author | nipkow |
Sun, 04 Nov 2018 12:07:24 +0100 | |
changeset 69232 | 2b913054a9cf |
parent 65449 | c82e63b11b8b |
child 76213 | e44d86131648 |
permissions | -rw-r--r-- |
12229 | 1 |
(* Title: ZF/Induct/Brouwer.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
Copyright 1994 University of Cambridge |
|
4 |
*) |
|
5 |
||
60770 | 6 |
section \<open>Infinite branching datatype definitions\<close> |
12229 | 7 |
|
65449
c82e63b11b8b
clarified main ZF.thy / ZFC.thy, and avoid name clash with global HOL/Main.thy;
wenzelm
parents:
61980
diff
changeset
|
8 |
theory Brouwer imports ZFC begin |
12229 | 9 |
|
60770 | 10 |
subsection \<open>The Brouwer ordinals\<close> |
12229 | 11 |
|
12 |
consts |
|
13 |
brouwer :: i |
|
14 |
||
12610 | 15 |
datatype \<subseteq> "Vfrom(0, csucc(nat))" |
16 |
"brouwer" = Zero | Suc ("b \<in> brouwer") | Lim ("h \<in> nat -> brouwer") |
|
12229 | 17 |
monos Pi_mono |
13137 | 18 |
type_intros inf_datatype_intros |
12229 | 19 |
|
20 |
lemma brouwer_unfold: "brouwer = {0} + brouwer + (nat -> brouwer)" |
|
21 |
by (fast intro!: brouwer.intros [unfolded brouwer.con_defs] |
|
22 |
elim: brouwer.cases [unfolded brouwer.con_defs]) |
|
23 |
||
18372 | 24 |
lemma brouwer_induct2 [consumes 1, case_names Zero Suc Lim]: |
25 |
assumes b: "b \<in> brouwer" |
|
26 |
and cases: |
|
27 |
"P(Zero)" |
|
28 |
"!!b. [| b \<in> brouwer; P(b) |] ==> P(Suc(b))" |
|
29 |
"!!h. [| h \<in> nat -> brouwer; \<forall>i \<in> nat. P(h`i) |] ==> P(Lim(h))" |
|
30 |
shows "P(b)" |
|
61798 | 31 |
\<comment> \<open>A nicer induction rule than the standard one.\<close> |
18372 | 32 |
using b |
33 |
apply induct |
|
23464 | 34 |
apply (rule cases(1)) |
35 |
apply (erule (1) cases(2)) |
|
36 |
apply (rule cases(3)) |
|
37 |
apply (fast elim: fun_weaken_type) |
|
38 |
apply (fast dest: apply_type) |
|
39 |
done |
|
12229 | 40 |
|
41 |
||
60770 | 42 |
subsection \<open>The Martin-Löf wellordering type\<close> |
12229 | 43 |
|
44 |
consts |
|
45 |
Well :: "[i, i => i] => i" |
|
46 |
||
12610 | 47 |
datatype \<subseteq> "Vfrom(A \<union> (\<Union>x \<in> A. B(x)), csucc(nat \<union> |\<Union>x \<in> A. B(x)|))" |
61798 | 48 |
\<comment> \<open>The union with \<open>nat\<close> ensures that the cardinal is infinite.\<close> |
12610 | 49 |
"Well(A, B)" = Sup ("a \<in> A", "f \<in> B(a) -> Well(A, B)") |
12229 | 50 |
monos Pi_mono |
13137 | 51 |
type_intros le_trans [OF UN_upper_cardinal le_nat_Un_cardinal] inf_datatype_intros |
12229 | 52 |
|
61980 | 53 |
lemma Well_unfold: "Well(A, B) = (\<Sum>x \<in> A. B(x) -> Well(A, B))" |
12229 | 54 |
by (fast intro!: Well.intros [unfolded Well.con_defs] |
55 |
elim: Well.cases [unfolded Well.con_defs]) |
|
56 |
||
57 |
||
18372 | 58 |
lemma Well_induct2 [consumes 1, case_names step]: |
59 |
assumes w: "w \<in> Well(A, B)" |
|
60 |
and step: "!!a f. [| a \<in> A; f \<in> B(a) -> Well(A,B); \<forall>y \<in> B(a). P(f`y) |] ==> P(Sup(a,f))" |
|
61 |
shows "P(w)" |
|
61798 | 62 |
\<comment> \<open>A nicer induction rule than the standard one.\<close> |
18372 | 63 |
using w |
64 |
apply induct |
|
65 |
apply (assumption | rule step)+ |
|
66 |
apply (fast elim: fun_weaken_type) |
|
67 |
apply (fast dest: apply_type) |
|
68 |
done |
|
12229 | 69 |
|
12610 | 70 |
lemma Well_bool_unfold: "Well(bool, \<lambda>x. x) = 1 + (1 -> Well(bool, \<lambda>x. x))" |
61798 | 71 |
\<comment> \<open>In fact it's isomorphic to \<open>nat\<close>, but we need a recursion operator\<close> |
72 |
\<comment> \<open>for \<open>Well\<close> to prove this.\<close> |
|
12229 | 73 |
apply (rule Well_unfold [THEN trans]) |
46900 | 74 |
apply (simp add: Sigma_bool succ_def) |
12229 | 75 |
done |
76 |
||
77 |
end |