| author | wenzelm | 
| Fri, 05 Jul 2024 12:53:45 +0200 | |
| changeset 80509 | 2a9abd6a164e | 
| parent 75607 | 3c544d64c218 | 
| child 80760 | be8c0e039a5e | 
| permissions | -rw-r--r-- | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 1 | (* Title: HOL/Hilbert_Choice.thy | 
| 32988 | 2 | Author: Lawrence C Paulson, Tobias Nipkow | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 3 | Author: Viorel Preoteasa (Results about complete distributive lattices) | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 4 | Copyright 2001 University of Cambridge | 
| 12023 | 5 | *) | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 6 | |
| 60758 | 7 | section \<open>Hilbert's Epsilon-Operator and the Axiom of Choice\<close> | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 8 | |
| 15131 | 9 | theory Hilbert_Choice | 
| 63612 | 10 | imports Wellfounded | 
| 69913 | 11 | keywords "specification" :: thy_goal_defn | 
| 15131 | 12 | begin | 
| 12298 | 13 | |
| 60758 | 14 | subsection \<open>Hilbert's epsilon\<close> | 
| 12298 | 15 | |
| 63612 | 16 | axiomatization Eps :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
 | 
| 17 | where someI: "P x \<Longrightarrow> P (Eps P)" | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 18 | |
| 14872 
3f2144aebd76
improved symbolic syntax of Eps: \<some> for mode "epsilon";
 wenzelm parents: 
14760diff
changeset | 19 | syntax (epsilon) | 
| 63612 | 20 |   "_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a"  ("(3\<some>_./ _)" [0, 10] 10)
 | 
| 62521 | 21 | syntax (input) | 
| 63612 | 22 |   "_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a"  ("(3@ _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 23 | syntax | 
| 63612 | 24 |   "_Eps" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a"  ("(3SOME _./ _)" [0, 10] 10)
 | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 25 | translations | 
| 63612 | 26 | "SOME x. P" \<rightleftharpoons> "CONST Eps (\<lambda>x. P)" | 
| 13763 
f94b569cd610
added print translations tha avoid eta contraction for important binders.
 nipkow parents: 
13585diff
changeset | 27 | |
| 60758 | 28 | print_translation \<open> | 
| 69593 | 29 | [(\<^const_syntax>\<open>Eps\<close>, fn _ => fn [Abs abs] => | 
| 42284 | 30 | let val (x, t) = Syntax_Trans.atomic_abs_tr' abs | 
| 69593 | 31 | in Syntax.const \<^syntax_const>\<open>_Eps\<close> $ x $ t end)] | 
| 61799 | 32 | \<close> \<comment> \<open>to avoid eta-contraction of body\<close> | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 33 | |
| 65815 | 34 | definition inv_into :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
 | 
| 35 | "inv_into A f = (\<lambda>x. SOME y. y \<in> A \<and> f y = x)" | |
| 11454 
7514e5e21cb8
Hilbert restructuring: Wellfounded_Relations no longer needs Hilbert_Choice
 paulson parents: 
11451diff
changeset | 36 | |
| 65815 | 37 | lemma inv_into_def2: "inv_into A f x = (SOME y. y \<in> A \<and> f y = x)" | 
| 38 | by(simp add: inv_into_def) | |
| 39 | ||
| 40 | abbreviation inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
 | |
| 41 | "inv \<equiv> inv_into UNIV" | |
| 14760 | 42 | |
| 43 | ||
| 60758 | 44 | subsection \<open>Hilbert's Epsilon-operator\<close> | 
| 14760 | 45 | |
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69913diff
changeset | 46 | lemma Eps_cong: | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69913diff
changeset | 47 | assumes "\<And>x. P x = Q x" | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69913diff
changeset | 48 | shows "Eps P = Eps Q" | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69913diff
changeset | 49 | using ext[of P Q, OF assms] by simp | 
| 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69913diff
changeset | 50 | |
| 63612 | 51 | text \<open> | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 52 | Easier to use than \<open>someI\<close> if the witness comes from an | 
| 63612 | 53 | existential formula. | 
| 54 | \<close> | |
| 55 | lemma someI_ex [elim?]: "\<exists>x. P x \<Longrightarrow> P (SOME x. P x)" | |
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 56 | by (elim exE someI) | 
| 14760 | 57 | |
| 71544 | 58 | lemma some_eq_imp: | 
| 59 | assumes "Eps P = a" "P b" shows "P a" | |
| 60 | using assms someI_ex by force | |
| 61 | ||
| 63612 | 62 | text \<open> | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 63 | Easier to use than \<open>someI\<close> because the conclusion has only one | 
| 69593 | 64 | occurrence of \<^term>\<open>P\<close>. | 
| 63612 | 65 | \<close> | 
| 66 | lemma someI2: "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. P x)" | |
| 60974 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60758diff
changeset | 67 | by (blast intro: someI) | 
| 14760 | 68 | |
| 63612 | 69 | text \<open> | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 70 | Easier to use than \<open>someI2\<close> if the witness comes from an | 
| 63612 | 71 | existential formula. | 
| 72 | \<close> | |
| 73 | lemma someI2_ex: "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. P x)" | |
| 60974 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60758diff
changeset | 74 | by (blast intro: someI2) | 
| 14760 | 75 | |
| 63612 | 76 | lemma someI2_bex: "\<exists>a\<in>A. P a \<Longrightarrow> (\<And>x. x \<in> A \<and> P x \<Longrightarrow> Q x) \<Longrightarrow> Q (SOME x. x \<in> A \<and> P x)" | 
| 77 | by (blast intro: someI2) | |
| 78 | ||
| 79 | lemma some_equality [intro]: "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> x = a) \<Longrightarrow> (SOME x. P x) = a" | |
| 80 | by (blast intro: someI2) | |
| 14760 | 81 | |
| 63629 | 82 | lemma some1_equality: "\<exists>!x. P x \<Longrightarrow> P a \<Longrightarrow> (SOME x. P x) = a" | 
| 63612 | 83 | by blast | 
| 14760 | 84 | |
| 63612 | 85 | lemma some_eq_ex: "P (SOME x. P x) \<longleftrightarrow> (\<exists>x. P x)" | 
| 86 | by (blast intro: someI) | |
| 14760 | 87 | |
| 59000 | 88 | lemma some_in_eq: "(SOME x. x \<in> A) \<in> A \<longleftrightarrow> A \<noteq> {}"
 | 
| 89 | unfolding ex_in_conv[symmetric] by (rule some_eq_ex) | |
| 90 | ||
| 63612 | 91 | lemma some_eq_trivial [simp]: "(SOME y. y = x) = x" | 
| 92 | by (rule some_equality) (rule refl) | |
| 14760 | 93 | |
| 63612 | 94 | lemma some_sym_eq_trivial [simp]: "(SOME y. x = y) = x" | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 95 | by (iprover intro: some_equality) | 
| 14760 | 96 | |
| 97 | ||
| 63612 | 98 | subsection \<open>Axiom of Choice, Proved Using the Description Operator\<close> | 
| 14760 | 99 | |
| 63612 | 100 | lemma choice: "\<forall>x. \<exists>y. Q x y \<Longrightarrow> \<exists>f. \<forall>x. Q x (f x)" | 
| 101 | by (fast elim: someI) | |
| 14760 | 102 | |
| 63612 | 103 | lemma bchoice: "\<forall>x\<in>S. \<exists>y. Q x y \<Longrightarrow> \<exists>f. \<forall>x\<in>S. Q x (f x)" | 
| 104 | by (fast elim: someI) | |
| 14760 | 105 | |
| 50105 | 106 | lemma choice_iff: "(\<forall>x. \<exists>y. Q x y) \<longleftrightarrow> (\<exists>f. \<forall>x. Q x (f x))" | 
| 63612 | 107 | by (fast elim: someI) | 
| 50105 | 108 | |
| 109 | lemma choice_iff': "(\<forall>x. P x \<longrightarrow> (\<exists>y. Q x y)) \<longleftrightarrow> (\<exists>f. \<forall>x. P x \<longrightarrow> Q x (f x))" | |
| 63612 | 110 | by (fast elim: someI) | 
| 50105 | 111 | |
| 112 | lemma bchoice_iff: "(\<forall>x\<in>S. \<exists>y. Q x y) \<longleftrightarrow> (\<exists>f. \<forall>x\<in>S. Q x (f x))" | |
| 63612 | 113 | by (fast elim: someI) | 
| 50105 | 114 | |
| 115 | lemma bchoice_iff': "(\<forall>x\<in>S. P x \<longrightarrow> (\<exists>y. Q x y)) \<longleftrightarrow> (\<exists>f. \<forall>x\<in>S. P x \<longrightarrow> Q x (f x))" | |
| 63612 | 116 | by (fast elim: someI) | 
| 14760 | 117 | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56740diff
changeset | 118 | lemma dependent_nat_choice: | 
| 63612 | 119 | assumes 1: "\<exists>x. P 0 x" | 
| 120 | and 2: "\<And>x n. P n x \<Longrightarrow> \<exists>y. P (Suc n) y \<and> Q n x y" | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57275diff
changeset | 121 | shows "\<exists>f. \<forall>n. P n (f n) \<and> Q n (f n) (f (Suc n))" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56740diff
changeset | 122 | proof (intro exI allI conjI) | 
| 63040 | 123 | fix n | 
| 124 | define f where "f = rec_nat (SOME x. P 0 x) (\<lambda>n x. SOME y. P (Suc n) y \<and> Q n x y)" | |
| 63612 | 125 | then have "P 0 (f 0)" "\<And>n. P n (f n) \<Longrightarrow> P (Suc n) (f (Suc n)) \<and> Q n (f n) (f (Suc n))" | 
| 126 | using someI_ex[OF 1] someI_ex[OF 2] by simp_all | |
| 57448 
159e45728ceb
more equalities of topological filters; strengthen dependent_nat_choice; tuned a couple of proofs
 hoelzl parents: 
57275diff
changeset | 127 | then show "P n (f n)" "Q n (f n) (f (Suc n))" | 
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56740diff
changeset | 128 | by (induct n) auto | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56740diff
changeset | 129 | qed | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
56740diff
changeset | 130 | |
| 68975 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 131 | lemma finite_subset_Union: | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 132 | assumes "finite A" "A \<subseteq> \<Union>\<B>" | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 133 | obtains \<F> where "finite \<F>" "\<F> \<subseteq> \<B>" "A \<subseteq> \<Union>\<F>" | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 134 | proof - | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 135 | have "\<forall>x\<in>A. \<exists>B\<in>\<B>. x\<in>B" | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 136 | using assms by blast | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 137 | then obtain f where f: "\<And>x. x \<in> A \<Longrightarrow> f x \<in> \<B> \<and> x \<in> f x" | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 138 | by (auto simp add: bchoice_iff Bex_def) | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 139 | show thesis | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 140 | proof | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 141 | show "finite (f ` A)" | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 142 | using assms by auto | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 143 | qed (use f in auto) | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 144 | qed | 
| 
5ce4d117cea7
A few new results, elimination of duplicates and more use of "pairwise"
 paulson <lp15@cam.ac.uk> parents: 
68802diff
changeset | 145 | |
| 58074 | 146 | |
| 60758 | 147 | subsection \<open>Function Inverse\<close> | 
| 14760 | 148 | |
| 63612 | 149 | lemma inv_def: "inv f = (\<lambda>y. SOME x. f x = y)" | 
| 150 | by (simp add: inv_into_def) | |
| 33014 | 151 | |
| 63612 | 152 | lemma inv_into_into: "x \<in> f ` A \<Longrightarrow> inv_into A f x \<in> A" | 
| 153 | by (simp add: inv_into_def) (fast intro: someI2) | |
| 14760 | 154 | |
| 63612 | 155 | lemma inv_identity [simp]: "inv (\<lambda>a. a) = (\<lambda>a. a)" | 
| 63365 | 156 | by (simp add: inv_def) | 
| 157 | ||
| 63612 | 158 | lemma inv_id [simp]: "inv id = id" | 
| 63365 | 159 | by (simp add: id_def) | 
| 14760 | 160 | |
| 63612 | 161 | lemma inv_into_f_f [simp]: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> inv_into A f (f x) = x" | 
| 162 | by (simp add: inv_into_def inj_on_def) (blast intro: someI2) | |
| 14760 | 163 | |
| 63612 | 164 | lemma inv_f_f: "inj f \<Longrightarrow> inv f (f x) = x" | 
| 165 | by simp | |
| 32988 | 166 | |
| 67613 | 167 | lemma f_inv_into_f: "y \<in> f`A \<Longrightarrow> f (inv_into A f y) = y" | 
| 63612 | 168 | by (simp add: inv_into_def) (fast intro: someI2) | 
| 32988 | 169 | |
| 63612 | 170 | lemma inv_into_f_eq: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> f x = y \<Longrightarrow> inv_into A f y = x" | 
| 171 | by (erule subst) (fast intro: inv_into_f_f) | |
| 32988 | 172 | |
| 63612 | 173 | lemma inv_f_eq: "inj f \<Longrightarrow> f x = y \<Longrightarrow> inv f y = x" | 
| 174 | by (simp add:inv_into_f_eq) | |
| 32988 | 175 | |
| 63612 | 176 | lemma inj_imp_inv_eq: "inj f \<Longrightarrow> \<forall>x. f (g x) = x \<Longrightarrow> inv f = g" | 
| 44921 | 177 | by (blast intro: inv_into_f_eq) | 
| 14760 | 178 | |
| 63612 | 179 | text \<open>But is it useful?\<close> | 
| 14760 | 180 | lemma inj_transfer: | 
| 63612 | 181 | assumes inj: "inj f" | 
| 182 | and minor: "\<And>y. y \<in> range f \<Longrightarrow> P (inv f y)" | |
| 14760 | 183 | shows "P x" | 
| 184 | proof - | |
| 185 | have "f x \<in> range f" by auto | |
| 63612 | 186 | then have "P(inv f (f x))" by (rule minor) | 
| 187 | then show "P x" by (simp add: inv_into_f_f [OF inj]) | |
| 14760 | 188 | qed | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 189 | |
| 63612 | 190 | lemma inj_iff: "inj f \<longleftrightarrow> inv f \<circ> f = id" | 
| 191 | by (simp add: o_def fun_eq_iff) (blast intro: inj_on_inverseI inv_into_f_f) | |
| 14760 | 192 | |
| 63612 | 193 | lemma inv_o_cancel[simp]: "inj f \<Longrightarrow> inv f \<circ> f = id" | 
| 194 | by (simp add: inj_iff) | |
| 195 | ||
| 196 | lemma o_inv_o_cancel[simp]: "inj f \<Longrightarrow> g \<circ> inv f \<circ> f = g" | |
| 197 | by (simp add: comp_assoc) | |
| 23433 | 198 | |
| 63612 | 199 | lemma inv_into_image_cancel[simp]: "inj_on f A \<Longrightarrow> S \<subseteq> A \<Longrightarrow> inv_into A f ` f ` S = S" | 
| 200 | by (fastforce simp: image_def) | |
| 23433 | 201 | |
| 63612 | 202 | lemma inj_imp_surj_inv: "inj f \<Longrightarrow> surj (inv f)" | 
| 203 | by (blast intro!: surjI inv_into_f_f) | |
| 32988 | 204 | |
| 63612 | 205 | lemma surj_f_inv_f: "surj f \<Longrightarrow> f (inv f y) = y" | 
| 206 | by (simp add: f_inv_into_f) | |
| 14760 | 207 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 208 | lemma bij_inv_eq_iff: "bij p \<Longrightarrow> x = inv p y \<longleftrightarrow> p x = y" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 209 | using surj_f_inv_f[of p] by (auto simp add: bij_def) | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67613diff
changeset | 210 | |
| 33057 | 211 | lemma inv_into_injective: | 
| 212 | assumes eq: "inv_into A f x = inv_into A f y" | |
| 63612 | 213 | and x: "x \<in> f`A" | 
| 214 | and y: "y \<in> f`A" | |
| 215 | shows "x = y" | |
| 14760 | 216 | proof - | 
| 63612 | 217 | from eq have "f (inv_into A f x) = f (inv_into A f y)" | 
| 218 | by simp | |
| 219 | with x y show ?thesis | |
| 220 | by (simp add: f_inv_into_f) | |
| 14760 | 221 | qed | 
| 222 | ||
| 63612 | 223 | lemma inj_on_inv_into: "B \<subseteq> f`A \<Longrightarrow> inj_on (inv_into A f) B" | 
| 224 | by (blast intro: inj_onI dest: inv_into_injective injD) | |
| 32988 | 225 | |
| 71827 | 226 | lemma inj_imp_bij_betw_inv: "inj f \<Longrightarrow> bij_betw (inv f) (f ` M) M" | 
| 227 | by (simp add: bij_betw_def image_subsetI inj_on_inv_into) | |
| 228 | ||
| 63612 | 229 | lemma bij_betw_inv_into: "bij_betw f A B \<Longrightarrow> bij_betw (inv_into A f) B A" | 
| 230 | by (auto simp add: bij_betw_def inj_on_inv_into) | |
| 14760 | 231 | |
| 63612 | 232 | lemma surj_imp_inj_inv: "surj f \<Longrightarrow> inj (inv f)" | 
| 233 | by (simp add: inj_on_inv_into) | |
| 14760 | 234 | |
| 63612 | 235 | lemma surj_iff: "surj f \<longleftrightarrow> f \<circ> inv f = id" | 
| 236 | by (auto intro!: surjI simp: surj_f_inv_f fun_eq_iff[where 'b='a]) | |
| 40702 | 237 | |
| 238 | lemma surj_iff_all: "surj f \<longleftrightarrow> (\<forall>x. f (inv f x) = x)" | |
| 63612 | 239 | by (simp add: o_def surj_iff fun_eq_iff) | 
| 14760 | 240 | |
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 241 | lemma surj_imp_inv_eq: | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 242 | assumes "surj f" and gf: "\<And>x. g (f x) = x" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 243 | shows "inv f = g" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 244 | proof (rule ext) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 245 | fix x | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 246 | have "g (f (inv f x)) = inv f x" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 247 | by (rule gf) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 248 | then show "inv f x = g x" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 249 | by (simp add: surj_f_inv_f \<open>surj f\<close>) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 250 | qed | 
| 14760 | 251 | |
| 63612 | 252 | lemma bij_imp_bij_inv: "bij f \<Longrightarrow> bij (inv f)" | 
| 253 | by (simp add: bij_def inj_imp_surj_inv surj_imp_inj_inv) | |
| 12372 | 254 | |
| 63612 | 255 | lemma inv_equality: "(\<And>x. g (f x) = x) \<Longrightarrow> (\<And>y. f (g y) = y) \<Longrightarrow> inv f = g" | 
| 256 | by (rule ext) (auto simp add: inv_into_def) | |
| 257 | ||
| 258 | lemma inv_inv_eq: "bij f \<Longrightarrow> inv (inv f) = f" | |
| 259 | by (rule inv_equality) (auto simp add: bij_def surj_f_inv_f) | |
| 14760 | 260 | |
| 63612 | 261 | text \<open> | 
| 262 | \<open>bij (inv f)\<close> implies little about \<open>f\<close>. Consider \<open>f :: bool \<Rightarrow> bool\<close> such | |
| 263 | that \<open>f True = f False = True\<close>. Then it ia consistent with axiom \<open>someI\<close> | |
| 264 | that \<open>inv f\<close> could be any function at all, including the identity function. | |
| 265 | If \<open>inv f = id\<close> then \<open>inv f\<close> is a bijection, but \<open>inj f\<close>, \<open>surj f\<close> and \<open>inv | |
| 266 | (inv f) = f\<close> all fail. | |
| 267 | \<close> | |
| 14760 | 268 | |
| 33057 | 269 | lemma inv_into_comp: | 
| 63612 | 270 | "inj_on f (g ` A) \<Longrightarrow> inj_on g A \<Longrightarrow> x \<in> f ` g ` A \<Longrightarrow> | 
| 271 | inv_into A (f \<circ> g) x = (inv_into A g \<circ> inv_into (g ` A) f) x" | |
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 272 | by (auto simp: f_inv_into_f inv_into_into intro: inv_into_f_eq comp_inj_on) | 
| 32988 | 273 | |
| 63612 | 274 | lemma o_inv_distrib: "bij f \<Longrightarrow> bij g \<Longrightarrow> inv (f \<circ> g) = inv g \<circ> inv f" | 
| 275 | by (rule inv_equality) (auto simp add: bij_def surj_f_inv_f) | |
| 14760 | 276 | |
| 63807 | 277 | lemma image_f_inv_f: "surj f \<Longrightarrow> f ` (inv f ` A) = A" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61859diff
changeset | 278 | by (simp add: surj_f_inv_f image_comp comp_def) | 
| 14760 | 279 | |
| 63612 | 280 | lemma image_inv_f_f: "inj f \<Longrightarrow> inv f ` (f ` A) = A" | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
61859diff
changeset | 281 | by simp | 
| 14760 | 282 | |
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 283 | lemma bij_image_Collect_eq: | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 284 | assumes "bij f" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 285 |   shows "f ` Collect P = {y. P (inv f y)}"
 | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 286 | proof | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 287 |   show "f ` Collect P \<subseteq> {y. P (inv f y)}"
 | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 288 | using assms by (force simp add: bij_is_inj) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 289 |   show "{y. P (inv f y)} \<subseteq> f ` Collect P"
 | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 290 | using assms by (blast intro: bij_is_surj [THEN surj_f_inv_f, symmetric]) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 291 | qed | 
| 14760 | 292 | |
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 293 | lemma bij_vimage_eq_inv_image: | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 294 | assumes "bij f" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 295 | shows "f -` A = inv f ` A" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 296 | proof | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 297 | show "f -` A \<subseteq> inv f ` A" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 298 | using assms by (blast intro: bij_is_inj [THEN inv_into_f_f, symmetric]) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 299 | show "inv f ` A \<subseteq> f -` A" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 300 | using assms by (auto simp add: bij_is_surj [THEN surj_f_inv_f]) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 301 | qed | 
| 14760 | 302 | |
| 68610 | 303 | lemma inv_fn_o_fn_is_id: | 
| 304 | fixes f::"'a \<Rightarrow> 'a" | |
| 305 | assumes "bij f" | |
| 306 | shows "((inv f)^^n) o (f^^n) = (\<lambda>x. x)" | |
| 307 | proof - | |
| 308 | have "((inv f)^^n)((f^^n) x) = x" for x n | |
| 309 | proof (induction n) | |
| 310 | case (Suc n) | |
| 311 | have *: "(inv f) (f y) = y" for y | |
| 312 | by (simp add: assms bij_is_inj) | |
| 313 | have "(inv f ^^ Suc n) ((f ^^ Suc n) x) = (inv f^^n) (inv f (f ((f^^n) x)))" | |
| 314 | by (simp add: funpow_swap1) | |
| 315 | also have "... = (inv f^^n) ((f^^n) x)" | |
| 316 | using * by auto | |
| 317 | also have "... = x" using Suc.IH by auto | |
| 318 | finally show ?case by simp | |
| 319 | qed (auto) | |
| 320 | then show ?thesis unfolding o_def by blast | |
| 321 | qed | |
| 322 | ||
| 323 | lemma fn_o_inv_fn_is_id: | |
| 324 | fixes f::"'a \<Rightarrow> 'a" | |
| 325 | assumes "bij f" | |
| 326 | shows "(f^^n) o ((inv f)^^n) = (\<lambda>x. x)" | |
| 327 | proof - | |
| 328 | have "(f^^n) (((inv f)^^n) x) = x" for x n | |
| 329 | proof (induction n) | |
| 330 | case (Suc n) | |
| 331 | have *: "f(inv f y) = y" for y | |
| 332 | using bij_inv_eq_iff[OF assms] by auto | |
| 333 | have "(f ^^ Suc n) ((inv f ^^ Suc n) x) = (f^^n) (f (inv f ((inv f^^n) x)))" | |
| 334 | by (simp add: funpow_swap1) | |
| 335 | also have "... = (f^^n) ((inv f^^n) x)" | |
| 336 | using * by auto | |
| 337 | also have "... = x" using Suc.IH by auto | |
| 338 | finally show ?case by simp | |
| 339 | qed (auto) | |
| 340 | then show ?thesis unfolding o_def by blast | |
| 341 | qed | |
| 342 | ||
| 343 | lemma inv_fn: | |
| 344 | fixes f::"'a \<Rightarrow> 'a" | |
| 345 | assumes "bij f" | |
| 346 | shows "inv (f^^n) = ((inv f)^^n)" | |
| 347 | proof - | |
| 348 | have "inv (f^^n) x = ((inv f)^^n) x" for x | |
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 349 | proof (rule inv_into_f_eq) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 350 | show "inj (f ^^ n)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 351 | by (simp add: inj_fn[OF bij_is_inj [OF assms]]) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 352 | show "(f ^^ n) ((inv f ^^ n) x) = x" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 353 | using fn_o_inv_fn_is_id[OF assms, THEN fun_cong] by force | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 354 | qed auto | 
| 68610 | 355 | then show ?thesis by auto | 
| 356 | qed | |
| 357 | ||
| 73555 | 358 | lemma funpow_inj_finite: \<^marker>\<open>contributor \<open>Lars Noschinski\<close>\<close> | 
| 359 |   assumes \<open>inj p\<close> \<open>finite {y. \<exists>n. y = (p ^^ n) x}\<close>
 | |
| 360 | obtains n where \<open>n > 0\<close> \<open>(p ^^ n) x = x\<close> | |
| 361 | proof - | |
| 362 | have \<open>infinite (UNIV :: nat set)\<close> | |
| 363 | by simp | |
| 364 |   moreover have \<open>{y. \<exists>n. y = (p ^^ n) x} = (\<lambda>n. (p ^^ n) x) ` UNIV\<close>
 | |
| 365 | by auto | |
| 366 | with assms have \<open>finite \<dots>\<close> | |
| 367 | by simp | |
| 368 |   ultimately have "\<exists>n \<in> UNIV. \<not> finite {m \<in> UNIV. (p ^^ m) x = (p ^^ n) x}"
 | |
| 369 | by (rule pigeonhole_infinite) | |
| 370 |   then obtain n where "infinite {m. (p ^^ m) x = (p ^^ n) x}" by auto
 | |
| 371 |   then have "infinite ({m. (p ^^ m) x = (p ^^ n) x} - {n})" by auto
 | |
| 372 |   then have "({m. (p ^^ m) x = (p ^^ n) x} - {n}) \<noteq> {}"
 | |
| 373 | by (auto simp add: subset_singleton_iff) | |
| 374 | then obtain m where m: "(p ^^ m) x = (p ^^ n) x" "m \<noteq> n" by auto | |
| 375 | ||
| 376 |   { fix m n assume "(p ^^ n) x = (p ^^ m) x" "m < n"
 | |
| 377 | have "(p ^^ (n - m)) x = inv (p ^^ m) ((p ^^ m) ((p ^^ (n - m)) x))" | |
| 378 | using \<open>inj p\<close> by (simp add: inv_f_f) | |
| 379 | also have "((p ^^ m) ((p ^^ (n - m)) x)) = (p ^^ n) x" | |
| 380 | using \<open>m < n\<close> funpow_add [of m \<open>n - m\<close> p] by simp | |
| 381 | also have "inv (p ^^ m) \<dots> = x" | |
| 382 | using \<open>inj p\<close> by (simp add: \<open>(p ^^ n) x = _\<close>) | |
| 383 | finally have "(p ^^ (n - m)) x = x" "0 < n - m" | |
| 384 | using \<open>m < n\<close> by auto } | |
| 385 | note general = this | |
| 386 | ||
| 387 | show thesis | |
| 388 | proof (cases m n rule: linorder_cases) | |
| 389 | case less | |
| 390 | then have \<open>n - m > 0\<close> \<open>(p ^^ (n - m)) x = x\<close> | |
| 391 | using general [of n m] m by simp_all | |
| 392 | then show thesis by (blast intro: that) | |
| 393 | next | |
| 394 | case equal | |
| 395 | then show thesis using m by simp | |
| 396 | next | |
| 397 | case greater | |
| 398 | then have \<open>m - n > 0\<close> \<open>(p ^^ (m - n)) x = x\<close> | |
| 399 | using general [of m n] m by simp_all | |
| 400 | then show thesis by (blast intro: that) | |
| 401 | qed | |
| 402 | qed | |
| 403 | ||
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 404 | |
| 68610 | 405 | lemma mono_inv: | 
| 406 | fixes f::"'a::linorder \<Rightarrow> 'b::linorder" | |
| 407 | assumes "mono f" "bij f" | |
| 408 | shows "mono (inv f)" | |
| 409 | proof | |
| 410 | fix x y::'b assume "x \<le> y" | |
| 411 | from \<open>bij f\<close> obtain a b where x: "x = f a" and y: "y = f b" by(fastforce simp: bij_def surj_def) | |
| 412 | show "inv f x \<le> inv f y" | |
| 413 | proof (rule le_cases) | |
| 414 | assume "a \<le> b" | |
| 415 | thus ?thesis using \<open>bij f\<close> x y by(simp add: bij_def inv_f_f) | |
| 416 | next | |
| 417 | assume "b \<le> a" | |
| 418 | hence "f b \<le> f a" by(rule monoD[OF \<open>mono f\<close>]) | |
| 419 | hence "y \<le> x" using x y by simp | |
| 420 | hence "x = y" using \<open>x \<le> y\<close> by auto | |
| 421 | thus ?thesis by simp | |
| 422 | qed | |
| 423 | qed | |
| 424 | ||
| 71827 | 425 | lemma strict_mono_inv_on_range: | 
| 426 | fixes f :: "'a::linorder \<Rightarrow> 'b::order" | |
| 427 | assumes "strict_mono f" | |
| 75607 
3c544d64c218
changed argument order of mono_on and strict_mono_on to uniformize with monotone_on and other predicates
 desharna parents: 
74123diff
changeset | 428 | shows "strict_mono_on (range f) (inv f)" | 
| 71827 | 429 | proof (clarsimp simp: strict_mono_on_def) | 
| 430 | fix x y | |
| 431 | assume "f x < f y" | |
| 432 | then show "inv f (f x) < inv f (f y)" | |
| 433 | using assms strict_mono_imp_inj_on strict_mono_less by fastforce | |
| 434 | qed | |
| 435 | ||
| 68610 | 436 | lemma mono_bij_Inf: | 
| 437 | fixes f :: "'a::complete_linorder \<Rightarrow> 'b::complete_linorder" | |
| 438 | assumes "mono f" "bij f" | |
| 439 | shows "f (Inf A) = Inf (f`A)" | |
| 440 | proof - | |
| 441 | have "surj f" using \<open>bij f\<close> by (auto simp: bij_betw_def) | |
| 442 | have *: "(inv f) (Inf (f`A)) \<le> Inf ((inv f)`(f`A))" | |
| 443 | using mono_Inf[OF mono_inv[OF assms], of "f`A"] by simp | |
| 444 | have "Inf (f`A) \<le> f (Inf ((inv f)`(f`A)))" | |
| 445 | using monoD[OF \<open>mono f\<close> *] by(simp add: surj_f_inv_f[OF \<open>surj f\<close>]) | |
| 446 | also have "... = f(Inf A)" | |
| 447 | using assms by (simp add: bij_is_inj) | |
| 448 | finally show ?thesis using mono_Inf[OF assms(1), of A] by auto | |
| 449 | qed | |
| 450 | ||
| 31380 | 451 | lemma finite_fun_UNIVD1: | 
| 452 |   assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
 | |
| 63612 | 453 | and card: "card (UNIV :: 'b set) \<noteq> Suc 0" | 
| 31380 | 454 | shows "finite (UNIV :: 'a set)" | 
| 455 | proof - | |
| 63630 | 456 | let ?UNIV_b = "UNIV :: 'b set" | 
| 457 | from fin have "finite ?UNIV_b" | |
| 63612 | 458 | by (rule finite_fun_UNIVD2) | 
| 63630 | 459 | with card have "card ?UNIV_b \<ge> Suc (Suc 0)" | 
| 460 | by (cases "card ?UNIV_b") (auto simp: card_eq_0_iff) | |
| 461 | then have "card ?UNIV_b = Suc (Suc (card ?UNIV_b - Suc (Suc 0)))" | |
| 462 | by simp | |
| 63629 | 463 | then obtain b1 b2 :: 'b where b1b2: "b1 \<noteq> b2" | 
| 464 | by (auto simp: card_Suc_eq) | |
| 63630 | 465 | from fin have fin': "finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1))" | 
| 63612 | 466 | by (rule finite_imageI) | 
| 63630 | 467 | have "UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. inv f b1)" | 
| 31380 | 468 | proof (rule UNIV_eq_I) | 
| 469 | fix x :: 'a | |
| 63612 | 470 | from b1b2 have "x = inv (\<lambda>y. if y = x then b1 else b2) b1" | 
| 471 | by (simp add: inv_into_def) | |
| 472 | then show "x \<in> range (\<lambda>f::'a \<Rightarrow> 'b. inv f b1)" | |
| 473 | by blast | |
| 31380 | 474 | qed | 
| 63630 | 475 | with fin' show ?thesis | 
| 63612 | 476 | by simp | 
| 31380 | 477 | qed | 
| 14760 | 478 | |
| 60758 | 479 | text \<open> | 
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 480 | Every infinite set contains a countable subset. More precisely we | 
| 61799 | 481 | show that a set \<open>S\<close> is infinite if and only if there exists an | 
| 482 | injective function from the naturals into \<open>S\<close>. | |
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 483 | |
| 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 484 | The ``only if'' direction is harder because it requires the | 
| 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 485 | construction of a sequence of pairwise different elements of an | 
| 61799 | 486 | infinite set \<open>S\<close>. The idea is to construct a sequence of | 
| 487 | non-empty and infinite subsets of \<open>S\<close> obtained by successively | |
| 488 | removing elements of \<open>S\<close>. | |
| 60758 | 489 | \<close> | 
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 490 | |
| 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 491 | lemma infinite_countable_subset: | 
| 63629 | 492 | assumes inf: "\<not> finite S" | 
| 493 | shows "\<exists>f::nat \<Rightarrow> 'a. inj f \<and> range f \<subseteq> S" | |
| 61799 | 494 | \<comment> \<open>Courtesy of Stephan Merz\<close> | 
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 495 | proof - | 
| 63040 | 496 |   define Sseq where "Sseq = rec_nat S (\<lambda>n T. T - {SOME e. e \<in> T})"
 | 
| 497 | define pick where "pick n = (SOME e. e \<in> Sseq n)" for n | |
| 63540 | 498 | have *: "Sseq n \<subseteq> S" "\<not> finite (Sseq n)" for n | 
| 63612 | 499 | by (induct n) (auto simp: Sseq_def inf) | 
| 63540 | 500 | then have **: "\<And>n. pick n \<in> Sseq n" | 
| 55811 | 501 | unfolding pick_def by (subst (asm) finite.simps) (auto simp add: ex_in_conv intro: someI_ex) | 
| 63540 | 502 | with * have "range pick \<subseteq> S" by auto | 
| 63612 | 503 | moreover have "pick n \<noteq> pick (n + Suc m)" for m n | 
| 504 | proof - | |
| 63540 | 505 | have "pick n \<notin> Sseq (n + Suc m)" | 
| 506 | by (induct m) (auto simp add: Sseq_def pick_def) | |
| 63612 | 507 | with ** show ?thesis by auto | 
| 508 | qed | |
| 509 | then have "inj pick" | |
| 510 | by (intro linorder_injI) (auto simp add: less_iff_Suc_add) | |
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 511 | ultimately show ?thesis by blast | 
| 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 512 | qed | 
| 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 513 | |
| 63629 | 514 | lemma infinite_iff_countable_subset: "\<not> finite S \<longleftrightarrow> (\<exists>f::nat \<Rightarrow> 'a. inj f \<and> range f \<subseteq> S)" | 
| 61799 | 515 | \<comment> \<open>Courtesy of Stephan Merz\<close> | 
| 55811 | 516 | using finite_imageD finite_subset infinite_UNIV_char_0 infinite_countable_subset by auto | 
| 54578 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 traytel parents: 
54295diff
changeset | 517 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 518 | lemma image_inv_into_cancel: | 
| 63612 | 519 | assumes surj: "f`A = A'" | 
| 520 | and sub: "B' \<subseteq> A'" | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 521 | shows "f `((inv_into A f)`B') = B'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 522 | using assms | 
| 63612 | 523 | proof (auto simp: f_inv_into_f) | 
| 524 | let ?f' = "inv_into A f" | |
| 525 | fix a' | |
| 526 | assume *: "a' \<in> B'" | |
| 527 | with sub have "a' \<in> A'" by auto | |
| 528 | with surj have "a' = f (?f' a')" | |
| 529 | by (auto simp: f_inv_into_f) | |
| 530 | with * show "a' \<in> f ` (?f' ` B')" by blast | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 531 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 532 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 533 | lemma inv_into_inv_into_eq: | 
| 63612 | 534 | assumes "bij_betw f A A'" | 
| 535 | and a: "a \<in> A" | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 536 | shows "inv_into A' (inv_into A f) a = f a" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 537 | proof - | 
| 63612 | 538 | let ?f' = "inv_into A f" | 
| 539 | let ?f'' = "inv_into A' ?f'" | |
| 540 | from assms have *: "bij_betw ?f' A' A" | |
| 541 | by (auto simp: bij_betw_inv_into) | |
| 542 | with a obtain a' where a': "a' \<in> A'" "?f' a' = a" | |
| 543 | unfolding bij_betw_def by force | |
| 544 | with a * have "?f'' a = a'" | |
| 545 | by (auto simp: f_inv_into_f bij_betw_def) | |
| 546 | moreover from assms a' have "f a = a'" | |
| 547 | by (auto simp: bij_betw_def) | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 548 | ultimately show "?f'' a = f a" by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 549 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 550 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 551 | lemma inj_on_iff_surj: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 552 |   assumes "A \<noteq> {}"
 | 
| 63629 | 553 | shows "(\<exists>f. inj_on f A \<and> f ` A \<subseteq> A') \<longleftrightarrow> (\<exists>g. g ` A' = A)" | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 554 | proof safe | 
| 63612 | 555 | fix f | 
| 556 | assume inj: "inj_on f A" and incl: "f ` A \<subseteq> A'" | |
| 557 | let ?phi = "\<lambda>a' a. a \<in> A \<and> f a = a'" | |
| 558 | let ?csi = "\<lambda>a. a \<in> A" | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 559 | let ?g = "\<lambda>a'. if a' \<in> f ` A then (SOME a. ?phi a' a) else (SOME a. ?csi a)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 560 | have "?g ` A' = A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 561 | proof | 
| 63612 | 562 | show "?g ` A' \<subseteq> A" | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 563 | proof clarify | 
| 63612 | 564 | fix a' | 
| 565 | assume *: "a' \<in> A'" | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 566 | show "?g a' \<in> A" | 
| 63612 | 567 | proof (cases "a' \<in> f ` A") | 
| 568 | case True | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 569 | then obtain a where "?phi a' a" by blast | 
| 63612 | 570 | then have "?phi a' (SOME a. ?phi a' a)" | 
| 571 | using someI[of "?phi a'" a] by blast | |
| 572 | with True show ?thesis by auto | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 573 | next | 
| 63612 | 574 | case False | 
| 575 | with assms have "?csi (SOME a. ?csi a)" | |
| 576 | using someI_ex[of ?csi] by blast | |
| 577 | with False show ?thesis by auto | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 578 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 579 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 580 | next | 
| 63612 | 581 | show "A \<subseteq> ?g ` A'" | 
| 582 | proof - | |
| 583 | have "?g (f a) = a \<and> f a \<in> A'" if a: "a \<in> A" for a | |
| 584 | proof - | |
| 585 | let ?b = "SOME aa. ?phi (f a) aa" | |
| 586 | from a have "?phi (f a) a" by auto | |
| 587 | then have *: "?phi (f a) ?b" | |
| 588 | using someI[of "?phi(f a)" a] by blast | |
| 589 | then have "?g (f a) = ?b" using a by auto | |
| 590 | moreover from inj * a have "a = ?b" | |
| 591 | by (auto simp add: inj_on_def) | |
| 592 | ultimately have "?g(f a) = a" by simp | |
| 593 | with incl a show ?thesis by auto | |
| 594 | qed | |
| 595 | then show ?thesis by force | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 596 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 597 | qed | 
| 63612 | 598 | then show "\<exists>g. g ` A' = A" by blast | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 599 | next | 
| 63612 | 600 | fix g | 
| 601 | let ?f = "inv_into A' g" | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 602 | have "inj_on ?f (g ` A')" | 
| 63612 | 603 | by (auto simp: inj_on_inv_into) | 
| 604 | moreover have "?f (g a') \<in> A'" if a': "a' \<in> A'" for a' | |
| 605 | proof - | |
| 606 | let ?phi = "\<lambda> b'. b' \<in> A' \<and> g b' = g a'" | |
| 607 | from a' have "?phi a'" by auto | |
| 608 | then have "?phi (SOME b'. ?phi b')" | |
| 609 | using someI[of ?phi] by blast | |
| 610 | then show ?thesis by (auto simp: inv_into_def) | |
| 611 | qed | |
| 612 | ultimately show "\<exists>f. inj_on f (g ` A') \<and> f ` g ` A' \<subseteq> A'" | |
| 613 | by auto | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 614 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 615 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 616 | lemma Ex_inj_on_UNION_Sigma: | 
| 63629 | 617 | "\<exists>f. (inj_on f (\<Union>i \<in> I. A i) \<and> f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i))" | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 618 | proof | 
| 63612 | 619 | let ?phi = "\<lambda>a i. i \<in> I \<and> a \<in> A i" | 
| 620 | let ?sm = "\<lambda>a. SOME i. ?phi a i" | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 621 | let ?f = "\<lambda>a. (?sm a, a)" | 
| 63612 | 622 | have "inj_on ?f (\<Union>i \<in> I. A i)" | 
| 623 | by (auto simp: inj_on_def) | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 624 | moreover | 
| 63612 | 625 | have "?sm a \<in> I \<and> a \<in> A(?sm a)" if "i \<in> I" and "a \<in> A i" for i a | 
| 626 | using that someI[of "?phi a" i] by auto | |
| 63629 | 627 | then have "?f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i)" | 
| 63612 | 628 | by auto | 
| 63629 | 629 | ultimately show "inj_on ?f (\<Union>i \<in> I. A i) \<and> ?f ` (\<Union>i \<in> I. A i) \<subseteq> (SIGMA i : I. A i)" | 
| 63612 | 630 | by auto | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 631 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 632 | |
| 56608 | 633 | lemma inv_unique_comp: | 
| 634 | assumes fg: "f \<circ> g = id" | |
| 635 | and gf: "g \<circ> f = id" | |
| 636 | shows "inv f = g" | |
| 637 | using fg gf inv_equality[of g f] by (auto simp add: fun_eq_iff) | |
| 638 | ||
| 70179 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 639 | lemma subset_image_inj: | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 640 | "S \<subseteq> f ` T \<longleftrightarrow> (\<exists>U. U \<subseteq> T \<and> inj_on f U \<and> S = f ` U)" | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 641 | proof safe | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 642 | show "\<exists>U\<subseteq>T. inj_on f U \<and> S = f ` U" | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 643 | if "S \<subseteq> f ` T" | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 644 | proof - | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 645 | from that [unfolded subset_image_iff subset_iff] | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 646 | obtain g where g: "\<And>x. x \<in> S \<Longrightarrow> g x \<in> T \<and> x = f (g x)" | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 647 | by (auto simp add: image_iff Bex_def choice_iff') | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 648 | show ?thesis | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 649 | proof (intro exI conjI) | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 650 | show "g ` S \<subseteq> T" | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 651 | by (simp add: g image_subsetI) | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 652 | show "inj_on f (g ` S)" | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 653 | using g by (auto simp: inj_on_def) | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 654 | show "S = f ` (g ` S)" | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 655 | using g image_subset_iff by auto | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 656 | qed | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 657 | qed | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 658 | qed blast | 
| 
269dcea7426c
moved subset_image_inj into Hilbert_Choice
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 659 | |
| 56608 | 660 | |
| 60758 | 661 | subsection \<open>Other Consequences of Hilbert's Epsilon\<close> | 
| 14760 | 662 | |
| 69593 | 663 | text \<open>Hilbert's Epsilon and the \<^term>\<open>split\<close> Operator\<close> | 
| 14760 | 664 | |
| 63612 | 665 | text \<open>Looping simprule!\<close> | 
| 666 | lemma split_paired_Eps: "(SOME x. P x) = (SOME (a, b). P (a, b))" | |
| 26347 | 667 | by simp | 
| 14760 | 668 | |
| 61424 
c3658c18b7bc
prod_case as canonical name for product type eliminator
 haftmann parents: 
61076diff
changeset | 669 | lemma Eps_case_prod: "Eps (case_prod P) = (SOME xy. P (fst xy) (snd xy))" | 
| 26347 | 670 | by (simp add: split_def) | 
| 14760 | 671 | |
| 63612 | 672 | lemma Eps_case_prod_eq [simp]: "(SOME (x', y'). x = x' \<and> y = y') = (x, y)" | 
| 26347 | 673 | by blast | 
| 14760 | 674 | |
| 675 | ||
| 63612 | 676 | text \<open>A relation is wellfounded iff it has no infinite descending chain.\<close> | 
| 63981 | 677 | lemma wf_iff_no_infinite_down_chain: "wf r \<longleftrightarrow> (\<nexists>f. \<forall>i. (f (Suc i), f i) \<in> r)" | 
| 678 | (is "_ \<longleftrightarrow> \<not> ?ex") | |
| 679 | proof | |
| 680 | assume "wf r" | |
| 681 | show "\<not> ?ex" | |
| 682 | proof | |
| 683 | assume ?ex | |
| 684 | then obtain f where f: "(f (Suc i), f i) \<in> r" for i | |
| 685 | by blast | |
| 686 | from \<open>wf r\<close> have minimal: "x \<in> Q \<Longrightarrow> \<exists>z\<in>Q. \<forall>y. (y, z) \<in> r \<longrightarrow> y \<notin> Q" for x Q | |
| 687 | by (auto simp: wf_eq_minimal) | |
| 688 |     let ?Q = "{w. \<exists>i. w = f i}"
 | |
| 689 | fix n | |
| 690 | have "f n \<in> ?Q" by blast | |
| 691 | from minimal [OF this] obtain j where "(y, f j) \<in> r \<Longrightarrow> y \<notin> ?Q" for y by blast | |
| 692 | with this [OF \<open>(f (Suc j), f j) \<in> r\<close>] have "f (Suc j) \<notin> ?Q" by simp | |
| 693 | then show False by blast | |
| 694 | qed | |
| 695 | next | |
| 696 | assume "\<not> ?ex" | |
| 697 | then show "wf r" | |
| 698 | proof (rule contrapos_np) | |
| 699 | assume "\<not> wf r" | |
| 700 | then obtain Q x where x: "x \<in> Q" and rec: "z \<in> Q \<Longrightarrow> \<exists>y. (y, z) \<in> r \<and> y \<in> Q" for z | |
| 701 | by (auto simp add: wf_eq_minimal) | |
| 702 | obtain descend :: "nat \<Rightarrow> 'a" | |
| 703 | where descend_0: "descend 0 = x" | |
| 704 | and descend_Suc: "descend (Suc n) = (SOME y. y \<in> Q \<and> (y, descend n) \<in> r)" for n | |
| 705 | by (rule that [of "rec_nat x (\<lambda>_ rec. (SOME y. y \<in> Q \<and> (y, rec) \<in> r))"]) simp_all | |
| 706 | have descend_Q: "descend n \<in> Q" for n | |
| 707 | proof (induct n) | |
| 708 | case 0 | |
| 709 | with x show ?case by (simp only: descend_0) | |
| 710 | next | |
| 711 | case Suc | |
| 712 | then show ?case by (simp only: descend_Suc) (rule someI2_ex; use rec in blast) | |
| 713 | qed | |
| 714 | have "(descend (Suc i), descend i) \<in> r" for i | |
| 715 | by (simp only: descend_Suc) (rule someI2_ex; use descend_Q rec in blast) | |
| 716 | then show "\<exists>f. \<forall>i. (f (Suc i), f i) \<in> r" by blast | |
| 717 | qed | |
| 718 | qed | |
| 14760 | 719 | |
| 27760 | 720 | lemma wf_no_infinite_down_chainE: | 
| 63612 | 721 | assumes "wf r" | 
| 722 | obtains k where "(f (Suc k), f k) \<notin> r" | |
| 723 | using assms wf_iff_no_infinite_down_chain[of r] by blast | |
| 27760 | 724 | |
| 725 | ||
| 63612 | 726 | text \<open>A dynamically-scoped fact for TFL\<close> | 
| 727 | lemma tfl_some: "\<forall>P x. P x \<longrightarrow> P (Eps P)" | |
| 12298 | 728 | by (blast intro: someI) | 
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 729 | |
| 12298 | 730 | |
| 60758 | 731 | subsection \<open>An aside: bounded accessible part\<close> | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 732 | |
| 60758 | 733 | text \<open>Finite monotone eventually stable sequences\<close> | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 734 | |
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 735 | lemma finite_mono_remains_stable_implies_strict_prefix: | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 736 | fixes f :: "nat \<Rightarrow> 'a::order" | 
| 63612 | 737 | assumes S: "finite (range f)" "mono f" | 
| 738 | and eq: "\<forall>n. f n = f (Suc n) \<longrightarrow> f (Suc n) = f (Suc (Suc n))" | |
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 739 | shows "\<exists>N. (\<forall>n\<le>N. \<forall>m\<le>N. m < n \<longrightarrow> f m < f n) \<and> (\<forall>n\<ge>N. f N = f n)" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 740 | using assms | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 741 | proof - | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 742 | have "\<exists>n. f n = f (Suc n)" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 743 | proof (rule ccontr) | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 744 | assume "\<not> ?thesis" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 745 | then have "\<And>n. f n \<noteq> f (Suc n)" by auto | 
| 63612 | 746 | with \<open>mono f\<close> have "\<And>n. f n < f (Suc n)" | 
| 747 | by (auto simp: le_less mono_iff_le_Suc) | |
| 748 | with lift_Suc_mono_less_iff[of f] have *: "\<And>n m. n < m \<Longrightarrow> f n < f m" | |
| 749 | by auto | |
| 55811 | 750 | have "inj f" | 
| 751 | proof (intro injI) | |
| 752 | fix x y | |
| 753 | assume "f x = f y" | |
| 63612 | 754 | then show "x = y" | 
| 755 | by (cases x y rule: linorder_cases) (auto dest: *) | |
| 55811 | 756 | qed | 
| 60758 | 757 | with \<open>finite (range f)\<close> have "finite (UNIV::nat set)" | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 758 | by (rule finite_imageD) | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 759 | then show False by simp | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 760 | qed | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 761 | then obtain n where n: "f n = f (Suc n)" .. | 
| 63040 | 762 | define N where "N = (LEAST n. f n = f (Suc n))" | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 763 | have N: "f N = f (Suc N)" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 764 | unfolding N_def using n by (rule LeastI) | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 765 | show ?thesis | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 766 | proof (intro exI[of _ N] conjI allI impI) | 
| 63612 | 767 | fix n | 
| 768 | assume "N \<le> n" | |
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 769 | then have "\<And>m. N \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m = f N" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 770 | proof (induct rule: dec_induct) | 
| 63612 | 771 | case base | 
| 772 | then show ?case by simp | |
| 773 | next | |
| 774 | case (step n) | |
| 775 | then show ?case | |
| 776 | using eq [rule_format, of "n - 1"] N | |
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 777 | by (cases n) (auto simp add: le_Suc_eq) | 
| 63612 | 778 | qed | 
| 60758 | 779 | from this[of n] \<open>N \<le> n\<close> show "f N = f n" by auto | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 780 | next | 
| 63612 | 781 | fix n m :: nat | 
| 782 | assume "m < n" "n \<le> N" | |
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 783 | then show "f m < f n" | 
| 62683 | 784 | proof (induct rule: less_Suc_induct) | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 785 | case (1 i) | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 786 | then have "i < N" by simp | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 787 | then have "f i \<noteq> f (Suc i)" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 788 | unfolding N_def by (rule not_less_Least) | 
| 60758 | 789 | with \<open>mono f\<close> show ?case by (simp add: mono_iff_le_Suc less_le) | 
| 63612 | 790 | next | 
| 791 | case 2 | |
| 792 | then show ?case by simp | |
| 793 | qed | |
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 794 | qed | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 795 | qed | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 796 | |
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 797 | lemma finite_mono_strict_prefix_implies_finite_fixpoint: | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 798 | fixes f :: "nat \<Rightarrow> 'a set" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 799 | assumes S: "\<And>i. f i \<subseteq> S" "finite S" | 
| 63612 | 800 | and ex: "\<exists>N. (\<forall>n\<le>N. \<forall>m\<le>N. m < n \<longrightarrow> f m \<subset> f n) \<and> (\<forall>n\<ge>N. f N = f n)" | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 801 | shows "f (card S) = (\<Union>n. f n)" | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 802 | proof - | 
| 63612 | 803 | from ex obtain N where inj: "\<And>n m. n \<le> N \<Longrightarrow> m \<le> N \<Longrightarrow> m < n \<Longrightarrow> f m \<subset> f n" | 
| 804 | and eq: "\<forall>n\<ge>N. f N = f n" | |
| 805 | by atomize auto | |
| 806 | have "i \<le> N \<Longrightarrow> i \<le> card (f i)" for i | |
| 807 | proof (induct i) | |
| 808 | case 0 | |
| 809 | then show ?case by simp | |
| 810 | next | |
| 811 | case (Suc i) | |
| 812 | with inj [of "Suc i" i] have "(f i) \<subset> (f (Suc i))" by auto | |
| 813 | moreover have "finite (f (Suc i))" using S by (rule finite_subset) | |
| 814 | ultimately have "card (f i) < card (f (Suc i))" by (intro psubset_card_mono) | |
| 815 | with Suc inj show ?case by auto | |
| 816 | qed | |
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 817 | then have "N \<le> card (f N)" by simp | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 818 | also have "\<dots> \<le> card S" using S by (intro card_mono) | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 819 | finally have \<section>: "f (card S) = f N" using eq by auto | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 820 | moreover have "\<Union> (range f) \<subseteq> f N" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 821 | proof clarify | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 822 | fix x n | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 823 | assume "x \<in> f n" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 824 | with eq inj [of N] show "x \<in> f N" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 825 | by (cases "n < N") (auto simp: not_less) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 826 | qed | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 827 | ultimately show ?thesis | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 828 | by auto | 
| 49948 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 829 | qed | 
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 830 | |
| 
744934b818c7
moved quite generic material from theory Enum to more appropriate places
 haftmann parents: 
49739diff
changeset | 831 | |
| 60758 | 832 | subsection \<open>More on injections, bijections, and inverses\<close> | 
| 55020 | 833 | |
| 63374 | 834 | locale bijection = | 
| 835 | fixes f :: "'a \<Rightarrow> 'a" | |
| 836 | assumes bij: "bij f" | |
| 837 | begin | |
| 838 | ||
| 63612 | 839 | lemma bij_inv: "bij (inv f)" | 
| 63374 | 840 | using bij by (rule bij_imp_bij_inv) | 
| 841 | ||
| 63612 | 842 | lemma surj [simp]: "surj f" | 
| 63374 | 843 | using bij by (rule bij_is_surj) | 
| 844 | ||
| 63612 | 845 | lemma inj: "inj f" | 
| 63374 | 846 | using bij by (rule bij_is_inj) | 
| 847 | ||
| 63612 | 848 | lemma surj_inv [simp]: "surj (inv f)" | 
| 63374 | 849 | using inj by (rule inj_imp_surj_inv) | 
| 850 | ||
| 63612 | 851 | lemma inj_inv: "inj (inv f)" | 
| 63374 | 852 | using surj by (rule surj_imp_inj_inv) | 
| 853 | ||
| 63612 | 854 | lemma eqI: "f a = f b \<Longrightarrow> a = b" | 
| 63374 | 855 | using inj by (rule injD) | 
| 856 | ||
| 63612 | 857 | lemma eq_iff [simp]: "f a = f b \<longleftrightarrow> a = b" | 
| 63374 | 858 | by (auto intro: eqI) | 
| 859 | ||
| 63612 | 860 | lemma eq_invI: "inv f a = inv f b \<Longrightarrow> a = b" | 
| 63374 | 861 | using inj_inv by (rule injD) | 
| 862 | ||
| 63612 | 863 | lemma eq_inv_iff [simp]: "inv f a = inv f b \<longleftrightarrow> a = b" | 
| 63374 | 864 | by (auto intro: eq_invI) | 
| 865 | ||
| 63612 | 866 | lemma inv_left [simp]: "inv f (f a) = a" | 
| 63374 | 867 | using inj by (simp add: inv_f_eq) | 
| 868 | ||
| 63612 | 869 | lemma inv_comp_left [simp]: "inv f \<circ> f = id" | 
| 63374 | 870 | by (simp add: fun_eq_iff) | 
| 871 | ||
| 63612 | 872 | lemma inv_right [simp]: "f (inv f a) = a" | 
| 63374 | 873 | using surj by (simp add: surj_f_inv_f) | 
| 874 | ||
| 63612 | 875 | lemma inv_comp_right [simp]: "f \<circ> inv f = id" | 
| 63374 | 876 | by (simp add: fun_eq_iff) | 
| 877 | ||
| 63612 | 878 | lemma inv_left_eq_iff [simp]: "inv f a = b \<longleftrightarrow> f b = a" | 
| 63374 | 879 | by auto | 
| 880 | ||
| 63612 | 881 | lemma inv_right_eq_iff [simp]: "b = inv f a \<longleftrightarrow> f b = a" | 
| 63374 | 882 | by auto | 
| 883 | ||
| 884 | end | |
| 885 | ||
| 55020 | 886 | lemma infinite_imp_bij_betw: | 
| 63612 | 887 | assumes infinite: "\<not> finite A" | 
| 888 |   shows "\<exists>h. bij_betw h A (A - {a})"
 | |
| 889 | proof (cases "a \<in> A") | |
| 890 | case False | |
| 891 |   then have "A - {a} = A" by blast
 | |
| 892 | then show ?thesis | |
| 893 | using bij_betw_id[of A] by auto | |
| 55020 | 894 | next | 
| 63612 | 895 | case True | 
| 896 |   with infinite have "\<not> finite (A - {a})" by auto
 | |
| 897 |   with infinite_iff_countable_subset[of "A - {a}"]
 | |
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 898 |   obtain f :: "nat \<Rightarrow> 'a" where "inj f" and f: "f ` UNIV \<subseteq> A - {a}" by blast
 | 
| 63612 | 899 | define g where "g n = (if n = 0 then a else f (Suc n))" for n | 
| 900 | define A' where "A' = g ` UNIV" | |
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 901 | have *: "\<forall>y. f y \<noteq> a" using f by blast | 
| 63612 | 902 | have 3: "inj_on g UNIV \<and> g ` UNIV \<subseteq> A \<and> a \<in> g ` UNIV" | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 903 | using \<open>inj f\<close> f * unfolding inj_on_def g_def | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 904 | by (auto simp add: True image_subset_iff) | 
| 63612 | 905 | then have 4: "bij_betw g UNIV A' \<and> a \<in> A' \<and> A' \<subseteq> A" | 
| 906 | using inj_on_imp_bij_betw[of g] by (auto simp: A'_def) | |
| 907 | then have 5: "bij_betw (inv g) A' UNIV" | |
| 908 | by (auto simp add: bij_betw_inv_into) | |
| 909 | from 3 obtain n where n: "g n = a" by auto | |
| 910 |   have 6: "bij_betw g (UNIV - {n}) (A' - {a})"
 | |
| 911 | by (rule bij_betw_subset) (use 3 4 n in \<open>auto simp: image_set_diff A'_def\<close>) | |
| 912 | define v where "v m = (if m < n then m else Suc m)" for m | |
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 913 | have "m < n \<or> m = n" if "\<And>k. k < n \<or> m \<noteq> Suc k" for m | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 914 | using that [of "m-1"] by auto | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 915 |   then have 7: "bij_betw v UNIV (UNIV - {n})"
 | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 916 | unfolding bij_betw_def inj_on_def v_def by auto | 
| 63612 | 917 | define h' where "h' = g \<circ> v \<circ> (inv g)" | 
| 918 |   with 5 6 7 have 8: "bij_betw h' A' (A' - {a})"
 | |
| 919 | by (auto simp add: bij_betw_trans) | |
| 920 | define h where "h b = (if b \<in> A' then h' b else b)" for b | |
| 921 |   with 8 have "bij_betw h  A' (A' - {a})"
 | |
| 922 | using bij_betw_cong[of A' h] by auto | |
| 55020 | 923 | moreover | 
| 63612 | 924 | have "\<forall>b \<in> A - A'. h b = b" by (auto simp: h_def) | 
| 925 | then have "bij_betw h (A - A') (A - A')" | |
| 926 | using bij_betw_cong[of "A - A'" h id] bij_betw_id[of "A - A'"] by auto | |
| 55020 | 927 | moreover | 
| 63612 | 928 |   from 4 have "(A' \<inter> (A - A') = {} \<and> A' \<union> (A - A') = A) \<and>
 | 
| 929 |     ((A' - {a}) \<inter> (A - A') = {} \<and> (A' - {a}) \<union> (A - A') = A - {a})"
 | |
| 930 | by blast | |
| 55020 | 931 |   ultimately have "bij_betw h A (A - {a})"
 | 
| 63612 | 932 |     using bij_betw_combine[of h A' "A' - {a}" "A - A'" "A - A'"] by simp
 | 
| 933 | then show ?thesis by blast | |
| 55020 | 934 | qed | 
| 935 | ||
| 936 | lemma infinite_imp_bij_betw2: | |
| 63612 | 937 | assumes "\<not> finite A" | 
| 938 |   shows "\<exists>h. bij_betw h A (A \<union> {a})"
 | |
| 939 | proof (cases "a \<in> A") | |
| 940 | case True | |
| 941 |   then have "A \<union> {a} = A" by blast
 | |
| 942 | then show ?thesis using bij_betw_id[of A] by auto | |
| 55020 | 943 | next | 
| 63612 | 944 | case False | 
| 55020 | 945 |   let ?A' = "A \<union> {a}"
 | 
| 63612 | 946 |   from False have "A = ?A' - {a}" by blast
 | 
| 947 | moreover from assms have "\<not> finite ?A'" by auto | |
| 55020 | 948 | ultimately obtain f where "bij_betw f ?A' A" | 
| 63612 | 949 | using infinite_imp_bij_betw[of ?A' a] by auto | 
| 950 | then have "bij_betw (inv_into ?A' f) A ?A'" by (rule bij_betw_inv_into) | |
| 951 | then show ?thesis by auto | |
| 55020 | 952 | qed | 
| 953 | ||
| 63612 | 954 | lemma bij_betw_inv_into_left: "bij_betw f A A' \<Longrightarrow> a \<in> A \<Longrightarrow> inv_into A f (f a) = a" | 
| 955 | unfolding bij_betw_def by clarify (rule inv_into_f_f) | |
| 55020 | 956 | |
| 63612 | 957 | lemma bij_betw_inv_into_right: "bij_betw f A A' \<Longrightarrow> a' \<in> A' \<Longrightarrow> f (inv_into A f a') = a'" | 
| 958 | unfolding bij_betw_def using f_inv_into_f by force | |
| 55020 | 959 | |
| 960 | lemma bij_betw_inv_into_subset: | |
| 63612 | 961 | "bij_betw f A A' \<Longrightarrow> B \<subseteq> A \<Longrightarrow> f ` B = B' \<Longrightarrow> bij_betw (inv_into A f) B' B" | 
| 962 | by (auto simp: bij_betw_def intro: inj_on_inv_into) | |
| 55020 | 963 | |
| 964 | ||
| 60758 | 965 | subsection \<open>Specification package -- Hilbertized version\<close> | 
| 17893 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 966 | |
| 63612 | 967 | lemma exE_some: "Ex P \<Longrightarrow> c \<equiv> Eps P \<Longrightarrow> P c" | 
| 17893 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 968 | by (simp only: someI_ex) | 
| 
aef5a6d11c2a
added lemma exE_some (from specification_package.ML);
 wenzelm parents: 
17702diff
changeset | 969 | |
| 69605 | 970 | ML_file \<open>Tools/choice_specification.ML\<close> | 
| 14115 | 971 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 972 | subsection \<open>Complete Distributive Lattices -- Properties depending on Hilbert Choice\<close> | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 973 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 974 | context complete_distrib_lattice | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 975 | begin | 
| 69479 | 976 | |
| 977 | lemma Sup_Inf: "\<Squnion> (Inf ` A) = \<Sqinter> (Sup ` {f ` A |f. \<forall>B\<in>A. f B \<in> B})"
 | |
| 73411 | 978 | proof (rule order.antisym) | 
| 69479 | 979 |   show "\<Squnion> (Inf ` A) \<le> \<Sqinter> (Sup ` {f ` A |f. \<forall>B\<in>A. f B \<in> B})"
 | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 980 | using Inf_lower2 Sup_upper | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 981 | by (fastforce simp add: intro: Sup_least INF_greatest) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 982 | next | 
| 69479 | 983 |   show "\<Sqinter> (Sup ` {f ` A |f. \<forall>B\<in>A. f B \<in> B}) \<le> \<Squnion> (Inf ` A)"
 | 
| 67951 
655aa11359dc
Removed some uses of deprecated _tac methods. (Patch from Viorel Preoteasa)
 Manuel Eberl <eberlm@in.tum.de> parents: 
67829diff
changeset | 984 | proof (simp add: Inf_Sup, rule SUP_least, simp, safe) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 985 | fix f | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 986 | assume "\<forall>Y. (\<exists>f. Y = f ` A \<and> (\<forall>Y\<in>A. f Y \<in> Y)) \<longrightarrow> f Y \<in> Y" | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 987 | then have B: "\<And> F . (\<forall> Y \<in> A . F Y \<in> Y) \<Longrightarrow> \<exists> Z \<in> A . f (F ` A) = F Z" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 988 | by auto | 
| 69275 | 989 |     show "\<Sqinter>(f ` {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}) \<le> \<Squnion>(Inf ` A)"
 | 
| 990 |     proof (cases "\<exists> Z \<in> A . \<Sqinter>(f ` {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}) \<le> Inf Z")
 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 991 | case True | 
| 69275 | 992 |       from this obtain Z where [simp]: "Z \<in> A" and A: "\<Sqinter>(f ` {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}) \<le> Inf Z"
 | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 993 | by blast | 
| 69275 | 994 | have B: "... \<le> \<Squnion>(Inf ` A)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 995 | by (simp add: SUP_upper) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 996 | from A and B show ?thesis | 
| 67951 
655aa11359dc
Removed some uses of deprecated _tac methods. (Patch from Viorel Preoteasa)
 Manuel Eberl <eberlm@in.tum.de> parents: 
67829diff
changeset | 997 | by simp | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 998 | next | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 999 | case False | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1000 |       then have X: "\<And> Z . Z \<in> A \<Longrightarrow> \<exists> x . x \<in> Z \<and> \<not> \<Sqinter>(f ` {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}) \<le> x"
 | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1001 | using Inf_greatest by blast | 
| 69275 | 1002 |       define F where "F = (\<lambda> Z . SOME x . x \<in> Z \<and> \<not> \<Sqinter>(f ` {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}) \<le> x)"
 | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1003 | have C: "\<And>Y. Y \<in> A \<Longrightarrow> F Y \<in> Y" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1004 | using X by (simp add: F_def, rule someI2_ex, auto) | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1005 |       have E: "\<And>Y. Y \<in> A \<Longrightarrow> \<not> \<Sqinter>(f ` {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}) \<le> F Y"
 | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1006 | using X by (simp add: F_def, rule someI2_ex, auto) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1007 | from C and B obtain Z where D: "Z \<in> A " and Y: "f (F ` A) = F Z" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1008 | by blast | 
| 69275 | 1009 |       from E and D have W: "\<not> \<Sqinter>(f ` {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}) \<le> F Z"
 | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1010 | by simp | 
| 69275 | 1011 |       have "\<Sqinter>(f ` {f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}) \<le> f (F ` A)"
 | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1012 | using C by (blast intro: INF_lower) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1013 | with W Y show ?thesis | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1014 | by simp | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1015 | qed | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1016 | qed | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1017 | qed | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1018 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1019 | lemma dual_complete_distrib_lattice: | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1020 | "class.complete_distrib_lattice Sup Inf sup (\<ge>) (>) inf \<top> \<bottom>" | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1021 | by (simp add: class.complete_distrib_lattice.intro [OF dual_complete_lattice] | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1022 | class.complete_distrib_lattice_axioms_def Sup_Inf) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1023 | |
| 68802 | 1024 | lemma sup_Inf: "a \<squnion> \<Sqinter>B = \<Sqinter>((\<squnion>) a ` B)" | 
| 73411 | 1025 | proof (rule order.antisym) | 
| 68802 | 1026 | show "a \<squnion> \<Sqinter>B \<le> \<Sqinter>((\<squnion>) a ` B)" | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1027 | using Inf_lower sup.mono by (fastforce intro: INF_greatest) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1028 | next | 
| 68802 | 1029 |   have "\<Sqinter>((\<squnion>) a ` B) \<le> \<Sqinter>(Sup ` {{f {a}, f B} |f. f {a} = a \<and> f B \<in> B})"
 | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1030 | by (rule INF_greatest, auto simp add: INF_lower) | 
| 69275 | 1031 |   also have "... = \<Squnion>(Inf ` {{a}, B})"
 | 
| 67951 
655aa11359dc
Removed some uses of deprecated _tac methods. (Patch from Viorel Preoteasa)
 Manuel Eberl <eberlm@in.tum.de> parents: 
67829diff
changeset | 1032 | by (unfold Sup_Inf, simp) | 
| 68802 | 1033 | finally show "\<Sqinter>((\<squnion>) a ` B) \<le> a \<squnion> \<Sqinter>B" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1034 | by simp | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1035 | qed | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1036 | |
| 68802 | 1037 | lemma inf_Sup: "a \<sqinter> \<Squnion>B = \<Squnion>((\<sqinter>) a ` B)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1038 | using dual_complete_distrib_lattice | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1039 | by (rule complete_distrib_lattice.sup_Inf) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1040 | |
| 69479 | 1041 | lemma INF_SUP: "(\<Sqinter>y. \<Squnion>x. P x y) = (\<Squnion>f. \<Sqinter>x. P (f x) x)" | 
| 73411 | 1042 | proof (rule order.antisym) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1043 | show "(SUP x. INF y. P (x y) y) \<le> (INF y. SUP x. P x y)" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1044 | by (rule SUP_least, rule INF_greatest, rule SUP_upper2, simp_all, rule INF_lower2, simp, blast) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1045 | next | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1046 |   have "(INF y. SUP x. ((P x y))) \<le> Inf (Sup ` {{P x y | x . True} | y . True })" (is "?A \<le> ?B")
 | 
| 67951 
655aa11359dc
Removed some uses of deprecated _tac methods. (Patch from Viorel Preoteasa)
 Manuel Eberl <eberlm@in.tum.de> parents: 
67829diff
changeset | 1047 | proof (rule INF_greatest, clarsimp) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1048 | fix y | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1049 | have "?A \<le> (SUP x. P x y)" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1050 | by (rule INF_lower, simp) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1051 |     also have "... \<le> Sup {uu. \<exists>x. uu = P x y}"
 | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1052 | by (simp add: full_SetCompr_eq) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1053 |     finally show "?A \<le> Sup {uu. \<exists>x. uu = P x y}"
 | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1054 | by simp | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1055 | qed | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1056 | also have "... \<le> (SUP x. INF y. P (x y) y)" | 
| 67951 
655aa11359dc
Removed some uses of deprecated _tac methods. (Patch from Viorel Preoteasa)
 Manuel Eberl <eberlm@in.tum.de> parents: 
67829diff
changeset | 1057 | proof (subst Inf_Sup, rule SUP_least, clarsimp) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1058 | fix f | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1059 |     assume A: "\<forall>Y. (\<exists>y. Y = {uu. \<exists>x. uu = P x y}) \<longrightarrow> f Y \<in> Y"
 | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1060 | |
| 68802 | 1061 |     have " \<Sqinter>(f ` {uu. \<exists>y. uu = {uu. \<exists>x. uu = P x y}}) \<le>
 | 
| 1062 |       (\<Sqinter>y. P (SOME x. f {P x y |x. True} = P x y) y)"
 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1063 | proof (rule INF_greatest, clarsimp) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1064 | fix y | 
| 68802 | 1065 |         have "(INF x\<in>{uu. \<exists>y. uu = {uu. \<exists>x. uu = P x y}}. f x) \<le> f {uu. \<exists>x. uu = P x y}"
 | 
| 67951 
655aa11359dc
Removed some uses of deprecated _tac methods. (Patch from Viorel Preoteasa)
 Manuel Eberl <eberlm@in.tum.de> parents: 
67829diff
changeset | 1066 | by (rule INF_lower, blast) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1067 |         also have "... \<le> P (SOME x. f {uu . \<exists>x. uu = P x y} = P x y) y"
 | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1068 | by (rule someI2_ex) (use A in auto) | 
| 68802 | 1069 |         finally show "\<Sqinter>(f ` {uu. \<exists>y. uu = {uu. \<exists>x. uu = P x y}}) \<le>
 | 
| 1070 |           P (SOME x. f {uu. \<exists>x. uu = P x y} = P x y) y"
 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1071 | by simp | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1072 | qed | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1073 | also have "... \<le> (SUP x. INF y. P (x y) y)" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1074 | by (rule SUP_upper, simp) | 
| 68802 | 1075 |       finally show "\<Sqinter>(f ` {uu. \<exists>y. uu = {uu. \<exists>x. uu = P x y}}) \<le> (\<Squnion>x. \<Sqinter>y. P (x y) y)"
 | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1076 | by simp | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1077 | qed | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1078 | finally show "(INF y. SUP x. P x y) \<le> (SUP x. INF y. P (x y) y)" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1079 | by simp | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1080 | qed | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1081 | |
| 69478 | 1082 | lemma INF_SUP_set: "(\<Sqinter>B\<in>A. \<Squnion>(g ` B)) = (\<Squnion>B\<in>{f ` A |f. \<forall>C\<in>A. f C \<in> C}. \<Sqinter>(g ` B))"
 | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1083 | (is "_ = (\<Squnion>B\<in>?F. _)") | 
| 73411 | 1084 | proof (rule order.antisym) | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1085 | have "\<Sqinter> ((g \<circ> f) ` A) \<le> \<Squnion> (g ` B)" if "\<And>B. B \<in> A \<Longrightarrow> f B \<in> B" "B \<in> A" for f B | 
| 69478 | 1086 | using that by (auto intro: SUP_upper2 INF_lower2) | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1087 | then show "(\<Squnion>x\<in>?F. \<Sqinter>a\<in>x. g a) \<le> (\<Sqinter>x\<in>A. \<Squnion>a\<in>x. g a)" | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69768diff
changeset | 1088 | by (auto intro!: SUP_least INF_greatest simp add: image_comp) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1089 | next | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1090 | show "(\<Sqinter>x\<in>A. \<Squnion>a\<in>x. g a) \<le> (\<Squnion>x\<in>?F. \<Sqinter>a\<in>x. g a)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1091 |   proof (cases "{} \<in> A")
 | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1092 | case True | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1093 | then show ?thesis | 
| 69478 | 1094 | by (rule INF_lower2) simp_all | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1095 | next | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1096 | case False | 
| 67951 
655aa11359dc
Removed some uses of deprecated _tac methods. (Patch from Viorel Preoteasa)
 Manuel Eberl <eberlm@in.tum.de> parents: 
67829diff
changeset | 1097 |     {fix x
 | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1098 | have "(\<Sqinter>x\<in>A. \<Squnion>x\<in>x. g x) \<le> (\<Squnion>u. if x \<in> A then if u \<in> x then g u else \<bottom> else \<top>)" | 
| 67951 
655aa11359dc
Removed some uses of deprecated _tac methods. (Patch from Viorel Preoteasa)
 Manuel Eberl <eberlm@in.tum.de> parents: 
67829diff
changeset | 1099 | proof (cases "x \<in> A") | 
| 
655aa11359dc
Removed some uses of deprecated _tac methods. (Patch from Viorel Preoteasa)
 Manuel Eberl <eberlm@in.tum.de> parents: 
67829diff
changeset | 1100 | case True | 
| 
655aa11359dc
Removed some uses of deprecated _tac methods. (Patch from Viorel Preoteasa)
 Manuel Eberl <eberlm@in.tum.de> parents: 
67829diff
changeset | 1101 | then show ?thesis | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1102 | by (intro INF_lower2 SUP_least SUP_upper2) auto | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1103 | qed auto | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1104 | } | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1105 | then have "(\<Sqinter>Y\<in>A. \<Squnion>a\<in>Y. g a) \<le> (\<Sqinter>Y. \<Squnion>y. if Y \<in> A then if y \<in> Y then g y else \<bottom> else \<top>)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1106 | by (rule INF_greatest) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1107 | also have "... = (\<Squnion>x. \<Sqinter>Y. if Y \<in> A then if x Y \<in> Y then g (x Y) else \<bottom> else \<top>)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1108 | by (simp only: INF_SUP) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1109 | also have "... \<le> (\<Squnion>x\<in>?F. \<Sqinter>a\<in>x. g a)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1110 | proof (rule SUP_least) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1111 | show "(\<Sqinter>B. if B \<in> A then if x B \<in> B then g (x B) else \<bottom> else \<top>) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1112 | \<le> (\<Squnion>x\<in>?F. \<Sqinter>x\<in>x. g x)" for x | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1113 | proof - | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1114 | define G where "G \<equiv> \<lambda>Y. if x Y \<in> Y then x Y else (SOME x. x \<in>Y)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1115 | have "\<forall>Y\<in>A. G Y \<in> Y" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1116 | using False some_in_eq G_def by auto | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1117 | then have A: "G ` A \<in> ?F" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1118 | by blast | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1119 | show "(\<Sqinter>Y. if Y \<in> A then if x Y \<in> Y then g (x Y) else \<bottom> else \<top>) \<le> (\<Squnion>x\<in>?F. \<Sqinter>x\<in>x. g x)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1120 | by (fastforce simp: G_def intro: SUP_upper2 [OF A] INF_greatest INF_lower2) | 
| 67951 
655aa11359dc
Removed some uses of deprecated _tac methods. (Patch from Viorel Preoteasa)
 Manuel Eberl <eberlm@in.tum.de> parents: 
67829diff
changeset | 1121 | qed | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1122 | qed | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1123 | finally show ?thesis by simp | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1124 | qed | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1125 | qed | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1126 | |
| 69479 | 1127 | lemma SUP_INF: "(\<Squnion>y. \<Sqinter>x. P x y) = (\<Sqinter>x. \<Squnion>y. P (x y) y)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1128 | using dual_complete_distrib_lattice | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1129 | by (rule complete_distrib_lattice.INF_SUP) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1130 | |
| 69479 | 1131 | lemma SUP_INF_set: "(\<Squnion>x\<in>A. \<Sqinter> (g ` x)) = (\<Sqinter>x\<in>{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}. \<Squnion> (g ` x))"
 | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1132 | using dual_complete_distrib_lattice | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1133 | by (rule complete_distrib_lattice.INF_SUP_set) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1134 | |
| 11451 
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
 paulson parents: diff
changeset | 1135 | end | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1136 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1137 | (*properties of the former complete_distrib_lattice*) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1138 | context complete_distrib_lattice | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1139 | begin | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1140 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1141 | lemma sup_INF: "a \<squnion> (\<Sqinter>b\<in>B. f b) = (\<Sqinter>b\<in>B. a \<squnion> f b)" | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69768diff
changeset | 1142 | by (simp add: sup_Inf image_comp) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1143 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1144 | lemma inf_SUP: "a \<sqinter> (\<Squnion>b\<in>B. f b) = (\<Squnion>b\<in>B. a \<sqinter> f b)" | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69768diff
changeset | 1145 | by (simp add: inf_Sup image_comp) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1146 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1147 | lemma Inf_sup: "\<Sqinter>B \<squnion> a = (\<Sqinter>b\<in>B. b \<squnion> a)" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1148 | by (simp add: sup_Inf sup_commute) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1149 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1150 | lemma Sup_inf: "\<Squnion>B \<sqinter> a = (\<Squnion>b\<in>B. b \<sqinter> a)" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1151 | by (simp add: inf_Sup inf_commute) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1152 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1153 | lemma INF_sup: "(\<Sqinter>b\<in>B. f b) \<squnion> a = (\<Sqinter>b\<in>B. f b \<squnion> a)" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1154 | by (simp add: sup_INF sup_commute) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1155 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1156 | lemma SUP_inf: "(\<Squnion>b\<in>B. f b) \<sqinter> a = (\<Squnion>b\<in>B. f b \<sqinter> a)" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1157 | by (simp add: inf_SUP inf_commute) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1158 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1159 | lemma Inf_sup_eq_top_iff: "(\<Sqinter>B \<squnion> a = \<top>) \<longleftrightarrow> (\<forall>b\<in>B. b \<squnion> a = \<top>)" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1160 | by (simp only: Inf_sup INF_top_conv) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1161 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1162 | lemma Sup_inf_eq_bot_iff: "(\<Squnion>B \<sqinter> a = \<bottom>) \<longleftrightarrow> (\<forall>b\<in>B. b \<sqinter> a = \<bottom>)" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1163 | by (simp only: Sup_inf SUP_bot_conv) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1164 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1165 | lemma INF_sup_distrib2: "(\<Sqinter>a\<in>A. f a) \<squnion> (\<Sqinter>b\<in>B. g b) = (\<Sqinter>a\<in>A. \<Sqinter>b\<in>B. f a \<squnion> g b)" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1166 | by (subst INF_commute) (simp add: sup_INF INF_sup) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1167 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1168 | lemma SUP_inf_distrib2: "(\<Squnion>a\<in>A. f a) \<sqinter> (\<Squnion>b\<in>B. g b) = (\<Squnion>a\<in>A. \<Squnion>b\<in>B. f a \<sqinter> g b)" | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1169 | by (subst SUP_commute) (simp add: inf_SUP SUP_inf) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1170 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1171 | end | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1172 | |
| 68802 | 1173 | instantiation set :: (type) complete_distrib_lattice | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1174 | begin | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1175 | instance proof (standard, clarsimp) | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1176 |   fix A :: "(('a set) set) set"
 | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1177 | fix x::'a | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1178 | assume A: "\<forall>\<S>\<in>A. \<exists>X\<in>\<S>. x \<in> X" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1179 | define F where "F \<equiv> \<lambda>Y. SOME X. Y \<in> A \<and> X \<in> Y \<and> x \<in> X" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1180 | have "(\<forall>S \<in> F ` A. x \<in> S)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1181 | using A unfolding F_def by (fastforce intro: someI2_ex) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1182 | moreover have "\<forall>Y\<in>A. F Y \<in> Y" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1183 | using A unfolding F_def by (fastforce intro: someI2_ex) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1184 | then have "\<exists>f. F ` A = f ` A \<and> (\<forall>Y\<in>A. f Y \<in> Y)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1185 | by blast | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1186 | ultimately show "\<exists>X. (\<exists>f. X = f ` A \<and> (\<forall>Y\<in>A. f Y \<in> Y)) \<and> (\<forall>S\<in>X. x \<in> S)" | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1187 | by auto | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1188 | qed | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1189 | end | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1190 | |
| 68802 | 1191 | instance set :: (type) complete_boolean_algebra .. | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1192 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1193 | instantiation "fun" :: (type, complete_distrib_lattice) complete_distrib_lattice | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1194 | begin | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69768diff
changeset | 1195 | instance by standard (simp add: le_fun_def INF_SUP_set image_comp) | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1196 | end | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1197 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1198 | instance "fun" :: (type, complete_boolean_algebra) complete_boolean_algebra .. | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1199 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1200 | context complete_linorder | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1201 | begin | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1202 | |
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1203 | subclass complete_distrib_lattice | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1204 | proof (standard, rule ccontr) | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1205 | fix A :: "'a set set" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1206 |   let ?F = "{f ` A |f. \<forall>Y\<in>A. f Y \<in> Y}"
 | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1207 | assume "\<not> \<Sqinter>(Sup ` A) \<le> \<Squnion>(Inf ` ?F)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1208 | then have C: "\<Sqinter>(Sup ` A) > \<Squnion>(Inf ` ?F)" | 
| 69275 | 1209 | by (simp add: not_le) | 
| 1210 | show False | |
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1211 | proof (cases "\<exists> z . \<Sqinter>(Sup ` A) > z \<and> z > \<Squnion>(Inf ` ?F)") | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1212 | case True | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1213 | then obtain z where A: "z < \<Sqinter>(Sup ` A)" and X: "z > \<Squnion>(Inf ` ?F)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1214 | by blast | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1215 | then have B: "\<And>Y. Y \<in> A \<Longrightarrow> \<exists>k \<in>Y . z < k" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1216 | using local.less_Sup_iff by(force dest: less_INF_D) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1217 | |
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1218 | define G where "G \<equiv> \<lambda>Y. SOME k . k \<in> Y \<and> z < k" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1219 | have E: "\<And>Y. Y \<in> A \<Longrightarrow> G Y \<in> Y" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1220 | using B unfolding G_def by (fastforce intro: someI2_ex) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1221 | have "z \<le> Inf (G ` A)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1222 | proof (rule INF_greatest) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1223 | show "\<And>Y. Y \<in> A \<Longrightarrow> z \<le> G Y" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1224 | using B unfolding G_def by (fastforce intro: someI2_ex) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1225 | qed | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1226 | also have "... \<le> \<Squnion>(Inf ` ?F)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1227 | by (rule SUP_upper) (use E in blast) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1228 | finally have "z \<le> \<Squnion>(Inf ` ?F)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1229 | by simp | 
| 67951 
655aa11359dc
Removed some uses of deprecated _tac methods. (Patch from Viorel Preoteasa)
 Manuel Eberl <eberlm@in.tum.de> parents: 
67829diff
changeset | 1230 | |
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1231 | with X show ?thesis | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1232 | using local.not_less by blast | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1233 | next | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1234 | case False | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1235 | have B: "\<And>Y. Y \<in> A \<Longrightarrow> \<exists> k \<in>Y . \<Squnion>(Inf ` ?F) < k" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1236 | using C local.less_Sup_iff by(force dest: less_INF_D) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1237 | define G where "G \<equiv> \<lambda> Y . SOME k . k \<in> Y \<and> \<Squnion>(Inf ` ?F) < k" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1238 | have E: "\<And>Y. Y \<in> A \<Longrightarrow> G Y \<in> Y" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1239 | using B unfolding G_def by (fastforce intro: someI2_ex) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1240 | have "\<And>Y. Y \<in> A \<Longrightarrow> \<Sqinter>(Sup ` A) \<le> G Y" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1241 | using B False local.leI unfolding G_def by (fastforce intro: someI2_ex) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1242 | then have "\<Sqinter>(Sup ` A) \<le> Inf (G ` A)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1243 | by (simp add: local.INF_greatest) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1244 | also have "Inf (G ` A) \<le> \<Squnion>(Inf ` ?F)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1245 | by (rule SUP_upper) (use E in blast) | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1246 | finally have "\<Sqinter>(Sup ` A) \<le> \<Squnion>(Inf ` ?F)" | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1247 | by simp | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1248 | with C show ?thesis | 
| 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1249 | using not_less by blast | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1250 | qed | 
| 71695 
65489718f4dc
Tidied up more ancient, horrible proofs. Liberalised frac_le
 paulson <lp15@cam.ac.uk> parents: 
71544diff
changeset | 1251 | qed | 
| 67829 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1252 | end | 
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1253 | |
| 
2a6ef5ba4822
Changes to complete distributive lattices due to Viorel Preoteasa
 Manuel Eberl <eberlm@in.tum.de> parents: 
67673diff
changeset | 1254 | end |