| 
1478
 | 
     1  | 
(*  Title:      ZF/ex/Comb.thy
  | 
| 
515
 | 
     2  | 
    ID:         $Id$
  | 
| 
1478
 | 
     3  | 
    Author:     Lawrence C Paulson
  | 
| 
515
 | 
     4  | 
    Copyright   1994  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Combinatory Logic example: the Church-Rosser Theorem
  | 
| 
 | 
     7  | 
Curiously, combinators do not include free variables.
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
Example taken from
  | 
| 
 | 
    10  | 
    J. Camilleri and T. F. Melham.
  | 
| 
 | 
    11  | 
    Reasoning with Inductively Defined Relations in the HOL Theorem Prover.
  | 
| 
 | 
    12  | 
    Report 265, University of Cambridge Computer Laboratory, 1992.
  | 
| 
 | 
    13  | 
*)
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
  | 
| 
810
 | 
    16  | 
Comb = Datatype +
  | 
| 
515
 | 
    17  | 
  | 
| 
 | 
    18  | 
(** Datatype definition of combinators S and K, with infixed application **)
  | 
| 
1401
 | 
    19  | 
consts comb :: i
  | 
| 
515
 | 
    20  | 
datatype (* <= "univ(0)" *)
  | 
| 
 | 
    21  | 
  "comb" = K
  | 
| 
 | 
    22  | 
         | S
  | 
| 
 | 
    23  | 
         | "#" ("p: comb", "q: comb")   (infixl 90)
 | 
| 
 | 
    24  | 
  | 
| 
 | 
    25  | 
(** Inductive definition of contractions, -1->
  | 
| 
 | 
    26  | 
             and (multi-step) reductions, --->
  | 
| 
 | 
    27  | 
**)
  | 
| 
 | 
    28  | 
consts
  | 
| 
1401
 | 
    29  | 
  contract  :: i
  | 
| 
1478
 | 
    30  | 
  "-1->"    :: [i,i] => o                       (infixl 50)
  | 
| 
 | 
    31  | 
  "--->"    :: [i,i] => o                       (infixl 50)
  | 
| 
515
 | 
    32  | 
  | 
| 
 | 
    33  | 
translations
  | 
| 
 | 
    34  | 
  "p -1-> q" == "<p,q> : contract"
  | 
| 
 | 
    35  | 
  "p ---> q" == "<p,q> : contract^*"
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
inductive
  | 
| 
 | 
    38  | 
  domains   "contract" <= "comb*comb"
  | 
| 
 | 
    39  | 
  intrs
  | 
| 
 | 
    40  | 
    K     "[| p:comb;  q:comb |] ==> K#p#q -1-> p"
  | 
| 
 | 
    41  | 
    S     "[| p:comb;  q:comb;  r:comb |] ==> S#p#q#r -1-> (p#r)#(q#r)"
  | 
| 
 | 
    42  | 
    Ap1   "[| p-1->q;  r:comb |] ==> p#r -1-> q#r"
  | 
| 
 | 
    43  | 
    Ap2   "[| p-1->q;  r:comb |] ==> r#p -1-> r#q"
  | 
| 
 | 
    44  | 
  type_intrs "comb.intrs"
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
  | 
| 
 | 
    47  | 
(** Inductive definition of parallel contractions, =1=>
  | 
| 
 | 
    48  | 
             and (multi-step) parallel reductions, ===>
  | 
| 
 | 
    49  | 
**)
  | 
| 
 | 
    50  | 
consts
  | 
| 
1401
 | 
    51  | 
  parcontract :: i
  | 
| 
1478
 | 
    52  | 
  "=1=>"    :: [i,i] => o                       (infixl 50)
  | 
| 
 | 
    53  | 
  "===>"    :: [i,i] => o                       (infixl 50)
  | 
| 
515
 | 
    54  | 
  | 
| 
 | 
    55  | 
translations
  | 
| 
 | 
    56  | 
  "p =1=> q" == "<p,q> : parcontract"
  | 
| 
 | 
    57  | 
  "p ===> q" == "<p,q> : parcontract^+"
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
inductive
  | 
| 
 | 
    60  | 
  domains   "parcontract" <= "comb*comb"
  | 
| 
 | 
    61  | 
  intrs
  | 
| 
 | 
    62  | 
    refl  "[| p:comb |] ==> p =1=> p"
  | 
| 
 | 
    63  | 
    K     "[| p:comb;  q:comb |] ==> K#p#q =1=> p"
  | 
| 
 | 
    64  | 
    S     "[| p:comb;  q:comb;  r:comb |] ==> S#p#q#r =1=> (p#r)#(q#r)"
  | 
| 
 | 
    65  | 
    Ap    "[| p=1=>q;  r=1=>s |] ==> p#r =1=> q#s"
  | 
| 
 | 
    66  | 
  type_intrs "comb.intrs"
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
  | 
| 
 | 
    69  | 
(*Misc definitions*)
  | 
| 
 | 
    70  | 
consts
  | 
| 
1401
 | 
    71  | 
  diamond   :: i => o
  | 
| 
 | 
    72  | 
  I         :: i
  | 
| 
515
 | 
    73  | 
  | 
| 
753
 | 
    74  | 
defs
  | 
| 
515
 | 
    75  | 
  | 
| 
1155
 | 
    76  | 
  diamond_def "diamond(r) == ALL x y. <x,y>:r --> 
  | 
| 
 | 
    77  | 
                            (ALL y'. <x,y'>:r --> 
  | 
| 
 | 
    78  | 
                                 (EX z. <y,z>:r & <y',z> : r))"
  | 
| 
515
 | 
    79  | 
  | 
| 
 | 
    80  | 
  I_def       "I == S#K#K"
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
end
  |