| 
72029
 | 
     1  | 
(*  Title:      HOL/Examples/Records.thy
  | 
| 
 | 
     2  | 
    Author:     Wolfgang Naraschewski, TU Muenchen
  | 
| 
 | 
     3  | 
    Author:     Norbert Schirmer, TU Muenchen
  | 
| 
 | 
     4  | 
    Author:     Markus Wenzel, TU Muenchen
  | 
| 
 | 
     5  | 
*)
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
section \<open>Using extensible records in HOL -- points and coloured points\<close>
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
theory Records
  | 
| 
72030
 | 
    10  | 
  imports Main
  | 
| 
72029
 | 
    11  | 
begin
  | 
| 
 | 
    12  | 
  | 
| 
 | 
    13  | 
subsection \<open>Points\<close>
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
record point =
  | 
| 
 | 
    16  | 
  xpos :: nat
  | 
| 
 | 
    17  | 
  ypos :: nat
  | 
| 
 | 
    18  | 
  | 
| 
 | 
    19  | 
text \<open>
  | 
| 
 | 
    20  | 
  Apart many other things, above record declaration produces the
  | 
| 
 | 
    21  | 
  following theorems:
  | 
| 
 | 
    22  | 
\<close>
  | 
| 
 | 
    23  | 
  | 
| 
 | 
    24  | 
thm point.simps
  | 
| 
 | 
    25  | 
thm point.iffs
  | 
| 
 | 
    26  | 
thm point.defs
  | 
| 
 | 
    27  | 
  | 
| 
 | 
    28  | 
text \<open>
  | 
| 
 | 
    29  | 
  The set of theorems @{thm [source] point.simps} is added
 | 
| 
 | 
    30  | 
  automatically to the standard simpset, @{thm [source] point.iffs} is
 | 
| 
 | 
    31  | 
  added to the Classical Reasoner and Simplifier context.
  | 
| 
 | 
    32  | 
  | 
| 
72030
 | 
    33  | 
  \<^medskip> Record declarations define new types and type abbreviations:
  | 
| 
72029
 | 
    34  | 
  @{text [display]
 | 
| 
 | 
    35  | 
\<open>point = \<lparr>xpos :: nat, ypos :: nat\<rparr> = () point_ext_type
  | 
| 
 | 
    36  | 
'a point_scheme = \<lparr>xpos :: nat, ypos :: nat, ... :: 'a\<rparr>  = 'a point_ext_type\<close>}
  | 
| 
 | 
    37  | 
\<close>
  | 
| 
 | 
    38  | 
  | 
| 
72030
 | 
    39  | 
consts foo2 :: "\<lparr>xpos :: nat, ypos :: nat\<rparr>"
  | 
| 
 | 
    40  | 
consts foo4 :: "'a \<Rightarrow> \<lparr>xpos :: nat, ypos :: nat, \<dots> :: 'a\<rparr>"
  | 
| 
72029
 | 
    41  | 
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
subsubsection \<open>Introducing concrete records and record schemes\<close>
  | 
| 
 | 
    44  | 
  | 
| 
 | 
    45  | 
definition foo1 :: point
  | 
| 
72030
 | 
    46  | 
  where "foo1 = \<lparr>xpos = 1, ypos = 0\<rparr>"
  | 
| 
72029
 | 
    47  | 
  | 
| 
72030
 | 
    48  | 
definition foo3 :: "'a \<Rightarrow> 'a point_scheme"
  | 
| 
 | 
    49  | 
  where "foo3 ext = \<lparr>xpos = 1, ypos = 0, \<dots> = ext\<rparr>"
  | 
| 
72029
 | 
    50  | 
  | 
| 
 | 
    51  | 
  | 
| 
 | 
    52  | 
subsubsection \<open>Record selection and record update\<close>
  | 
| 
 | 
    53  | 
  | 
| 
72030
 | 
    54  | 
definition getX :: "'a point_scheme \<Rightarrow> nat"
  | 
| 
72029
 | 
    55  | 
  where "getX r = xpos r"
  | 
| 
 | 
    56  | 
  | 
| 
72030
 | 
    57  | 
definition setX :: "'a point_scheme \<Rightarrow> nat \<Rightarrow> 'a point_scheme"
  | 
| 
 | 
    58  | 
  where "setX r n = r \<lparr>xpos := n\<rparr>"
  | 
| 
72029
 | 
    59  | 
  | 
| 
 | 
    60  | 
  | 
| 
 | 
    61  | 
subsubsection \<open>Some lemmas about records\<close>
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
text \<open>Basic simplifications.\<close>
  | 
| 
 | 
    64  | 
  | 
| 
72030
 | 
    65  | 
lemma "point.make n p = \<lparr>xpos = n, ypos = p\<rparr>"
  | 
| 
72029
 | 
    66  | 
  by (simp only: point.make_def)
  | 
| 
 | 
    67  | 
  | 
| 
72030
 | 
    68  | 
lemma "xpos \<lparr>xpos = m, ypos = n, \<dots> = p\<rparr> = m"
  | 
| 
72029
 | 
    69  | 
  by simp
  | 
| 
 | 
    70  | 
  | 
| 
72030
 | 
    71  | 
lemma "\<lparr>xpos = m, ypos = n, \<dots> = p\<rparr>\<lparr>xpos:= 0\<rparr> = \<lparr>xpos = 0, ypos = n, \<dots> = p\<rparr>"
  | 
| 
72029
 | 
    72  | 
  by simp
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
  | 
| 
72030
 | 
    75  | 
text \<open>\<^medskip> Equality of records.\<close>
  | 
| 
72029
 | 
    76  | 
  | 
| 
72030
 | 
    77  | 
lemma "n = n' \<Longrightarrow> p = p' \<Longrightarrow> \<lparr>xpos = n, ypos = p\<rparr> = \<lparr>xpos = n', ypos = p'\<rparr>"
  | 
| 
72029
 | 
    78  | 
  \<comment> \<open>introduction of concrete record equality\<close>
  | 
| 
 | 
    79  | 
  by simp
  | 
| 
 | 
    80  | 
  | 
| 
72030
 | 
    81  | 
lemma "\<lparr>xpos = n, ypos = p\<rparr> = \<lparr>xpos = n', ypos = p'\<rparr> \<Longrightarrow> n = n'"
  | 
| 
72029
 | 
    82  | 
  \<comment> \<open>elimination of concrete record equality\<close>
  | 
| 
 | 
    83  | 
  by simp
  | 
| 
 | 
    84  | 
  | 
| 
72030
 | 
    85  | 
lemma "r\<lparr>xpos := n\<rparr>\<lparr>ypos := m\<rparr> = r\<lparr>ypos := m\<rparr>\<lparr>xpos := n\<rparr>"
  | 
| 
72029
 | 
    86  | 
  \<comment> \<open>introduction of abstract record equality\<close>
  | 
| 
 | 
    87  | 
  by simp
  | 
| 
 | 
    88  | 
  | 
| 
72030
 | 
    89  | 
lemma "r\<lparr>xpos := n\<rparr> = r\<lparr>xpos := n'\<rparr>" if "n = n'"
  | 
| 
72029
 | 
    90  | 
  \<comment> \<open>elimination of abstract record equality (manual proof)\<close>
  | 
| 
 | 
    91  | 
proof -
  | 
| 
72030
 | 
    92  | 
  let "?lhs = ?rhs" = ?thesis
  | 
| 
 | 
    93  | 
  from that have "xpos ?lhs = xpos ?rhs" by simp
  | 
| 
72029
 | 
    94  | 
  then show ?thesis by simp
  | 
| 
 | 
    95  | 
qed
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
  | 
| 
72030
 | 
    98  | 
text \<open>\<^medskip> Surjective pairing\<close>
  | 
| 
72029
 | 
    99  | 
  | 
| 
72030
 | 
   100  | 
lemma "r = \<lparr>xpos = xpos r, ypos = ypos r\<rparr>"
  | 
| 
72029
 | 
   101  | 
  by simp
  | 
| 
 | 
   102  | 
  | 
| 
72030
 | 
   103  | 
lemma "r = \<lparr>xpos = xpos r, ypos = ypos r, \<dots> = point.more r\<rparr>"
  | 
| 
72029
 | 
   104  | 
  by simp
  | 
| 
 | 
   105  | 
  | 
| 
 | 
   106  | 
  | 
| 
72030
 | 
   107  | 
text \<open>\<^medskip> Representation of records by cases or (degenerate) induction.\<close>
  | 
| 
72029
 | 
   108  | 
  | 
| 
72030
 | 
   109  | 
lemma "r\<lparr>xpos := n\<rparr>\<lparr>ypos := m\<rparr> = r\<lparr>ypos := m\<rparr>\<lparr>xpos := n\<rparr>"
  | 
| 
72029
 | 
   110  | 
proof (cases r)
  | 
| 
 | 
   111  | 
  fix xpos ypos more
  | 
| 
 | 
   112  | 
  assume "r = \<lparr>xpos = xpos, ypos = ypos, \<dots> = more\<rparr>"
  | 
| 
 | 
   113  | 
  then show ?thesis by simp
  | 
| 
 | 
   114  | 
qed
  | 
| 
 | 
   115  | 
  | 
| 
72030
 | 
   116  | 
lemma "r\<lparr>xpos := n\<rparr>\<lparr>ypos := m\<rparr> = r\<lparr>ypos := m\<rparr>\<lparr>xpos := n\<rparr>"
  | 
| 
 | 
   117  | 
proof (induct r)
  | 
| 
 | 
   118  | 
  fix xpos ypos more
  | 
| 
 | 
   119  | 
  show "\<lparr>xpos = xpos, ypos = ypos, \<dots> = more\<rparr>\<lparr>xpos := n, ypos := m\<rparr> =
  | 
| 
 | 
   120  | 
      \<lparr>xpos = xpos, ypos = ypos, \<dots> = more\<rparr>\<lparr>ypos := m, xpos := n\<rparr>"
  | 
| 
 | 
   121  | 
    by simp
  | 
| 
 | 
   122  | 
qed
  | 
| 
 | 
   123  | 
  | 
| 
 | 
   124  | 
lemma "r\<lparr>xpos := n\<rparr>\<lparr>xpos := m\<rparr> = r\<lparr>xpos := m\<rparr>"
  | 
| 
 | 
   125  | 
proof (cases r)
  | 
| 
 | 
   126  | 
  fix xpos ypos more
  | 
| 
 | 
   127  | 
  assume "r = \<lparr>xpos = xpos, ypos = ypos, \<dots> = more\<rparr>"
  | 
| 
 | 
   128  | 
  then show ?thesis by simp
  | 
| 
 | 
   129  | 
qed
  | 
| 
 | 
   130  | 
  | 
| 
 | 
   131  | 
lemma "r\<lparr>xpos := n\<rparr>\<lparr>xpos := m\<rparr> = r\<lparr>xpos := m\<rparr>"
  | 
| 
72029
 | 
   132  | 
proof (cases r)
  | 
| 
 | 
   133  | 
  case fields
  | 
| 
 | 
   134  | 
  then show ?thesis by simp
  | 
| 
 | 
   135  | 
qed
  | 
| 
 | 
   136  | 
  | 
| 
72030
 | 
   137  | 
lemma "r\<lparr>xpos := n\<rparr>\<lparr>xpos := m\<rparr> = r\<lparr>xpos := m\<rparr>"
  | 
| 
72029
 | 
   138  | 
  by (cases r) simp
  | 
| 
 | 
   139  | 
  | 
| 
 | 
   140  | 
  | 
| 
72030
 | 
   141  | 
text \<open>\<^medskip> Concrete records are type instances of record schemes.\<close>
  | 
| 
72029
 | 
   142  | 
  | 
| 
 | 
   143  | 
definition foo5 :: nat
  | 
| 
72030
 | 
   144  | 
  where "foo5 = getX \<lparr>xpos = 1, ypos = 0\<rparr>"
  | 
| 
72029
 | 
   145  | 
  | 
| 
 | 
   146  | 
  | 
| 
72030
 | 
   147  | 
text \<open>\<^medskip> Manipulating the ``\<open>...\<close>'' (more) part.\<close>
  | 
| 
72029
 | 
   148  | 
  | 
| 
72030
 | 
   149  | 
definition incX :: "'a point_scheme \<Rightarrow> 'a point_scheme"
  | 
| 
 | 
   150  | 
  where "incX r = \<lparr>xpos = xpos r + 1, ypos = ypos r, \<dots> = point.more r\<rparr>"
  | 
| 
72029
 | 
   151  | 
  | 
| 
 | 
   152  | 
lemma "incX r = setX r (Suc (getX r))"
  | 
| 
 | 
   153  | 
  by (simp add: getX_def setX_def incX_def)
  | 
| 
 | 
   154  | 
  | 
| 
 | 
   155  | 
  | 
| 
72030
 | 
   156  | 
text \<open>\<^medskip> An alternative definition.\<close>
  | 
| 
72029
 | 
   157  | 
  | 
| 
72030
 | 
   158  | 
definition incX' :: "'a point_scheme \<Rightarrow> 'a point_scheme"
  | 
| 
 | 
   159  | 
  where "incX' r = r\<lparr>xpos := xpos r + 1\<rparr>"
  | 
| 
72029
 | 
   160  | 
  | 
| 
 | 
   161  | 
  | 
| 
 | 
   162  | 
subsection \<open>Coloured points: record extension\<close>
  | 
| 
 | 
   163  | 
  | 
| 
 | 
   164  | 
datatype colour = Red | Green | Blue
  | 
| 
 | 
   165  | 
  | 
| 
 | 
   166  | 
record cpoint = point +
  | 
| 
 | 
   167  | 
  colour :: colour
  | 
| 
 | 
   168  | 
  | 
| 
 | 
   169  | 
  | 
| 
 | 
   170  | 
text \<open>
  | 
| 
 | 
   171  | 
  The record declaration defines a new type constructor and abbreviations:
  | 
| 
 | 
   172  | 
  @{text [display]
 | 
| 
72030
 | 
   173  | 
\<open>cpoint = \<lparr>xpos :: nat, ypos :: nat, colour :: colour\<rparr> =
  | 
| 
72029
 | 
   174  | 
  () cpoint_ext_type point_ext_type
  | 
| 
72030
 | 
   175  | 
'a cpoint_scheme = \<lparr>xpos :: nat, ypos :: nat, colour :: colour, \<dots> :: 'a\<rparr> =
  | 
| 
72029
 | 
   176  | 
  'a cpoint_ext_type point_ext_type\<close>}
  | 
| 
 | 
   177  | 
\<close>
  | 
| 
 | 
   178  | 
  | 
| 
 | 
   179  | 
consts foo6 :: cpoint
  | 
| 
72030
 | 
   180  | 
consts foo7 :: "\<lparr>xpos :: nat, ypos :: nat, colour :: colour\<rparr>"
  | 
| 
72029
 | 
   181  | 
consts foo8 :: "'a cpoint_scheme"
  | 
| 
72030
 | 
   182  | 
consts foo9 :: "\<lparr>xpos :: nat, ypos :: nat, colour :: colour, \<dots> :: 'a\<rparr>"
  | 
| 
72029
 | 
   183  | 
  | 
| 
 | 
   184  | 
  | 
| 
72030
 | 
   185  | 
text \<open>Functions on \<open>point\<close> schemes work for \<open>cpoints\<close> as well.\<close>
  | 
| 
72029
 | 
   186  | 
  | 
| 
 | 
   187  | 
definition foo10 :: nat
  | 
| 
72030
 | 
   188  | 
  where "foo10 = getX \<lparr>xpos = 2, ypos = 0, colour = Blue\<rparr>"
  | 
| 
72029
 | 
   189  | 
  | 
| 
 | 
   190  | 
  | 
| 
 | 
   191  | 
subsubsection \<open>Non-coercive structural subtyping\<close>
  | 
| 
 | 
   192  | 
  | 
| 
72030
 | 
   193  | 
text \<open>Term \<^term>\<open>foo11\<close> has type \<^typ>\<open>cpoint\<close>, not type \<^typ>\<open>point\<close> --- Great!\<close>
  | 
| 
72029
 | 
   194  | 
  | 
| 
 | 
   195  | 
definition foo11 :: cpoint
  | 
| 
72030
 | 
   196  | 
  where "foo11 = setX \<lparr>xpos = 2, ypos = 0, colour = Blue\<rparr> 0"
  | 
| 
72029
 | 
   197  | 
  | 
| 
 | 
   198  | 
  | 
| 
 | 
   199  | 
subsection \<open>Other features\<close>
  | 
| 
 | 
   200  | 
  | 
| 
 | 
   201  | 
text \<open>Field names contribute to record identity.\<close>
  | 
| 
 | 
   202  | 
  | 
| 
 | 
   203  | 
record point' =
  | 
| 
 | 
   204  | 
  xpos' :: nat
  | 
| 
 | 
   205  | 
  ypos' :: nat
  | 
| 
 | 
   206  | 
  | 
| 
 | 
   207  | 
text \<open>
  | 
| 
72030
 | 
   208  | 
  \<^noindent> May not apply \<^term>\<open>getX\<close> to @{term [source] "\<lparr>xpos' = 2, ypos' = 0\<rparr>"}
 | 
| 
 | 
   209  | 
  --- type error.
  | 
| 
72029
 | 
   210  | 
\<close>
  | 
| 
 | 
   211  | 
  | 
| 
72030
 | 
   212  | 
text \<open>\<^medskip> Polymorphic records.\<close>
  | 
| 
72029
 | 
   213  | 
  | 
| 
 | 
   214  | 
record 'a point'' = point +
  | 
| 
 | 
   215  | 
  content :: 'a
  | 
| 
 | 
   216  | 
  | 
| 
 | 
   217  | 
type_synonym cpoint'' = "colour point''"
  | 
| 
 | 
   218  | 
  | 
| 
 | 
   219  | 
  | 
| 
 | 
   220  | 
text \<open>Updating a record field with an identical value is simplified.\<close>
  | 
| 
72030
 | 
   221  | 
lemma "r\<lparr>xpos := xpos r\<rparr> = r"
  | 
| 
72029
 | 
   222  | 
  by simp
  | 
| 
 | 
   223  | 
  | 
| 
 | 
   224  | 
text \<open>Only the most recent update to a component survives simplification.\<close>
  | 
| 
72030
 | 
   225  | 
lemma "r\<lparr>xpos := x, ypos := y, xpos := x'\<rparr> = r\<lparr>ypos := y, xpos := x'\<rparr>"
  | 
| 
72029
 | 
   226  | 
  by simp
  | 
| 
 | 
   227  | 
  | 
| 
72030
 | 
   228  | 
text \<open>
  | 
| 
 | 
   229  | 
  In some cases its convenient to automatically split (quantified) records.
  | 
| 
 | 
   230  | 
  For this purpose there is the simproc @{ML [source] "Record.split_simproc"}
 | 
| 
 | 
   231  | 
  and the tactic @{ML [source] "Record.split_simp_tac"}. The simplification
 | 
| 
 | 
   232  | 
  procedure only splits the records, whereas the tactic also simplifies the
  | 
| 
 | 
   233  | 
  resulting goal with the standard record simplification rules. A
  | 
| 
 | 
   234  | 
  (generalized) predicate on the record is passed as parameter that decides
  | 
| 
 | 
   235  | 
  whether or how `deep' to split the record. It can peek on the subterm
  | 
| 
 | 
   236  | 
  starting at the quantified occurrence of the record (including the
  | 
| 
 | 
   237  | 
  quantifier). The value \<^ML>\<open>0\<close> indicates no split, a value greater
  | 
| 
 | 
   238  | 
  \<^ML>\<open>0\<close> splits up to the given bound of record extension and finally the
  | 
| 
 | 
   239  | 
  value \<^ML>\<open>~1\<close> completely splits the record. @{ML [source]
 | 
| 
 | 
   240  | 
  "Record.split_simp_tac"} additionally takes a list of equations for
  | 
| 
 | 
   241  | 
  simplification and can also split fixed record variables.
  | 
| 
72029
 | 
   242  | 
\<close>
  | 
| 
 | 
   243  | 
  | 
| 
 | 
   244  | 
lemma "(\<forall>r. P (xpos r)) \<longrightarrow> (\<forall>x. P x)"
  | 
| 
 | 
   245  | 
  apply (tactic \<open>simp_tac (put_simpset HOL_basic_ss \<^context>
  | 
| 
 | 
   246  | 
    addsimprocs [Record.split_simproc (K ~1)]) 1\<close>)
  | 
| 
 | 
   247  | 
  apply simp
  | 
| 
 | 
   248  | 
  done
  | 
| 
 | 
   249  | 
  | 
| 
 | 
   250  | 
lemma "(\<forall>r. P (xpos r)) \<longrightarrow> (\<forall>x. P x)"
  | 
| 
 | 
   251  | 
  apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
  | 
| 
 | 
   252  | 
  apply simp
  | 
| 
 | 
   253  | 
  done
  | 
| 
 | 
   254  | 
  | 
| 
 | 
   255  | 
lemma "(\<exists>r. P (xpos r)) \<longrightarrow> (\<exists>x. P x)"
  | 
| 
 | 
   256  | 
  apply (tactic \<open>simp_tac (put_simpset HOL_basic_ss \<^context>
  | 
| 
 | 
   257  | 
    addsimprocs [Record.split_simproc (K ~1)]) 1\<close>)
  | 
| 
 | 
   258  | 
  apply simp
  | 
| 
 | 
   259  | 
  done
  | 
| 
 | 
   260  | 
  | 
| 
 | 
   261  | 
lemma "(\<exists>r. P (xpos r)) \<longrightarrow> (\<exists>x. P x)"
  | 
| 
 | 
   262  | 
  apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
  | 
| 
 | 
   263  | 
  apply simp
  | 
| 
 | 
   264  | 
  done
  | 
| 
 | 
   265  | 
  | 
| 
 | 
   266  | 
lemma "\<And>r. P (xpos r) \<Longrightarrow> (\<exists>x. P x)"
  | 
| 
 | 
   267  | 
  apply (tactic \<open>simp_tac (put_simpset HOL_basic_ss \<^context>
  | 
| 
 | 
   268  | 
    addsimprocs [Record.split_simproc (K ~1)]) 1\<close>)
  | 
| 
 | 
   269  | 
  apply auto
  | 
| 
 | 
   270  | 
  done
  | 
| 
 | 
   271  | 
  | 
| 
 | 
   272  | 
lemma "\<And>r. P (xpos r) \<Longrightarrow> (\<exists>x. P x)"
  | 
| 
 | 
   273  | 
  apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
  | 
| 
 | 
   274  | 
  apply auto
  | 
| 
 | 
   275  | 
  done
  | 
| 
 | 
   276  | 
  | 
| 
 | 
   277  | 
lemma "P (xpos r) \<Longrightarrow> (\<exists>x. P x)"
  | 
| 
 | 
   278  | 
  apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
  | 
| 
 | 
   279  | 
  apply auto
  | 
| 
 | 
   280  | 
  done
  | 
| 
 | 
   281  | 
  | 
| 
72030
 | 
   282  | 
notepad
  | 
| 
 | 
   283  | 
begin
  | 
| 
 | 
   284  | 
  have "\<exists>x. P x"
  | 
| 
 | 
   285  | 
    if "P (xpos r)" for P r
  | 
| 
 | 
   286  | 
    apply (insert that)
  | 
| 
 | 
   287  | 
    apply (tactic \<open>Record.split_simp_tac \<^context> [] (K ~1) 1\<close>)
  | 
| 
 | 
   288  | 
    apply auto
  | 
| 
 | 
   289  | 
    done
  | 
| 
 | 
   290  | 
end
  | 
| 
72029
 | 
   291  | 
  | 
| 
72030
 | 
   292  | 
text \<open>
  | 
| 
 | 
   293  | 
  The effect of simproc @{ML [source] Record.ex_sel_eq_simproc} is illustrated
 | 
| 
 | 
   294  | 
  by the following lemma.\<close>
  | 
| 
72029
 | 
   295  | 
  | 
| 
 | 
   296  | 
lemma "\<exists>r. xpos r = x"
  | 
| 
72030
 | 
   297  | 
  by (tactic \<open>simp_tac (put_simpset HOL_basic_ss \<^context>
  | 
| 
72029
 | 
   298  | 
    addsimprocs [Record.ex_sel_eq_simproc]) 1\<close>)
  | 
| 
 | 
   299  | 
  | 
| 
 | 
   300  | 
  | 
| 
 | 
   301  | 
subsection \<open>A more complex record expression\<close>
  | 
| 
 | 
   302  | 
  | 
| 
 | 
   303  | 
record ('a, 'b, 'c) bar = bar1 :: 'a
 | 
| 
 | 
   304  | 
  bar2 :: 'b
  | 
| 
 | 
   305  | 
  bar3 :: 'c
  | 
| 
 | 
   306  | 
  bar21 :: "'b \<times> 'a"
  | 
| 
 | 
   307  | 
  bar32 :: "'c \<times> 'b"
  | 
| 
 | 
   308  | 
  bar31 :: "'c \<times> 'a"
  | 
| 
 | 
   309  | 
  | 
| 
 | 
   310  | 
print_record "('a,'b,'c) bar"
 | 
| 
 | 
   311  | 
  | 
| 
72030
 | 
   312  | 
  | 
| 
72029
 | 
   313  | 
subsection \<open>Some code generation\<close>
  | 
| 
 | 
   314  | 
  | 
| 
 | 
   315  | 
export_code foo1 foo3 foo5 foo10 checking SML
  | 
| 
 | 
   316  | 
  | 
| 
 | 
   317  | 
text \<open>
  | 
| 
72030
 | 
   318  | 
  Code generation can also be switched off, for instance for very large
  | 
| 
 | 
   319  | 
  records:\<close>
  | 
| 
72029
 | 
   320  | 
  | 
| 
 | 
   321  | 
declare [[record_codegen = false]]
  | 
| 
 | 
   322  | 
  | 
| 
 | 
   323  | 
record not_so_large_record =
  | 
| 
 | 
   324  | 
  bar520 :: nat
  | 
| 
72030
 | 
   325  | 
  bar521 :: "nat \<times> nat"
  | 
| 
72029
 | 
   326  | 
  | 
| 
 | 
   327  | 
declare [[record_codegen = true]]
  | 
| 
 | 
   328  | 
  | 
| 
 | 
   329  | 
end
  |