author | haftmann |
Wed, 25 Nov 2009 11:16:57 +0100 | |
changeset 33959 | 2afc55e8ed27 |
parent 33041 | 6793b02a3409 |
child 38136 | bd4965bb7bdc |
permissions | -rw-r--r-- |
32949
aa6c470a962a
eliminated slightly odd get/set operations in favour of Unsynchronized.ref;
wenzelm
parents:
32645
diff
changeset
|
1 |
(* Title: HOL/Library/Sum_Of_Squares.thy |
aa6c470a962a
eliminated slightly odd get/set operations in favour of Unsynchronized.ref;
wenzelm
parents:
32645
diff
changeset
|
2 |
Author: Amine Chaieb, University of Cambridge |
aa6c470a962a
eliminated slightly odd get/set operations in favour of Unsynchronized.ref;
wenzelm
parents:
32645
diff
changeset
|
3 |
Author: Philipp Meyer, TU Muenchen |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
4 |
*) |
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
5 |
|
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
6 |
header {* A decision method for universal multivariate real arithmetic with addition, |
32333 | 7 |
multiplication and ordering using semidefinite programming *} |
32271 | 8 |
|
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
9 |
theory Sum_Of_Squares |
32332 | 10 |
imports Complex_Main (* "~~/src/HOL/Decision_Procs/Dense_Linear_Order" *) |
11 |
uses |
|
33041 | 12 |
"positivstellensatz.ML" (* duplicate use!? -- cf. Euclidian_Space.thy *) |
13 |
"Sum_Of_Squares/sum_of_squares.ML" |
|
14 |
"Sum_Of_Squares/positivstellensatz_tools.ML" |
|
15 |
"Sum_Of_Squares/sos_wrapper.ML" |
|
32332 | 16 |
begin |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
17 |
|
32333 | 18 |
text {* |
19 |
In order to use the method sos, call it with @{text "(sos |
|
20 |
remote_csdp)"} to use the remote solver. Or install CSDP |
|
21 |
(https://projects.coin-or.org/Csdp), configure the Isabelle setting |
|
22 |
@{text CSDP_EXE}, and call it with @{text "(sos csdp)"}. By |
|
23 |
default, sos calls @{text remote_csdp}. This can take of the order |
|
24 |
of a minute for one sos call, because sos calls CSDP repeatedly. If |
|
25 |
you install CSDP locally, sos calls typically takes only a few |
|
26 |
seconds. |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
27 |
sos generates a certificate which can be used to repeat the proof |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
28 |
without calling an external prover. |
32333 | 29 |
*} |
30 |
||
32949
aa6c470a962a
eliminated slightly odd get/set operations in favour of Unsynchronized.ref;
wenzelm
parents:
32645
diff
changeset
|
31 |
setup SOS_Wrapper.setup |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
32 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
33 |
text {* Tests *} |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
34 |
|
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
35 |
lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \<Longrightarrow> a < 0" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
36 |
by (sos_cert "((R<1 + (((A<1 * R<1) * (R<2 * [1]^2)) + (((A<0 * R<1) * (R<3 * [1]^2)) + ((A<=0 * R<1) * (R<14 * [1]^2))))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
37 |
|
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
38 |
lemma "a1 >= 0 & a2 >= 0 \<and> (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \<and> (a1 * b1 + a2 * b2 = 0) --> a1 * a2 - b1 * b2 >= (0::real)" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
39 |
by (sos_cert "(((A<0 * R<1) + (([~1/2*a1*b2 + ~1/2*a2*b1] * A=0) + (([~1/2*a1*a2 + 1/2*b1*b2] * A=1) + (((A<0 * R<1) * ((R<1/2 * [b2]^2) + (R<1/2 * [b1]^2))) + ((A<=0 * (A<=1 * R<1)) * ((R<1/2 * [b2]^2) + ((R<1/2 * [b1]^2) + ((R<1/2 * [a2]^2) + (R<1/2 * [a1]^2))))))))))") |
32268
d50f0cb67578
Functionality for sum of squares to call a remote csdp prover
Philipp Meyer
parents:
31512
diff
changeset
|
40 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
41 |
lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x --> a < 0" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
42 |
by (sos_cert "((R<1 + (((A<1 * R<1) * (R<2 * [1]^2)) + (((A<0 * R<1) * (R<3 * [1]^2)) + ((A<=0 * R<1) * (R<14 * [1]^2))))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
43 |
|
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
44 |
lemma "(0::real) <= x & x <= 1 & 0 <= y & y <= 1 --> x^2 + y^2 < 1 |(x - 1)^2 + y^2 < 1 | x^2 + (y - 1)^2 < 1 | (x - 1)^2 + (y - 1)^2 < 1" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
45 |
by (sos_cert "((R<1 + (((A<=3 * (A<=4 * R<1)) * (R<1 * [1]^2)) + (((A<=2 * (A<=7 * R<1)) * (R<1 * [1]^2)) + (((A<=1 * (A<=6 * R<1)) * (R<1 * [1]^2)) + ((A<=0 * (A<=5 * R<1)) * (R<1 * [1]^2)))))))") |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
46 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
47 |
lemma "(0::real) <= x & 0 <= y & 0 <= z & x + y + z <= 3 --> x * y + x * z + y * z >= 3 * x * y * z" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
48 |
by (sos_cert "(((A<0 * R<1) + (((A<0 * R<1) * (R<1/2 * [1]^2)) + (((A<=2 * R<1) * (R<1/2 * [~1*x + y]^2)) + (((A<=1 * R<1) * (R<1/2 * [~1*x + z]^2)) + (((A<=1 * (A<=2 * (A<=3 * R<1))) * (R<1/2 * [1]^2)) + (((A<=0 * R<1) * (R<1/2 * [~1*y + z]^2)) + (((A<=0 * (A<=2 * (A<=3 * R<1))) * (R<1/2 * [1]^2)) + ((A<=0 * (A<=1 * (A<=3 * R<1))) * (R<1/2 * [1]^2))))))))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
49 |
|
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
50 |
lemma "((x::real)^2 + y^2 + z^2 = 1) --> (x + y + z)^2 <= 3" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
51 |
by (sos_cert "(((A<0 * R<1) + (([~3] * A=0) + (R<1 * ((R<2 * [~1/2*x + ~1/2*y + z]^2) + (R<3/2 * [~1*x + y]^2))))))") |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
52 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
53 |
lemma "(w^2 + x^2 + y^2 + z^2 = 1) --> (w + x + y + z)^2 <= (4::real)" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
54 |
by (sos_cert "(((A<0 * R<1) + (([~4] * A=0) + (R<1 * ((R<3 * [~1/3*w + ~1/3*x + ~1/3*y + z]^2) + ((R<8/3 * [~1/2*w + ~1/2*x + y]^2) + (R<2 * [~1*w + x]^2)))))))") |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
55 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
56 |
lemma "(x::real) >= 1 & y >= 1 --> x * y >= x + y - 1" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
57 |
by (sos_cert "(((A<0 * R<1) + ((A<=0 * (A<=1 * R<1)) * (R<1 * [1]^2))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
58 |
|
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
59 |
lemma "(x::real) > 1 & y > 1 --> x * y > x + y - 1" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
60 |
by (sos_cert "((((A<0 * A<1) * R<1) + ((A<=0 * R<1) * (R<1 * [1]^2))))") |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
61 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
62 |
lemma "abs(x) <= 1 --> abs(64 * x^7 - 112 * x^5 + 56 * x^3 - 7 * x) <= (1::real)" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
63 |
by (sos_cert "((((A<0 * R<1) + ((A<=1 * R<1) * (R<1 * [~8*x^3 + ~4*x^2 + 4*x + 1]^2)))) & ((((A<0 * A<1) * R<1) + ((A<=1 * (A<0 * R<1)) * (R<1 * [8*x^3 + ~4*x^2 + ~4*x + 1]^2)))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
64 |
|
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
65 |
(* ------------------------------------------------------------------------- *) |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
66 |
(* One component of denominator in dodecahedral example. *) |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
67 |
(* ------------------------------------------------------------------------- *) |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
68 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
69 |
lemma "2 <= x & x <= 125841 / 50000 & 2 <= y & y <= 125841 / 50000 & 2 <= z & z <= 125841 / 50000 --> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) >= (0::real)" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
70 |
by (sos_cert "(((A<0 * R<1) + ((R<1 * ((R<5749028157/5000000000 * [~25000/222477*x + ~25000/222477*y + ~25000/222477*z + 1]^2) + ((R<864067/1779816 * [419113/864067*x + 419113/864067*y + z]^2) + ((R<320795/864067 * [419113/1283180*x + y]^2) + (R<1702293/5132720 * [x]^2))))) + (((A<=4 * (A<=5 * R<1)) * (R<3/2 * [1]^2)) + (((A<=3 * (A<=5 * R<1)) * (R<1/2 * [1]^2)) + (((A<=2 * (A<=4 * R<1)) * (R<1 * [1]^2)) + (((A<=2 * (A<=3 * R<1)) * (R<3/2 * [1]^2)) + (((A<=1 * (A<=5 * R<1)) * (R<1/2 * [1]^2)) + (((A<=1 * (A<=3 * R<1)) * (R<1/2 * [1]^2)) + (((A<=0 * (A<=4 * R<1)) * (R<1 * [1]^2)) + (((A<=0 * (A<=2 * R<1)) * (R<1 * [1]^2)) + ((A<=0 * (A<=1 * R<1)) * (R<3/2 * [1]^2)))))))))))))") |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
71 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
72 |
(* ------------------------------------------------------------------------- *) |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
73 |
(* Over a larger but simpler interval. *) |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
74 |
(* ------------------------------------------------------------------------- *) |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
75 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
76 |
lemma "(2::real) <= x & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 0 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
77 |
by (sos_cert "((R<1 + ((R<1 * ((R<1 * [~1/6*x + ~1/6*y + ~1/6*z + 1]^2) + ((R<1/18 * [~1/2*x + ~1/2*y + z]^2) + (R<1/24 * [~1*x + y]^2)))) + (((A<0 * R<1) * (R<1/12 * [1]^2)) + (((A<=4 * (A<=5 * R<1)) * (R<1/6 * [1]^2)) + (((A<=2 * (A<=4 * R<1)) * (R<1/6 * [1]^2)) + (((A<=2 * (A<=3 * R<1)) * (R<1/6 * [1]^2)) + (((A<=0 * (A<=4 * R<1)) * (R<1/6 * [1]^2)) + (((A<=0 * (A<=2 * R<1)) * (R<1/6 * [1]^2)) + ((A<=0 * (A<=1 * R<1)) * (R<1/6 * [1]^2)))))))))))") |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
78 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
79 |
(* ------------------------------------------------------------------------- *) |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
80 |
(* We can do 12. I think 12 is a sharp bound; see PP's certificate. *) |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
81 |
(* ------------------------------------------------------------------------- *) |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
82 |
|
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
83 |
lemma "2 <= (x::real) & x <= 4 & 2 <= y & y <= 4 & 2 <= z & z <= 4 --> 12 <= 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
84 |
by (sos_cert "(((A<0 * R<1) + (((A<=4 * R<1) * (R<2/3 * [1]^2)) + (((A<=4 * (A<=5 * R<1)) * (R<1 * [1]^2)) + (((A<=3 * (A<=4 * R<1)) * (R<1/3 * [1]^2)) + (((A<=2 * R<1) * (R<2/3 * [1]^2)) + (((A<=2 * (A<=5 * R<1)) * (R<1/3 * [1]^2)) + (((A<=2 * (A<=4 * R<1)) * (R<8/3 * [1]^2)) + (((A<=2 * (A<=3 * R<1)) * (R<1 * [1]^2)) + (((A<=1 * (A<=4 * R<1)) * (R<1/3 * [1]^2)) + (((A<=1 * (A<=2 * R<1)) * (R<1/3 * [1]^2)) + (((A<=0 * R<1) * (R<2/3 * [1]^2)) + (((A<=0 * (A<=5 * R<1)) * (R<1/3 * [1]^2)) + (((A<=0 * (A<=4 * R<1)) * (R<8/3 * [1]^2)) + (((A<=0 * (A<=3 * R<1)) * (R<1/3 * [1]^2)) + (((A<=0 * (A<=2 * R<1)) * (R<8/3 * [1]^2)) + ((A<=0 * (A<=1 * R<1)) * (R<1 * [1]^2))))))))))))))))))") |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
85 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
86 |
(* ------------------------------------------------------------------------- *) |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
87 |
(* Inequality from sci.math (see "Leon-Sotelo, por favor"). *) |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
88 |
(* ------------------------------------------------------------------------- *) |
32543
62e6c9b67c6f
tuned document -- proper text instead of source comments, reduced line length;
wenzelm
parents:
32333
diff
changeset
|
89 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
90 |
lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x + y <= x^2 + y^2" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
91 |
by (sos_cert "(((A<0 * R<1) + (([1] * A=0) + (R<1 * ((R<1 * [~1/2*x + ~1/2*y + 1]^2) + (R<3/4 * [~1*x + y]^2))))))") |
32543
62e6c9b67c6f
tuned document -- proper text instead of source comments, reduced line length;
wenzelm
parents:
32333
diff
changeset
|
92 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
93 |
lemma "0 <= (x::real) & 0 <= y & (x * y = 1) --> x * y * (x + y) <= x^2 + y^2" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
94 |
by (sos_cert "(((A<0 * R<1) + (([~1*x + ~1*y + 1] * A=0) + (R<1 * ((R<1 * [~1/2*x + ~1/2*y + 1]^2) + (R<3/4 * [~1*x + y]^2))))))") |
32543
62e6c9b67c6f
tuned document -- proper text instead of source comments, reduced line length;
wenzelm
parents:
32333
diff
changeset
|
95 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
96 |
lemma "0 <= (x::real) & 0 <= y --> x * y * (x + y)^2 <= (x^2 + y^2)^2" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
97 |
by (sos_cert "(((A<0 * R<1) + (R<1 * ((R<1 * [~1/2*x^2 + y^2 + ~1/2*x*y]^2) + (R<3/4 * [~1*x^2 + x*y]^2)))))") |
32543
62e6c9b67c6f
tuned document -- proper text instead of source comments, reduced line length;
wenzelm
parents:
32333
diff
changeset
|
98 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
99 |
lemma "(0::real) <= a & 0 <= b & 0 <= c & c * (2 * a + b)^3/ 27 <= x \<longrightarrow> c * a^2 * b <= x" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
100 |
by (sos_cert "(((A<0 * R<1) + (((A<=3 * R<1) * (R<1 * [1]^2)) + (((A<=1 * (A<=2 * R<1)) * (R<1/27 * [~1*a + b]^2)) + ((A<=0 * (A<=2 * R<1)) * (R<8/27 * [~1*a + b]^2))))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
101 |
|
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
102 |
lemma "(0::real) < x --> 0 < 1 + x + x^2" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
103 |
by (sos_cert "((R<1 + ((R<1 * (R<1 * [x]^2)) + (((A<0 * R<1) * (R<1 * [1]^2)) + ((A<=0 * R<1) * (R<1 * [1]^2))))))") |
32543
62e6c9b67c6f
tuned document -- proper text instead of source comments, reduced line length;
wenzelm
parents:
32333
diff
changeset
|
104 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
105 |
lemma "(0::real) <= x --> 0 < 1 + x + x^2" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
106 |
by (sos_cert "((R<1 + ((R<1 * (R<1 * [x]^2)) + (((A<=1 * R<1) * (R<1 * [1]^2)) + ((A<=0 * R<1) * (R<1 * [1]^2))))))") |
31131 | 107 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
108 |
lemma "(0::real) < 1 + x^2" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
109 |
by (sos_cert "((R<1 + ((R<1 * (R<1 * [x]^2)) + ((A<=0 * R<1) * (R<1 * [1]^2)))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
110 |
|
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
111 |
lemma "(0::real) <= 1 + 2 * x + x^2" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
112 |
by (sos_cert "(((A<0 * R<1) + (R<1 * (R<1 * [x + 1]^2))))") |
32543
62e6c9b67c6f
tuned document -- proper text instead of source comments, reduced line length;
wenzelm
parents:
32333
diff
changeset
|
113 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
114 |
lemma "(0::real) < 1 + abs x" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
115 |
by (sos_cert "((R<1 + (((A<=1 * R<1) * (R<1/2 * [1]^2)) + ((A<=0 * R<1) * (R<1/2 * [1]^2)))))") |
32543
62e6c9b67c6f
tuned document -- proper text instead of source comments, reduced line length;
wenzelm
parents:
32333
diff
changeset
|
116 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
117 |
lemma "(0::real) < 1 + (1 + x)^2 * (abs x)" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
118 |
by (sos_cert "(((R<1 + (((A<=1 * R<1) * (R<1 * [1]^2)) + ((A<=0 * R<1) * (R<1 * [x + 1]^2))))) & ((R<1 + (((A<0 * R<1) * (R<1 * [x + 1]^2)) + ((A<=0 * R<1) * (R<1 * [1]^2))))))") |
32543
62e6c9b67c6f
tuned document -- proper text instead of source comments, reduced line length;
wenzelm
parents:
32333
diff
changeset
|
119 |
|
62e6c9b67c6f
tuned document -- proper text instead of source comments, reduced line length;
wenzelm
parents:
32333
diff
changeset
|
120 |
|
62e6c9b67c6f
tuned document -- proper text instead of source comments, reduced line length;
wenzelm
parents:
32333
diff
changeset
|
121 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
122 |
lemma "abs ((1::real) + x^2) = (1::real) + x^2" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
123 |
by (sos_cert "(() & (((R<1 + ((R<1 * (R<1 * [x]^2)) + ((A<1 * R<1) * (R<1/2 * [1]^2))))) & ((R<1 + ((R<1 * (R<1 * [x]^2)) + ((A<0 * R<1) * (R<1 * [1]^2)))))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
124 |
lemma "(3::real) * x + 7 * a < 4 \<and> 3 < 2 * x \<longrightarrow> a < 0" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
125 |
by (sos_cert "((R<1 + (((A<1 * R<1) * (R<2 * [1]^2)) + (((A<0 * R<1) * (R<3 * [1]^2)) + ((A<=0 * R<1) * (R<14 * [1]^2))))))") |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
126 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
127 |
lemma "(0::real) < x --> 1 < y --> y * x <= z --> x < z" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
128 |
by (sos_cert "((((A<0 * A<1) * R<1) + (((A<=1 * R<1) * (R<1 * [1]^2)) + ((A<=0 * R<1) * (R<1 * [1]^2)))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
129 |
lemma "(1::real) < x --> x^2 < y --> 1 < y" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
130 |
by (sos_cert "((((A<0 * A<1) * R<1) + ((R<1 * ((R<1/10 * [~2*x + y + 1]^2) + (R<1/10 * [~1*x + y]^2))) + (((A<1 * R<1) * (R<1/2 * [1]^2)) + (((A<0 * R<1) * (R<1 * [x]^2)) + (((A<=0 * R<1) * ((R<1/10 * [x + 1]^2) + (R<1/10 * [x]^2))) + (((A<=0 * (A<1 * R<1)) * (R<1/5 * [1]^2)) + ((A<=0 * (A<0 * R<1)) * (R<1/5 * [1]^2)))))))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
131 |
lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
132 |
by (sos_cert "(((A<0 * R<1) + (R<1 * (R<1 * [2*a*x + b]^2))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
133 |
lemma "(b::real)^2 < 4 * a * c --> ~(a * x^2 + b * x + c = 0)" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
134 |
by (sos_cert "(((A<0 * R<1) + (R<1 * (R<1 * [2*a*x + b]^2))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
135 |
lemma "((a::real) * x^2 + b * x + c = 0) --> b^2 >= 4 * a * c" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
136 |
by (sos_cert "(((A<0 * R<1) + (R<1 * (R<1 * [2*a*x + b]^2))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
137 |
lemma "(0::real) <= b & 0 <= c & 0 <= x & 0 <= y & (x^2 = c) & (y^2 = a^2 * c + b) --> a * c <= y * x" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
138 |
by (sos_cert "(((A<0 * (A<0 * R<1)) + (((A<=2 * (A<=3 * (A<0 * R<1))) * (R<2 * [1]^2)) + ((A<=0 * (A<=1 * R<1)) * (R<1 * [1]^2)))))") |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
139 |
lemma "abs(x - z) <= e & abs(y - z) <= e & 0 <= u & 0 <= v & (u + v = 1) --> abs((u * x + v * y) - z) <= (e::real)" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
140 |
by (sos_cert "((((A<0 * R<1) + (((A<=3 * (A<=6 * R<1)) * (R<1 * [1]^2)) + ((A<=1 * (A<=5 * R<1)) * (R<1 * [1]^2))))) & ((((A<0 * A<1) * R<1) + (((A<=3 * (A<=5 * (A<0 * R<1))) * (R<1 * [1]^2)) + ((A<=1 * (A<=4 * (A<0 * R<1))) * (R<1 * [1]^2))))))") |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
141 |
|
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
142 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
143 |
(* lemma "((x::real) - y - 2 * x^4 = 0) & 0 <= x & x <= 2 & 0 <= y & y <= 3 --> y^2 - 7 * y - 12 * x + 17 >= 0" by sos *) (* Too hard?*) |
32543
62e6c9b67c6f
tuned document -- proper text instead of source comments, reduced line length;
wenzelm
parents:
32333
diff
changeset
|
144 |
|
31131 | 145 |
lemma "(0::real) <= x --> (1 + x + x^2)/(1 + x^2) <= 1 + x" |
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
146 |
by (sos_cert "(((((A<0 * A<1) * R<1) + ((A<=0 * (A<0 * R<1)) * (R<1 * [x]^2)))) & ((R<1 + ((R<1 * (R<1 * [x]^2)) + ((A<0 * R<1) * (R<1 * [1]^2))))))") |
31131 | 147 |
|
148 |
lemma "(0::real) <= x --> 1 - x <= 1 / (1 + x + x^2)" |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
149 |
by (sos_cert "(((R<1 + (([~4/3] * A=0) + ((R<1 * ((R<1/3 * [3/2*x + 1]^2) + (R<7/12 * [x]^2))) + ((A<=0 * R<1) * (R<1/3 * [1]^2)))))) & (((((A<0 * A<1) * R<1) + ((A<=0 * (A<0 * R<1)) * (R<1 * [x]^2)))) & ((R<1 + ((R<1 * (R<1 * [x]^2)) + (((A<0 * R<1) * (R<1 * [1]^2)) + ((A<=0 * R<1) * (R<1 * [1]^2))))))))") |
31131 | 150 |
|
151 |
lemma "(x::real) <= 1 / 2 --> - x - 2 * x^2 <= - x / (1 - x)" |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
152 |
by (sos_cert "((((A<0 * A<1) * R<1) + ((A<=0 * (A<0 * R<1)) * (R<1 * [x]^2))))") |
31131 | 153 |
|
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
154 |
lemma "4*r^2 = p^2 - 4*q & r >= (0::real) & x^2 + p*x + q = 0 --> 2*(x::real) = - p + 2*r | 2*x = -p - 2*r" |
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
155 |
by (sos_cert "((((((A<0 * A<1) * R<1) + ([~4] * A=0))) & ((((A<0 * A<1) * R<1) + ([4] * A=0)))) & (((((A<0 * A<1) * R<1) + ([4] * A=0))) & ((((A<0 * A<1) * R<1) + ([~4] * A=0)))))") |
31119
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
156 |
|
2532bb2d65c7
A decision method for universal multivariate real arithmetic with add
chaieb
parents:
diff
changeset
|
157 |
end |
32645
1cc5b24f5a01
sos method generates and uses proof certificates
Philipp Meyer
parents:
32543
diff
changeset
|
158 |