2582 | assumes nz: "\<And>z. z \<in> eball 0 r \<Longrightarrow> eval_fps g z \<noteq> 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2583 | shows fps_conv_radius_divide': "fps_conv_radius (f / g) \<ge> R" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2584 | and eval_fps_divide': | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2585 | "ereal (norm z) < R \<Longrightarrow> eval_fps (f / g) z = eval_fps f z / eval_fps g z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2586 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2587 | from nz[of 0] and \<open>r > 0\<close> have nz': "fps_nth g 0 \<noteq> 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2588 | by (auto simp: eval_fps_at_0 zero_ereal_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2589 | have "R \<le> min r (fps_conv_radius g)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2590 | by (auto simp: R_def intro: min.coboundedI2) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2591 | also have "min r (fps_conv_radius g) \<le> fps_conv_radius (inverse g)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2592 | by (intro fps_conv_radius_inverse assms) (auto simp: zero_ereal_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2593 | finally have radius: "fps_conv_radius (inverse g) \<ge> R" . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2594 | have "R \<le> min (fps_conv_radius f) (fps_conv_radius (inverse g))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2595 | by (intro radius min.boundedI) (auto simp: R_def intro: min.coboundedI1 min.coboundedI2) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2596 | also have "\<dots> \<le> fps_conv_radius (f * inverse g)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2597 | by (rule fps_conv_radius_mult) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2598 | also have "f * inverse g = f / g" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2599 | by (intro fps_divide_unit [symmetric] nz') | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2600 | finally show "fps_conv_radius (f / g) \<ge> R" . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2601 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2602 | assume z: "ereal (norm z) < R" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2603 | have "eval_fps (f * inverse g) z = eval_fps f z * eval_fps (inverse g) z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2604 | using radius by (intro eval_fps_mult less_le_trans[OF z]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2605 | (auto simp: R_def intro: min.coboundedI1 min.coboundedI2) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2606 | also have "eval_fps (inverse g) z = inverse (eval_fps g z)" using \<open>r > 0\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2607 | by (intro eval_fps_inverse[where r = r] less_le_trans[OF z] nz) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2608 | (auto simp: R_def intro: min.coboundedI1 min.coboundedI2) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2609 | also have "f * inverse g = f / g" by fact | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2610 | finally show "eval_fps (f / g) z = eval_fps f z / eval_fps g z" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2611 | by (simp add: field_split_simps) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2612 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2613 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2614 | lemma | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2615 | fixes f g :: "complex fps" and r :: ereal | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2616 |   defines "R \<equiv> Min {r, fps_conv_radius f, fps_conv_radius g}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2617 | assumes "subdegree g \<le> subdegree f" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2618 | assumes "fps_conv_radius f > 0" "fps_conv_radius g > 0" "r > 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2619 | assumes "\<And>z. z \<in> eball 0 r \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> eval_fps g z \<noteq> 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2620 | shows fps_conv_radius_divide: "fps_conv_radius (f / g) \<ge> R" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2621 | and eval_fps_divide: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2622 | "ereal (norm z) < R \<Longrightarrow> c = fps_nth f (subdegree g) / fps_nth g (subdegree g) \<Longrightarrow> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2623 | eval_fps (f / g) z = (if z = 0 then c else eval_fps f z / eval_fps g z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2624 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2625 | define f' g' where "f' = fps_shift (subdegree g) f" and "g' = fps_shift (subdegree g) g" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2626 | have f_eq: "f = f' * fps_X ^ subdegree g" and g_eq: "g = g' * fps_X ^ subdegree g" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2627 | unfolding f'_def g'_def by (rule subdegree_decompose' le_refl | fact)+ | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2628 | have subdegree: "subdegree f' = subdegree f - subdegree g" "subdegree g' = 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2629 | using assms(2) by (simp_all add: f'_def g'_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2630 | have [simp]: "fps_conv_radius f' = fps_conv_radius f" "fps_conv_radius g' = fps_conv_radius g" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2631 | by (simp_all add: f'_def g'_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2632 | have [simp]: "fps_nth f' 0 = fps_nth f (subdegree g)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2633 | "fps_nth g' 0 = fps_nth g (subdegree g)" by (simp_all add: f'_def g'_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2634 | have g_nz: "g \<noteq> 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2635 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2636 | define z :: complex where "z = (if r = \<infinity> then 1 else of_real (real_of_ereal r / 2))" | 
| 78517 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 2637 | have "z \<in> eball 0 r" | 
| 
28c1f4f5335f
Numerous minor tweaks and simplifications
 paulson <lp15@cam.ac.uk> parents: 
77690diff
changeset | 2638 | using \<open>r > 0\<close> ereal_less_real_iff z_def by fastforce | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2639 | moreover have "z \<noteq> 0" using \<open>r > 0\<close> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2640 | by (cases r) (auto simp: z_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2641 | ultimately have "eval_fps g z \<noteq> 0" by (rule assms(6)) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2642 | thus "g \<noteq> 0" by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2643 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2644 | have fg: "f / g = f' * inverse g'" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2645 | by (subst f_eq, subst (2) g_eq) (insert g_nz, simp add: fps_divide_unit) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2646 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2647 | have g'_nz: "eval_fps g' z \<noteq> 0" if z: "norm z < min r (fps_conv_radius g)" for z | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2648 | proof (cases "z = 0") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2649 | case False | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2650 | with assms and z have "eval_fps g z \<noteq> 0" by auto | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2651 | also from z have "eval_fps g z = eval_fps g' z * z ^ subdegree g" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2652 | by (subst g_eq) (auto simp: eval_fps_mult) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2653 | finally show ?thesis by auto | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2654 | qed (use \<open>g \<noteq> 0\<close> in \<open>auto simp: g'_def eval_fps_at_0\<close>) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2655 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2656 | have "R \<le> min (min r (fps_conv_radius g)) (fps_conv_radius g')" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2657 | by (auto simp: R_def min.coboundedI1 min.coboundedI2) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2658 | also have "\<dots> \<le> fps_conv_radius (inverse g')" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2659 | using g'_nz by (rule fps_conv_radius_inverse) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2660 | finally have conv_radius_inv: "R \<le> fps_conv_radius (inverse g')" . | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2661 | hence "R \<le> fps_conv_radius (f' * inverse g')" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2662 | by (intro order.trans[OF _ fps_conv_radius_mult]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2663 | (auto simp: R_def intro: min.coboundedI1 min.coboundedI2) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2664 | thus "fps_conv_radius (f / g) \<ge> R" by (simp add: fg) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2665 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2666 | fix z c :: complex assume z: "ereal (norm z) < R" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2667 | assume c: "c = fps_nth f (subdegree g) / fps_nth g (subdegree g)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2668 | show "eval_fps (f / g) z = (if z = 0 then c else eval_fps f z / eval_fps g z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2669 | proof (cases "z = 0") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2670 | case False | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2671 | from z and conv_radius_inv have "ereal (norm z) < fps_conv_radius (inverse g')" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2672 | by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2673 | with z have "eval_fps (f / g) z = eval_fps f' z * eval_fps (inverse g') z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2674 | unfolding fg by (subst eval_fps_mult) (auto simp: R_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2675 | also have "eval_fps (inverse g') z = inverse (eval_fps g' z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2676 | using z by (intro eval_fps_inverse[of "min r (fps_conv_radius g')"] g'_nz) (auto simp: R_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2677 | also have "eval_fps f' z * \<dots> = eval_fps f z / eval_fps g z" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2678 | using z False assms(2) by (simp add: f'_def g'_def eval_fps_shift R_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2679 | finally show ?thesis using False by simp | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2680 | qed (simp_all add: eval_fps_at_0 fg field_simps c) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2681 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2682 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2683 | lemma has_fps_expansion_fps_expansion [intro]: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2684 | assumes "open A" "0 \<in> A" "f holomorphic_on A" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2685 | shows "f has_fps_expansion fps_expansion f 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2686 | proof - | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2687 | from assms obtain r where "r > 0 " and r: "ball 0 r \<subseteq> A" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2688 | by (auto simp: open_contains_ball) | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2689 | with assms have holo: "f holomorphic_on eball 0 (ereal r)" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2690 | by auto | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2691 | have "r \<le> fps_conv_radius (fps_expansion f 0)" | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2692 | using holo by (intro conv_radius_fps_expansion) auto | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2693 | then have "\<dots> > 0" | 
| 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2694 | by (simp add: ereal_le_less \<open>r > 0\<close> zero_ereal_def) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2695 | moreover have "eventually (\<lambda>z. z \<in> ball 0 r) (nhds 0)" | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2696 | using \<open>r > 0\<close> by (intro eventually_nhds_in_open) auto | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2697 | hence "eventually (\<lambda>z. eval_fps (fps_expansion f 0) z = f z) (nhds 0)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2698 | by eventually_elim (subst eval_fps_expansion'[OF holo], auto) | 
| 77690 
71d075d18b6e
simplified a lot of messy proofs
 paulson <lp15@cam.ac.uk> parents: 
77228diff
changeset | 2699 | ultimately show ?thesis using \<open>r > 0\<close> by (auto simp: has_fps_expansion_def) | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2700 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2701 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2702 | lemma fps_conv_radius_tan: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2703 | fixes c :: complex | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2704 | assumes "c \<noteq> 0" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2705 | shows "fps_conv_radius (fps_tan c) \<ge> pi / (2 * norm c)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2706 | proof - | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2707 | have "fps_conv_radius (fps_tan c) \<ge> | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2708 |           Min {pi / (2 * norm c), fps_conv_radius (fps_sin c), fps_conv_radius (fps_cos c)}"
 | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2709 | unfolding fps_tan_def | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2710 | proof (rule fps_conv_radius_divide) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2711 | fix z :: complex assume "z \<in> eball 0 (pi / (2 * norm c))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2712 | with cos_eq_zero_imp_norm_ge[of "c*z"] assms | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2713 | show "eval_fps (fps_cos c) z \<noteq> 0" by (auto simp: norm_mult field_simps) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2714 | qed (insert assms, auto) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2715 | thus ?thesis by (simp add: min_def) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2716 | qed | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2717 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2718 | lemma eval_fps_tan: | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2719 | fixes c :: complex | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2720 | assumes "norm z < pi / (2 * norm c)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2721 | shows "eval_fps (fps_tan c) z = tan (c * z)" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2722 | proof (cases "c = 0") | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2723 | case False | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2724 | show ?thesis unfolding fps_tan_def | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2725 | proof (subst eval_fps_divide'[where r = "pi / (2 * norm c)"]) | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2726 | fix z :: complex assume "z \<in> eball 0 (pi / (2 * norm c))" | 
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2727 | with cos_eq_zero_imp_norm_ge[of "c*z"] assms | 
| 72266 | 2728 | show "eval_fps (fps_cos c) z \<noteq> 0" using False by (auto simp: norm_mult field_simps) | 
| 72379 | 2729 | qed (use False assms in \<open>auto simp: field_simps tan_def\<close>) | 
| 72266 | 2730 | qed simp_all | 
| 71201 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2731 | |
| 
6617fb368a06
Reorganised HOL-Complex_Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: diff
changeset | 2732 | end |