| 
0
 | 
     1  | 
(*  Title: 	ZF/ex/ramsey.thy
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Ramsey's Theorem (finite exponent 2 version)
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
Based upon the article
  | 
| 
 | 
     9  | 
    D Basin and M Kaufmann,
  | 
| 
 | 
    10  | 
    The Boyer-Moore Prover and Nuprl: An Experimental Comparison.
  | 
| 
 | 
    11  | 
    In G Huet and G Plotkin, editors, Logical Frameworks.
  | 
| 
 | 
    12  | 
    (CUP, 1991), pages 89--119
  | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
See also
  | 
| 
 | 
    15  | 
    M Kaufmann,
  | 
| 
 | 
    16  | 
    An example in NQTHM: Ramsey's Theorem
  | 
| 
 | 
    17  | 
    Internal Note, Computational Logic, Inc., Austin, Texas 78703
  | 
| 
 | 
    18  | 
    Available from the author: kaufmann@cli.com
  | 
| 
 | 
    19  | 
*)
  | 
| 
 | 
    20  | 
  | 
| 
 | 
    21  | 
Ramsey = Arith +
  | 
| 
 | 
    22  | 
consts
  | 
| 
 | 
    23  | 
  Symmetric   		:: "i=>o"
  | 
| 
 | 
    24  | 
  Atleast     		:: "[i,i]=>o"
  | 
| 
 | 
    25  | 
  Clique,Indept,Ramsey	:: "[i,i,i]=>o"
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
rules
  | 
| 
 | 
    28  | 
  | 
| 
 | 
    29  | 
  Symmetric_def
  | 
| 
 | 
    30  | 
    "Symmetric(E) == (ALL x y. <x,y>:E --> <y,x>:E)"
  | 
| 
 | 
    31  | 
  | 
| 
 | 
    32  | 
  Clique_def
  | 
| 
38
 | 
    33  | 
    "Clique(C,V,E) == (C<=V) & (ALL x:C. ALL y:C. x~=y --> <x,y> : E)"
  | 
| 
0
 | 
    34  | 
  | 
| 
 | 
    35  | 
  Indept_def
  | 
| 
38
 | 
    36  | 
    "Indept(I,V,E) == (I<=V) & (ALL x:I. ALL y:I. x~=y --> <x,y> ~: E)"
  | 
| 
0
 | 
    37  | 
  | 
| 
 | 
    38  | 
  Atleast_def
  | 
| 
 | 
    39  | 
    "Atleast(n,S) == (EX f. f: inj(n,S))"
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
  Ramsey_def
  | 
| 
 | 
    42  | 
    "Ramsey(n,i,j) == ALL V E. Symmetric(E) & Atleast(n,V) -->  \
  | 
| 
 | 
    43  | 
\         (EX C. Clique(C,V,E) & Atleast(i,C)) |       \
  | 
| 
 | 
    44  | 
\         (EX I. Indept(I,V,E) & Atleast(j,I))"
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
end
  |