| author | paulson <lp15@cam.ac.uk> | 
| Fri, 30 Sep 2016 14:05:51 +0100 | |
| changeset 63967 | 2aa42596edc3 | 
| parent 63882 | 018998c00003 | 
| child 64267 | b9a1486e79be | 
| permissions | -rw-r--r-- | 
| 58101 | 1 | (* Author: Tobias Nipkow, TU Muenchen *) | 
| 2 | ||
| 60758 | 3 | section \<open>Sum and product over lists\<close> | 
| 58101 | 4 | |
| 5 | theory Groups_List | |
| 6 | imports List | |
| 7 | begin | |
| 8 | ||
| 58320 | 9 | locale monoid_list = monoid | 
| 10 | begin | |
| 11 | ||
| 12 | definition F :: "'a list \<Rightarrow> 'a" | |
| 13 | where | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63101diff
changeset | 14 | eq_foldr [code]: "F xs = foldr f xs \<^bold>1" | 
| 58320 | 15 | |
| 16 | lemma Nil [simp]: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63101diff
changeset | 17 | "F [] = \<^bold>1" | 
| 58320 | 18 | by (simp add: eq_foldr) | 
| 19 | ||
| 20 | lemma Cons [simp]: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63101diff
changeset | 21 | "F (x # xs) = x \<^bold>* F xs" | 
| 58320 | 22 | by (simp add: eq_foldr) | 
| 23 | ||
| 24 | lemma append [simp]: | |
| 63290 
9ac558ab0906
boldify syntax in abstract algebraic structures, to avoid clashes with concrete syntax in corresponding type classes
 haftmann parents: 
63101diff
changeset | 25 | "F (xs @ ys) = F xs \<^bold>* F ys" | 
| 58320 | 26 | by (induct xs) (simp_all add: assoc) | 
| 27 | ||
| 28 | end | |
| 58101 | 29 | |
| 58320 | 30 | locale comm_monoid_list = comm_monoid + monoid_list | 
| 31 | begin | |
| 32 | ||
| 33 | lemma rev [simp]: | |
| 34 | "F (rev xs) = F xs" | |
| 35 | by (simp add: eq_foldr foldr_fold fold_rev fun_eq_iff assoc left_commute) | |
| 36 | ||
| 37 | end | |
| 38 | ||
| 39 | locale comm_monoid_list_set = list: comm_monoid_list + set: comm_monoid_set | |
| 40 | begin | |
| 58101 | 41 | |
| 58320 | 42 | lemma distinct_set_conv_list: | 
| 43 | "distinct xs \<Longrightarrow> set.F g (set xs) = list.F (map g xs)" | |
| 44 | by (induct xs) simp_all | |
| 58101 | 45 | |
| 58320 | 46 | lemma set_conv_list [code]: | 
| 47 | "set.F g (set xs) = list.F (map g (remdups xs))" | |
| 48 | by (simp add: distinct_set_conv_list [symmetric]) | |
| 49 | ||
| 50 | end | |
| 51 | ||
| 52 | ||
| 60758 | 53 | subsection \<open>List summation\<close> | 
| 58320 | 54 | |
| 55 | context monoid_add | |
| 56 | begin | |
| 57 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 58 | sublocale sum_list: monoid_list plus 0 | 
| 61776 | 59 | defines | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 60 | sum_list = sum_list.F .. | 
| 58320 | 61 | |
| 62 | end | |
| 63 | ||
| 64 | context comm_monoid_add | |
| 65 | begin | |
| 66 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 67 | sublocale sum_list: comm_monoid_list plus 0 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 68 | rewrites | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 69 | "monoid_list.F plus 0 = sum_list" | 
| 58320 | 70 | proof - | 
| 71 | show "comm_monoid_list plus 0" .. | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 72 | then interpret sum_list: comm_monoid_list plus 0 . | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 73 | from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp | 
| 58101 | 74 | qed | 
| 75 | ||
| 61605 | 76 | sublocale setsum: comm_monoid_list_set plus 0 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 77 | rewrites | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 78 | "monoid_list.F plus 0 = sum_list" | 
| 58320 | 79 | and "comm_monoid_set.F plus 0 = setsum" | 
| 80 | proof - | |
| 81 | show "comm_monoid_list_set plus 0" .. | |
| 61605 | 82 | then interpret setsum: comm_monoid_list_set plus 0 . | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 83 | from sum_list_def show "monoid_list.F plus 0 = sum_list" by simp | 
| 61776 | 84 | from setsum_def show "comm_monoid_set.F plus 0 = setsum" by (auto intro: sym) | 
| 58320 | 85 | qed | 
| 86 | ||
| 87 | end | |
| 88 | ||
| 60758 | 89 | text \<open>Some syntactic sugar for summing a function over a list:\<close> | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 90 | syntax (ASCII) | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 91 |   "_sum_list" :: "pttrn => 'a list => 'b => 'b"    ("(3SUM _<-_. _)" [0, 51, 10] 10)
 | 
| 58101 | 92 | syntax | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 93 |   "_sum_list" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Sum>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | 
| 61799 | 94 | translations \<comment> \<open>Beware of argument permutation!\<close> | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 95 | "\<Sum>x\<leftarrow>xs. b" == "CONST sum_list (CONST map (\<lambda>x. b) xs)" | 
| 58101 | 96 | |
| 60758 | 97 | text \<open>TODO duplicates\<close> | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 98 | lemmas sum_list_simps = sum_list.Nil sum_list.Cons | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 99 | lemmas sum_list_append = sum_list.append | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 100 | lemmas sum_list_rev = sum_list.rev | 
| 58320 | 101 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 102 | lemma (in monoid_add) fold_plus_sum_list_rev: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 103 | "fold plus xs = plus (sum_list (rev xs))" | 
| 58320 | 104 | proof | 
| 105 | fix x | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 106 | have "fold plus xs x = sum_list (rev xs @ [x])" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 107 | by (simp add: foldr_conv_fold sum_list.eq_foldr) | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 108 | also have "\<dots> = sum_list (rev xs) + x" | 
| 58320 | 109 | by simp | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 110 | finally show "fold plus xs x = sum_list (rev xs) + x" | 
| 58320 | 111 | . | 
| 112 | qed | |
| 113 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 114 | lemma (in comm_monoid_add) sum_list_map_remove1: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 115 | "x \<in> set xs \<Longrightarrow> sum_list (map f xs) = f x + sum_list (map f (remove1 x xs))" | 
| 58101 | 116 | by (induct xs) (auto simp add: ac_simps) | 
| 117 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 118 | lemma (in monoid_add) size_list_conv_sum_list: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 119 | "size_list f xs = sum_list (map f xs) + size xs" | 
| 58101 | 120 | by (induct xs) auto | 
| 121 | ||
| 122 | lemma (in monoid_add) length_concat: | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 123 | "length (concat xss) = sum_list (map length xss)" | 
| 58101 | 124 | by (induct xss) simp_all | 
| 125 | ||
| 126 | lemma (in monoid_add) length_product_lists: | |
| 127 | "length (product_lists xss) = foldr op * (map length xss) 1" | |
| 128 | proof (induct xss) | |
| 129 | case (Cons xs xss) then show ?case by (induct xs) (auto simp: length_concat o_def) | |
| 130 | qed simp | |
| 131 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 132 | lemma (in monoid_add) sum_list_map_filter: | 
| 58101 | 133 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> \<not> P x \<Longrightarrow> f x = 0" | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 134 | shows "sum_list (map f (filter P xs)) = sum_list (map f xs)" | 
| 58101 | 135 | using assms by (induct xs) auto | 
| 136 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 137 | lemma (in comm_monoid_add) distinct_sum_list_conv_Setsum: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 138 | "distinct xs \<Longrightarrow> sum_list xs = Setsum (set xs)" | 
| 58101 | 139 | by (induct xs) simp_all | 
| 140 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 141 | lemma sum_list_upt[simp]: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 142 |   "m \<le> n \<Longrightarrow> sum_list [m..<n] = \<Sum> {m..<n}"
 | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 143 | by(simp add: distinct_sum_list_conv_Setsum) | 
| 58995 | 144 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 145 | lemma sum_list_eq_0_nat_iff_nat [simp]: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 146 | "sum_list ns = (0::nat) \<longleftrightarrow> (\<forall>n \<in> set ns. n = 0)" | 
| 58101 | 147 | by (induct ns) simp_all | 
| 148 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 149 | lemma member_le_sum_list_nat: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 150 | "(n :: nat) \<in> set ns \<Longrightarrow> n \<le> sum_list ns" | 
| 58101 | 151 | by (induct ns) auto | 
| 152 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 153 | lemma elem_le_sum_list_nat: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 154 | "k < size ns \<Longrightarrow> ns ! k \<le> sum_list (ns::nat list)" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 155 | by (rule member_le_sum_list_nat) simp | 
| 58101 | 156 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 157 | lemma sum_list_update_nat: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 158 | "k < size ns \<Longrightarrow> sum_list (ns[k := (n::nat)]) = sum_list ns + n - ns ! k" | 
| 58101 | 159 | apply(induct ns arbitrary:k) | 
| 160 | apply (auto split:nat.split) | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 161 | apply(drule elem_le_sum_list_nat) | 
| 58101 | 162 | apply arith | 
| 163 | done | |
| 164 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 165 | lemma (in monoid_add) sum_list_triv: | 
| 58101 | 166 | "(\<Sum>x\<leftarrow>xs. r) = of_nat (length xs) * r" | 
| 167 | by (induct xs) (simp_all add: distrib_right) | |
| 168 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 169 | lemma (in monoid_add) sum_list_0 [simp]: | 
| 58101 | 170 | "(\<Sum>x\<leftarrow>xs. 0) = 0" | 
| 171 | by (induct xs) (simp_all add: distrib_right) | |
| 172 | ||
| 61799 | 173 | text\<open>For non-Abelian groups \<open>xs\<close> needs to be reversed on one side:\<close> | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 174 | lemma (in ab_group_add) uminus_sum_list_map: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 175 | "- sum_list (map f xs) = sum_list (map (uminus \<circ> f) xs)" | 
| 58101 | 176 | by (induct xs) simp_all | 
| 177 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 178 | lemma (in comm_monoid_add) sum_list_addf: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 179 | "(\<Sum>x\<leftarrow>xs. f x + g x) = sum_list (map f xs) + sum_list (map g xs)" | 
| 58101 | 180 | by (induct xs) (simp_all add: algebra_simps) | 
| 181 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 182 | lemma (in ab_group_add) sum_list_subtractf: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 183 | "(\<Sum>x\<leftarrow>xs. f x - g x) = sum_list (map f xs) - sum_list (map g xs)" | 
| 58101 | 184 | by (induct xs) (simp_all add: algebra_simps) | 
| 185 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 186 | lemma (in semiring_0) sum_list_const_mult: | 
| 58101 | 187 | "(\<Sum>x\<leftarrow>xs. c * f x) = c * (\<Sum>x\<leftarrow>xs. f x)" | 
| 188 | by (induct xs) (simp_all add: algebra_simps) | |
| 189 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 190 | lemma (in semiring_0) sum_list_mult_const: | 
| 58101 | 191 | "(\<Sum>x\<leftarrow>xs. f x * c) = (\<Sum>x\<leftarrow>xs. f x) * c" | 
| 192 | by (induct xs) (simp_all add: algebra_simps) | |
| 193 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 194 | lemma (in ordered_ab_group_add_abs) sum_list_abs: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 195 | "\<bar>sum_list xs\<bar> \<le> sum_list (map abs xs)" | 
| 58101 | 196 | by (induct xs) (simp_all add: order_trans [OF abs_triangle_ineq]) | 
| 197 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 198 | lemma sum_list_mono: | 
| 58101 | 199 |   fixes f g :: "'a \<Rightarrow> 'b::{monoid_add, ordered_ab_semigroup_add}"
 | 
| 200 | shows "(\<And>x. x \<in> set xs \<Longrightarrow> f x \<le> g x) \<Longrightarrow> (\<Sum>x\<leftarrow>xs. f x) \<le> (\<Sum>x\<leftarrow>xs. g x)" | |
| 201 | by (induct xs) (simp, simp add: add_mono) | |
| 202 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 203 | lemma (in monoid_add) sum_list_distinct_conv_setsum_set: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 204 | "distinct xs \<Longrightarrow> sum_list (map f xs) = setsum f (set xs)" | 
| 58101 | 205 | by (induct xs) simp_all | 
| 206 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 207 | lemma (in monoid_add) interv_sum_list_conv_setsum_set_nat: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 208 | "sum_list (map f [m..<n]) = setsum f (set [m..<n])" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 209 | by (simp add: sum_list_distinct_conv_setsum_set) | 
| 58101 | 210 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 211 | lemma (in monoid_add) interv_sum_list_conv_setsum_set_int: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 212 | "sum_list (map f [k..l]) = setsum f (set [k..l])" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 213 | by (simp add: sum_list_distinct_conv_setsum_set) | 
| 58101 | 214 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 215 | text \<open>General equivalence between @{const sum_list} and @{const setsum}\<close>
 | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 216 | lemma (in monoid_add) sum_list_setsum_nth: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 217 | "sum_list xs = (\<Sum> i = 0 ..< length xs. xs ! i)" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 218 | using interv_sum_list_conv_setsum_set_nat [of "op ! xs" 0 "length xs"] by (simp add: map_nth) | 
| 58101 | 219 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 220 | lemma sum_list_map_eq_setsum_count: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 221 | "sum_list (map f xs) = setsum (\<lambda>x. count_list xs x * f x) (set xs)" | 
| 59728 | 222 | proof(induction xs) | 
| 223 | case (Cons x xs) | |
| 224 | show ?case (is "?l = ?r") | |
| 225 | proof cases | |
| 226 | assume "x \<in> set xs" | |
| 60541 | 227 | have "?l = f x + (\<Sum>x\<in>set xs. count_list xs x * f x)" by (simp add: Cons.IH) | 
| 60758 | 228 |     also have "set xs = insert x (set xs - {x})" using \<open>x \<in> set xs\<close>by blast
 | 
| 60541 | 229 |     also have "f x + (\<Sum>x\<in>insert x (set xs - {x}). count_list xs x * f x) = ?r"
 | 
| 59728 | 230 | by (simp add: setsum.insert_remove eq_commute) | 
| 231 | finally show ?thesis . | |
| 232 | next | |
| 233 | assume "x \<notin> set xs" | |
| 234 | hence "\<And>xa. xa \<in> set xs \<Longrightarrow> x \<noteq> xa" by blast | |
| 60758 | 235 | thus ?thesis by (simp add: Cons.IH \<open>x \<notin> set xs\<close>) | 
| 59728 | 236 | qed | 
| 237 | qed simp | |
| 238 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 239 | lemma sum_list_map_eq_setsum_count2: | 
| 59728 | 240 | assumes "set xs \<subseteq> X" "finite X" | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 241 | shows "sum_list (map f xs) = setsum (\<lambda>x. count_list xs x * f x) X" | 
| 59728 | 242 | proof- | 
| 60541 | 243 | let ?F = "\<lambda>x. count_list xs x * f x" | 
| 59728 | 244 | have "setsum ?F X = setsum ?F (set xs \<union> (X - set xs))" | 
| 245 | using Un_absorb1[OF assms(1)] by(simp) | |
| 246 | also have "\<dots> = setsum ?F (set xs)" | |
| 247 | using assms(2) | |
| 248 | by(simp add: setsum.union_disjoint[OF _ _ Diff_disjoint] del: Un_Diff_cancel) | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 249 | finally show ?thesis by(simp add:sum_list_map_eq_setsum_count) | 
| 59728 | 250 | qed | 
| 251 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 252 | lemma sum_list_nonneg: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 253 | "(\<And>x. x \<in> set xs \<Longrightarrow> (x :: 'a :: ordered_comm_monoid_add) \<ge> 0) \<Longrightarrow> sum_list xs \<ge> 0" | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 254 | by (induction xs) simp_all | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 255 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 256 | lemma (in monoid_add) sum_list_map_filter': | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 257 | "sum_list (map f (filter P xs)) = sum_list (map (\<lambda>x. if P x then f x else 0) xs)" | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 258 | by (induction xs) simp_all | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 259 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 260 | lemma sum_list_cong [fundef_cong]: | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 261 | assumes "xs = ys" | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 262 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> f x = g x" | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 263 | shows "sum_list (map f xs) = sum_list (map g ys)" | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 264 | proof - | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 265 | from assms(2) have "sum_list (map f xs) = sum_list (map g xs)" | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 266 | by (induction xs) simp_all | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 267 | with assms(1) show ?thesis by simp | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 268 | qed | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 269 | |
| 58101 | 270 | |
| 60758 | 271 | subsection \<open>Further facts about @{const List.n_lists}\<close>
 | 
| 58101 | 272 | |
| 273 | lemma length_n_lists: "length (List.n_lists n xs) = length xs ^ n" | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 274 | by (induct n) (auto simp add: comp_def length_concat sum_list_triv) | 
| 58101 | 275 | |
| 276 | lemma distinct_n_lists: | |
| 277 | assumes "distinct xs" | |
| 278 | shows "distinct (List.n_lists n xs)" | |
| 279 | proof (rule card_distinct) | |
| 280 | from assms have card_length: "card (set xs) = length xs" by (rule distinct_card) | |
| 281 | have "card (set (List.n_lists n xs)) = card (set xs) ^ n" | |
| 282 | proof (induct n) | |
| 283 | case 0 then show ?case by simp | |
| 284 | next | |
| 285 | case (Suc n) | |
| 286 | moreover have "card (\<Union>ys\<in>set (List.n_lists n xs). (\<lambda>y. y # ys) ` set xs) | |
| 287 | = (\<Sum>ys\<in>set (List.n_lists n xs). card ((\<lambda>y. y # ys) ` set xs))" | |
| 288 | by (rule card_UN_disjoint) auto | |
| 289 | moreover have "\<And>ys. card ((\<lambda>y. y # ys) ` set xs) = card (set xs)" | |
| 290 | by (rule card_image) (simp add: inj_on_def) | |
| 291 | ultimately show ?case by auto | |
| 292 | qed | |
| 293 | also have "\<dots> = length xs ^ n" by (simp add: card_length) | |
| 294 | finally show "card (set (List.n_lists n xs)) = length (List.n_lists n xs)" | |
| 295 | by (simp add: length_n_lists) | |
| 296 | qed | |
| 297 | ||
| 298 | ||
| 60758 | 299 | subsection \<open>Tools setup\<close> | 
| 58101 | 300 | |
| 58320 | 301 | lemmas setsum_code = setsum.set_conv_list | 
| 302 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 303 | lemma setsum_set_upto_conv_sum_list_int [code_unfold]: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 304 | "setsum f (set [i..j::int]) = sum_list (map f [i..j])" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 305 | by (simp add: interv_sum_list_conv_setsum_set_int) | 
| 58101 | 306 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 307 | lemma setsum_set_upt_conv_sum_list_nat [code_unfold]: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 308 | "setsum f (set [m..<n]) = sum_list (map f [m..<n])" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 309 | by (simp add: interv_sum_list_conv_setsum_set_nat) | 
| 58101 | 310 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 311 | lemma sum_list_transfer[transfer_rule]: | 
| 63343 | 312 | includes lifting_syntax | 
| 58101 | 313 | assumes [transfer_rule]: "A 0 0" | 
| 314 | assumes [transfer_rule]: "(A ===> A ===> A) op + op +" | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 315 | shows "(list_all2 A ===> A) sum_list sum_list" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 316 | unfolding sum_list.eq_foldr [abs_def] | 
| 58101 | 317 | by transfer_prover | 
| 318 | ||
| 58368 | 319 | |
| 60758 | 320 | subsection \<open>List product\<close> | 
| 58368 | 321 | |
| 322 | context monoid_mult | |
| 323 | begin | |
| 324 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 325 | sublocale prod_list: monoid_list times 1 | 
| 61776 | 326 | defines | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 327 | prod_list = prod_list.F .. | 
| 58368 | 328 | |
| 58320 | 329 | end | 
| 58368 | 330 | |
| 331 | context comm_monoid_mult | |
| 332 | begin | |
| 333 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 334 | sublocale prod_list: comm_monoid_list times 1 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 335 | rewrites | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 336 | "monoid_list.F times 1 = prod_list" | 
| 58368 | 337 | proof - | 
| 338 | show "comm_monoid_list times 1" .. | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 339 | then interpret prod_list: comm_monoid_list times 1 . | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 340 | from prod_list_def show "monoid_list.F times 1 = prod_list" by simp | 
| 58368 | 341 | qed | 
| 342 | ||
| 61605 | 343 | sublocale setprod: comm_monoid_list_set times 1 | 
| 61566 
c3d6e570ccef
Keyword 'rewrites' identifies rewrite morphisms.
 ballarin parents: 
61378diff
changeset | 344 | rewrites | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 345 | "monoid_list.F times 1 = prod_list" | 
| 58368 | 346 | and "comm_monoid_set.F times 1 = setprod" | 
| 347 | proof - | |
| 348 | show "comm_monoid_list_set times 1" .. | |
| 61605 | 349 | then interpret setprod: comm_monoid_list_set times 1 . | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 350 | from prod_list_def show "monoid_list.F times 1 = prod_list" by simp | 
| 61776 | 351 | from setprod_def show "comm_monoid_set.F times 1 = setprod" by (auto intro: sym) | 
| 58368 | 352 | qed | 
| 353 | ||
| 354 | end | |
| 355 | ||
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 356 | lemma prod_list_cong [fundef_cong]: | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 357 | assumes "xs = ys" | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 358 | assumes "\<And>x. x \<in> set xs \<Longrightarrow> f x = g x" | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 359 | shows "prod_list (map f xs) = prod_list (map g ys)" | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 360 | proof - | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 361 | from assms(2) have "prod_list (map f xs) = prod_list (map g xs)" | 
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 362 | by (induction xs) simp_all | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 363 | with assms(1) show ?thesis by simp | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 364 | qed | 
| 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
61955diff
changeset | 365 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 366 | lemma prod_list_zero_iff: | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 367 |   "prod_list xs = 0 \<longleftrightarrow> (0 :: 'a :: {semiring_no_zero_divisors, semiring_1}) \<in> set xs"
 | 
| 63317 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63290diff
changeset | 368 | by (induction xs) simp_all | 
| 
ca187a9f66da
Various additions to polynomials, FPSs, Gamma function
 eberlm parents: 
63290diff
changeset | 369 | |
| 60758 | 370 | text \<open>Some syntactic sugar:\<close> | 
| 58368 | 371 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 372 | syntax (ASCII) | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 373 |   "_prod_list" :: "pttrn => 'a list => 'b => 'b"    ("(3PROD _<-_. _)" [0, 51, 10] 10)
 | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61799diff
changeset | 374 | syntax | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 375 |   "_prod_list" :: "pttrn => 'a list => 'b => 'b"    ("(3\<Prod>_\<leftarrow>_. _)" [0, 51, 10] 10)
 | 
| 61799 | 376 | translations \<comment> \<open>Beware of argument permutation!\<close> | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63343diff
changeset | 377 | "\<Prod>x\<leftarrow>xs. b" \<rightleftharpoons> "CONST prod_list (CONST map (\<lambda>x. b) xs)" | 
| 58368 | 378 | |
| 379 | end |