| 73794 |      1 | section \<open>Lexicographic orderings\<close>
 | 
|  |      2 | 
 | 
|  |      3 | theory Lexord
 | 
|  |      4 |   imports Main
 | 
|  |      5 | begin
 | 
|  |      6 | 
 | 
|  |      7 | subsection \<open>The preorder case\<close>
 | 
|  |      8 | 
 | 
|  |      9 | locale lex_preordering = preordering
 | 
|  |     10 | begin
 | 
|  |     11 | 
 | 
|  |     12 | inductive lex_less :: \<open>'a list \<Rightarrow> 'a list \<Rightarrow> bool\<close>  (infix \<open>[\<^bold><]\<close> 50) 
 | 
|  |     13 | where
 | 
|  |     14 |   Nil: \<open>[] [\<^bold><] y # ys\<close>
 | 
|  |     15 | | Cons: \<open>x \<^bold>< y \<Longrightarrow> x # xs [\<^bold><] y # ys\<close>
 | 
|  |     16 | | Cons_eq: \<open>x \<^bold>\<le> y \<Longrightarrow> y \<^bold>\<le> x \<Longrightarrow> xs [\<^bold><] ys \<Longrightarrow> x # xs [\<^bold><] y # ys\<close>
 | 
|  |     17 | 
 | 
|  |     18 | inductive lex_less_eq :: \<open>'a list \<Rightarrow> 'a list \<Rightarrow> bool\<close>  (infix \<open>[\<^bold>\<le>]\<close> 50)
 | 
|  |     19 | where
 | 
|  |     20 |   Nil: \<open>[] [\<^bold>\<le>] ys\<close>
 | 
|  |     21 | | Cons: \<open>x \<^bold>< y \<Longrightarrow> x # xs [\<^bold>\<le>] y # ys\<close>
 | 
|  |     22 | | Cons_eq: \<open>x \<^bold>\<le> y \<Longrightarrow> y \<^bold>\<le> x \<Longrightarrow> xs [\<^bold>\<le>] ys \<Longrightarrow> x # xs [\<^bold>\<le>] y # ys\<close>
 | 
|  |     23 | 
 | 
|  |     24 | lemma lex_less_simps [simp]:
 | 
|  |     25 |   \<open>[] [\<^bold><] y # ys\<close>
 | 
|  |     26 |   \<open>\<not> xs [\<^bold><] []\<close>
 | 
|  |     27 |   \<open>x # xs [\<^bold><] y # ys \<longleftrightarrow> x \<^bold>< y \<or> x \<^bold>\<le> y \<and> y \<^bold>\<le> x \<and> xs [\<^bold><] ys\<close>
 | 
|  |     28 |   by (auto intro: lex_less.intros elim: lex_less.cases)
 | 
|  |     29 | 
 | 
|  |     30 | lemma lex_less_eq_simps [simp]:
 | 
|  |     31 |   \<open>[] [\<^bold>\<le>] ys\<close>
 | 
|  |     32 |   \<open>\<not> x # xs [\<^bold>\<le>] []\<close>
 | 
|  |     33 |   \<open>x # xs [\<^bold>\<le>] y # ys \<longleftrightarrow> x \<^bold>< y \<or> x \<^bold>\<le> y \<and> y \<^bold>\<le> x \<and> xs [\<^bold>\<le>] ys\<close>
 | 
|  |     34 |   by (auto intro: lex_less_eq.intros elim: lex_less_eq.cases)
 | 
|  |     35 | 
 | 
|  |     36 | lemma lex_less_code [code]:
 | 
|  |     37 |   \<open>[] [\<^bold><] y # ys \<longleftrightarrow> True\<close>
 | 
|  |     38 |   \<open>xs [\<^bold><] [] \<longleftrightarrow> False\<close>
 | 
|  |     39 |   \<open>x # xs [\<^bold><] y # ys \<longleftrightarrow> x \<^bold>< y \<or> x \<^bold>\<le> y \<and> y \<^bold>\<le> x \<and> xs [\<^bold><] ys\<close>
 | 
|  |     40 |   by simp_all
 | 
|  |     41 | 
 | 
|  |     42 | lemma lex_less_eq_code [code]:
 | 
|  |     43 |   \<open>[] [\<^bold>\<le>] ys \<longleftrightarrow> True\<close>
 | 
|  |     44 |   \<open>x # xs [\<^bold>\<le>] [] \<longleftrightarrow> False\<close>
 | 
|  |     45 |   \<open>x # xs [\<^bold>\<le>] y # ys \<longleftrightarrow> x \<^bold>< y \<or> x \<^bold>\<le> y \<and> y \<^bold>\<le> x \<and> xs [\<^bold>\<le>] ys\<close>
 | 
|  |     46 |   by simp_all
 | 
|  |     47 | 
 | 
|  |     48 | lemma preordering:
 | 
|  |     49 |   \<open>preordering ([\<^bold>\<le>]) ([\<^bold><])\<close>
 | 
|  |     50 | proof
 | 
|  |     51 |   fix xs ys zs
 | 
|  |     52 |   show \<open>xs [\<^bold>\<le>] xs\<close>
 | 
|  |     53 |     by (induction xs) (simp_all add: refl)
 | 
|  |     54 |   show \<open>xs [\<^bold>\<le>] zs\<close> if \<open>xs [\<^bold>\<le>] ys\<close> \<open>ys [\<^bold>\<le>] zs\<close>
 | 
|  |     55 |   using that proof (induction arbitrary: zs)
 | 
|  |     56 |     case (Nil ys)
 | 
|  |     57 |     then show ?case by simp
 | 
|  |     58 |   next
 | 
|  |     59 |     case (Cons x y xs ys)
 | 
|  |     60 |     then show ?case
 | 
|  |     61 |       by (cases zs) (auto dest: strict_trans strict_trans2)
 | 
|  |     62 |   next
 | 
|  |     63 |     case (Cons_eq x y xs ys)
 | 
|  |     64 |     then show ?case
 | 
|  |     65 |       by (cases zs) (auto dest: strict_trans1 intro: trans)
 | 
|  |     66 |   qed
 | 
|  |     67 |   show \<open>xs [\<^bold><] ys \<longleftrightarrow> xs [\<^bold>\<le>] ys \<and> \<not> ys [\<^bold>\<le>] xs\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)
 | 
|  |     68 |   proof
 | 
|  |     69 |     assume ?P
 | 
|  |     70 |     then have \<open>xs [\<^bold>\<le>] ys\<close>
 | 
|  |     71 |       by induction simp_all
 | 
|  |     72 |     moreover have \<open>\<not> ys [\<^bold>\<le>] xs\<close>
 | 
|  |     73 |       using \<open>?P\<close>
 | 
|  |     74 |       by induction (simp_all, simp_all add: strict_iff_not asym)
 | 
|  |     75 |     ultimately show ?Q ..
 | 
|  |     76 |   next
 | 
|  |     77 |     assume ?Q
 | 
|  |     78 |     then have \<open>xs [\<^bold>\<le>] ys\<close> \<open>\<not> ys [\<^bold>\<le>] xs\<close>
 | 
|  |     79 |       by auto
 | 
|  |     80 |     then show ?P
 | 
|  |     81 |     proof induction
 | 
|  |     82 |       case (Nil ys)
 | 
|  |     83 |       then show ?case
 | 
|  |     84 |         by (cases ys) simp_all
 | 
|  |     85 |     next
 | 
|  |     86 |       case (Cons x y xs ys)
 | 
|  |     87 |       then show ?case
 | 
|  |     88 |         by simp
 | 
|  |     89 |     next
 | 
|  |     90 |       case (Cons_eq x y xs ys)
 | 
|  |     91 |       then show ?case
 | 
|  |     92 |         by simp
 | 
|  |     93 |     qed
 | 
|  |     94 |   qed
 | 
|  |     95 | qed
 | 
|  |     96 | 
 | 
|  |     97 | interpretation lex: preordering \<open>([\<^bold>\<le>])\<close> \<open>([\<^bold><])\<close>
 | 
|  |     98 |   by (fact preordering)
 | 
|  |     99 | 
 | 
|  |    100 | end
 | 
|  |    101 | 
 | 
|  |    102 | 
 | 
|  |    103 | subsection \<open>The order case\<close>
 | 
|  |    104 | 
 | 
|  |    105 | locale lex_ordering = lex_preordering + ordering
 | 
|  |    106 | begin
 | 
|  |    107 | 
 | 
|  |    108 | interpretation lex: preordering \<open>([\<^bold>\<le>])\<close> \<open>([\<^bold><])\<close>
 | 
|  |    109 |   by (fact preordering)
 | 
|  |    110 | 
 | 
|  |    111 | lemma less_lex_Cons_iff [simp]:
 | 
|  |    112 |   \<open>x # xs [\<^bold><] y # ys \<longleftrightarrow> x \<^bold>< y \<or> x = y \<and> xs [\<^bold><] ys\<close>
 | 
|  |    113 |   by (auto intro: refl antisym)
 | 
|  |    114 | 
 | 
|  |    115 | lemma less_eq_lex_Cons_iff [simp]:
 | 
|  |    116 |   \<open>x # xs [\<^bold>\<le>] y # ys \<longleftrightarrow> x \<^bold>< y \<or> x = y \<and> xs [\<^bold>\<le>] ys\<close>
 | 
|  |    117 |   by (auto intro: refl antisym)
 | 
|  |    118 | 
 | 
|  |    119 | lemma ordering:
 | 
|  |    120 |   \<open>ordering ([\<^bold>\<le>]) ([\<^bold><])\<close>
 | 
|  |    121 | proof
 | 
|  |    122 |   fix xs ys
 | 
|  |    123 |   show *: \<open>xs = ys\<close> if \<open>xs [\<^bold>\<le>] ys\<close> \<open>ys [\<^bold>\<le>] xs\<close>
 | 
|  |    124 |   using that proof induction
 | 
|  |    125 |   case (Nil ys)
 | 
|  |    126 |     then show ?case by (cases ys) simp
 | 
|  |    127 |   next
 | 
|  |    128 |     case (Cons x y xs ys)
 | 
|  |    129 |     then show ?case by (auto dest: asym intro: antisym)
 | 
|  |    130 |       (simp add: strict_iff_not)
 | 
|  |    131 |   next
 | 
|  |    132 |     case (Cons_eq x y xs ys)
 | 
|  |    133 |     then show ?case by (auto intro: antisym)
 | 
|  |    134 |       (simp add: strict_iff_not)
 | 
|  |    135 |   qed
 | 
|  |    136 |   show \<open>xs [\<^bold><] ys \<longleftrightarrow> xs [\<^bold>\<le>] ys \<and> xs \<noteq> ys\<close>
 | 
|  |    137 |     by (auto simp add: lex.strict_iff_not dest: *)
 | 
|  |    138 | qed
 | 
|  |    139 | 
 | 
|  |    140 | interpretation lex: ordering \<open>([\<^bold>\<le>])\<close> \<open>([\<^bold><])\<close>
 | 
|  |    141 |   by (fact ordering)
 | 
|  |    142 | 
 | 
|  |    143 | end
 | 
|  |    144 | 
 | 
|  |    145 | 
 | 
|  |    146 | subsection \<open>Canonical instance\<close>
 | 
|  |    147 | 
 | 
|  |    148 | instantiation list :: (preorder) preorder
 | 
|  |    149 | begin
 | 
|  |    150 | 
 | 
|  |    151 | global_interpretation lex: lex_preordering \<open>(\<le>) :: 'a::preorder \<Rightarrow> 'a \<Rightarrow> bool\<close> \<open>(<) :: 'a \<Rightarrow> 'a \<Rightarrow> bool\<close>
 | 
|  |    152 |   defines less_eq_list = lex.lex_less_eq
 | 
|  |    153 |     and less_list = lex.lex_less ..
 | 
|  |    154 | 
 | 
|  |    155 | instance
 | 
|  |    156 |   by (rule class.preorder.of_class.intro, rule preordering_preorderI, fact lex.preordering)
 | 
|  |    157 | 
 | 
|  |    158 | end
 | 
|  |    159 | 
 | 
|  |    160 | global_interpretation lex: lex_ordering \<open>(\<le>) :: 'a::order \<Rightarrow> 'a \<Rightarrow> bool\<close> \<open>(<) :: 'a \<Rightarrow> 'a \<Rightarrow> bool\<close>
 | 
|  |    161 |   rewrites \<open>lex_preordering.lex_less_eq (\<le>) (<) = ((\<le>) :: 'a list \<Rightarrow> 'a list \<Rightarrow> bool)\<close>
 | 
|  |    162 |     and \<open>lex_preordering.lex_less (\<le>) (<) = ((<) :: 'a list \<Rightarrow> 'a list \<Rightarrow> bool)\<close>
 | 
|  |    163 | proof -
 | 
|  |    164 |   interpret lex_ordering \<open>(\<le>) :: 'a \<Rightarrow> 'a \<Rightarrow> bool\<close> \<open>(<) :: 'a \<Rightarrow> 'a \<Rightarrow> bool\<close> ..
 | 
|  |    165 |   show \<open>lex_ordering ((\<le>)  :: 'a \<Rightarrow> 'a \<Rightarrow> bool) (<)\<close>
 | 
|  |    166 |     by (fact lex_ordering_axioms)
 | 
|  |    167 |   show \<open>lex_preordering.lex_less_eq (\<le>) (<) = (\<le>)\<close>
 | 
|  |    168 |     by (simp add: less_eq_list_def)
 | 
|  |    169 |   show \<open>lex_preordering.lex_less (\<le>) (<) = (<)\<close>
 | 
|  |    170 |     by (simp add: less_list_def)
 | 
|  |    171 | qed
 | 
|  |    172 | 
 | 
|  |    173 | instance list :: (order) order
 | 
|  |    174 |   by (rule class.order.of_class.intro, rule ordering_orderI, fact lex.ordering)
 | 
|  |    175 | 
 | 
|  |    176 | export_code \<open>(\<le>) :: _ list \<Rightarrow> _ list \<Rightarrow> bool\<close> \<open>(<) :: _ list \<Rightarrow> _ list \<Rightarrow> bool\<close> in Haskell
 | 
|  |    177 | 
 | 
|  |    178 | 
 | 
|  |    179 | subsection \<open>Non-canonical instance\<close>
 | 
|  |    180 | 
 | 
|  |    181 | context comm_monoid_mult
 | 
|  |    182 | begin
 | 
|  |    183 | 
 | 
|  |    184 | definition dvd_strict :: \<open>'a \<Rightarrow> 'a \<Rightarrow> bool\<close>
 | 
|  |    185 |   where \<open>dvd_strict a b \<longleftrightarrow> a dvd b \<and> \<not> b dvd a\<close>
 | 
|  |    186 | 
 | 
|  |    187 | end
 | 
|  |    188 | 
 | 
|  |    189 | global_interpretation dvd: lex_preordering \<open>(dvd) :: 'a::comm_monoid_mult \<Rightarrow> 'a \<Rightarrow> bool\<close> dvd_strict
 | 
|  |    190 |   defines lex_dvd = dvd.lex_less_eq
 | 
|  |    191 |     and lex_dvd_strict = dvd.lex_less
 | 
| 75244 |    192 |   by unfold_locales (auto simp add: dvd_strict_def)
 | 
| 73794 |    193 | 
 | 
|  |    194 | global_interpretation lex_dvd: preordering lex_dvd lex_dvd_strict
 | 
|  |    195 |   by (fact dvd.preordering)
 | 
|  |    196 | 
 | 
|  |    197 | definition \<open>example = lex_dvd [(4::int), - 7, 8] [- 8, 13, 5]\<close>
 | 
|  |    198 | 
 | 
|  |    199 | export_code example in Haskell
 | 
|  |    200 | 
 | 
|  |    201 | value example
 | 
|  |    202 | 
 | 
|  |    203 | end
 |