src/ZF/IntArith.thy
author paulson
Thu, 15 Mar 2012 16:35:02 +0000
changeset 46953 2b6e55924af3
parent 46821 ff6b0c1087f2
child 48891 c0eafbd55de3
permissions -rw-r--r--
replacing ":" by "\<in>"
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
23146
0bc590051d95 moved Integ files to canonical place;
wenzelm
parents:
diff changeset
     1
0bc590051d95 moved Integ files to canonical place;
wenzelm
parents:
diff changeset
     2
theory IntArith imports Bin
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
     3
uses ("int_arith.ML")
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
     4
begin
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
     5
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
     6
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
     7
(** To simplify inequalities involving integer negation and literals,
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
     8
    such as -x = #3
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
     9
**)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    10
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    11
lemmas [simp] =
45602
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    12
  zminus_equation [where y = "integ_of(w)"]
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    13
  equation_zminus [where x = "integ_of(w)"]
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    14
  for w
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    15
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    16
lemmas [iff] =
45602
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    17
  zminus_zless [where y = "integ_of(w)"]
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    18
  zless_zminus [where x = "integ_of(w)"]
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    19
  for w
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    20
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    21
lemmas [iff] =
45602
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    22
  zminus_zle [where y = "integ_of(w)"]
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    23
  zle_zminus [where x = "integ_of(w)"]
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    24
  for w
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    25
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    26
lemmas [simp] =
45602
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    27
  Let_def [where s = "integ_of(w)"] for w
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    28
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    29
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    30
(*** Simprocs for numeric literals ***)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    31
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    32
(** Combining of literal coefficients in sums of products **)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    33
46821
ff6b0c1087f2 Using mathematical notation for <-> and cardinal arithmetic
paulson
parents: 45602
diff changeset
    34
lemma zless_iff_zdiff_zless_0: "(x $< y) \<longleftrightarrow> (x$-y $< #0)"
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    35
  by (simp add: zcompare_rls)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    36
46953
2b6e55924af3 replacing ":" by "\<in>"
paulson
parents: 46821
diff changeset
    37
lemma eq_iff_zdiff_eq_0: "[| x \<in> int; y \<in> int |] ==> (x = y) \<longleftrightarrow> (x$-y = #0)"
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    38
  by (simp add: zcompare_rls)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    39
46821
ff6b0c1087f2 Using mathematical notation for <-> and cardinal arithmetic
paulson
parents: 45602
diff changeset
    40
lemma zle_iff_zdiff_zle_0: "(x $<= y) \<longleftrightarrow> (x$-y $<= #0)"
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    41
  by (simp add: zcompare_rls)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    42
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    43
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    44
(** For combine_numerals **)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    45
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    46
lemma left_zadd_zmult_distrib: "i$*u $+ (j$*u $+ k) = (i$+j)$*u $+ k"
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    47
  by (simp add: zadd_zmult_distrib zadd_ac)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    48
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    49
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    50
(** For cancel_numerals **)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    51
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    52
lemmas rel_iff_rel_0_rls =
45602
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    53
  zless_iff_zdiff_zless_0 [where y = "u $+ v"]
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    54
  eq_iff_zdiff_eq_0 [where y = "u $+ v"]
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    55
  zle_iff_zdiff_zle_0 [where y = "u $+ v"]
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    56
  zless_iff_zdiff_zless_0 [where y = n]
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    57
  eq_iff_zdiff_eq_0 [where y = n]
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    58
  zle_iff_zdiff_zle_0 [where y = n]
45602
2a858377c3d2 eliminated obsolete "standard";
wenzelm
parents: 27237
diff changeset
    59
  for u v (* FIXME n (!?) *)
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    60
46821
ff6b0c1087f2 Using mathematical notation for <-> and cardinal arithmetic
paulson
parents: 45602
diff changeset
    61
lemma eq_add_iff1: "(i$*u $+ m = j$*u $+ n) \<longleftrightarrow> ((i$-j)$*u $+ m = intify(n))"
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    62
  apply (simp add: zdiff_def zadd_zmult_distrib)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    63
  apply (simp add: zcompare_rls)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    64
  apply (simp add: zadd_ac)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    65
  done
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    66
46821
ff6b0c1087f2 Using mathematical notation for <-> and cardinal arithmetic
paulson
parents: 45602
diff changeset
    67
lemma eq_add_iff2: "(i$*u $+ m = j$*u $+ n) \<longleftrightarrow> (intify(m) = (j$-i)$*u $+ n)"
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    68
  apply (simp add: zdiff_def zadd_zmult_distrib)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    69
  apply (simp add: zcompare_rls)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    70
  apply (simp add: zadd_ac)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    71
  done
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    72
46821
ff6b0c1087f2 Using mathematical notation for <-> and cardinal arithmetic
paulson
parents: 45602
diff changeset
    73
lemma less_add_iff1: "(i$*u $+ m $< j$*u $+ n) \<longleftrightarrow> ((i$-j)$*u $+ m $< n)"
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    74
  apply (simp add: zdiff_def zadd_zmult_distrib zadd_ac rel_iff_rel_0_rls)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    75
  done
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    76
46821
ff6b0c1087f2 Using mathematical notation for <-> and cardinal arithmetic
paulson
parents: 45602
diff changeset
    77
lemma less_add_iff2: "(i$*u $+ m $< j$*u $+ n) \<longleftrightarrow> (m $< (j$-i)$*u $+ n)"
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    78
  apply (simp add: zdiff_def zadd_zmult_distrib zadd_ac rel_iff_rel_0_rls)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    79
  done
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    80
46821
ff6b0c1087f2 Using mathematical notation for <-> and cardinal arithmetic
paulson
parents: 45602
diff changeset
    81
lemma le_add_iff1: "(i$*u $+ m $<= j$*u $+ n) \<longleftrightarrow> ((i$-j)$*u $+ m $<= n)"
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    82
  apply (simp add: zdiff_def zadd_zmult_distrib)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    83
  apply (simp add: zcompare_rls)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    84
  apply (simp add: zadd_ac)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    85
  done
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    86
46821
ff6b0c1087f2 Using mathematical notation for <-> and cardinal arithmetic
paulson
parents: 45602
diff changeset
    87
lemma le_add_iff2: "(i$*u $+ m $<= j$*u $+ n) \<longleftrightarrow> (m $<= (j$-i)$*u $+ n)"
27237
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    88
  apply (simp add: zdiff_def zadd_zmult_distrib)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    89
  apply (simp add: zcompare_rls)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    90
  apply (simp add: zadd_ac)
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    91
  done
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    92
c94eefffc3a5 converted ML proofs;
wenzelm
parents: 23146
diff changeset
    93
use "int_arith.ML"
23146
0bc590051d95 moved Integ files to canonical place;
wenzelm
parents:
diff changeset
    94
0bc590051d95 moved Integ files to canonical place;
wenzelm
parents:
diff changeset
    95
end