| author | haftmann | 
| Fri, 30 Oct 2009 18:32:40 +0100 | |
| changeset 33364 | 2bd12592c5e8 | 
| parent 32960 | 69916a850301 | 
| child 35416 | d8d7d1b785af | 
| permissions | -rw-r--r-- | 
| 13020 | 1 | |
| 2 | header {* \section{The Multi-Mutator Case} *}
 | |
| 3 | ||
| 16417 | 4 | theory Mul_Gar_Coll imports Graph OG_Syntax begin | 
| 13020 | 5 | |
| 6 | text {*  The full theory takes aprox. 18 minutes.  *}
 | |
| 7 | ||
| 8 | record mut = | |
| 9 | Z :: bool | |
| 10 | R :: nat | |
| 11 | T :: nat | |
| 12 | ||
| 13 | text {* Declaration of variables: *}
 | |
| 14 | ||
| 15 | record mul_gar_coll_state = | |
| 16 | M :: nodes | |
| 17 | E :: edges | |
| 18 | bc :: "nat set" | |
| 19 | obc :: "nat set" | |
| 20 | Ma :: nodes | |
| 21 | ind :: nat | |
| 22 | k :: nat | |
| 23 | q :: nat | |
| 24 | l :: nat | |
| 25 | Muts :: "mut list" | |
| 26 | ||
| 27 | subsection {* The Mutators *}
 | |
| 28 | ||
| 29 | constdefs | |
| 30 | Mul_mut_init :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" | |
| 31 | "Mul_mut_init \<equiv> \<guillemotleft> \<lambda>n. n=length \<acute>Muts \<and> (\<forall>i<n. R (\<acute>Muts!i)<length \<acute>E | |
| 32 | \<and> T (\<acute>Muts!i)<length \<acute>M) \<guillemotright>" | |
| 33 | ||
| 34 | Mul_Redirect_Edge :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" | |
| 35 | "Mul_Redirect_Edge j n \<equiv> | |
| 36 |   .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.
 | |
| 37 | \<langle>IF T(\<acute>Muts!j) \<in> Reach \<acute>E THEN | |
| 38 | \<acute>E:= \<acute>E[R (\<acute>Muts!j):= (fst (\<acute>E!R(\<acute>Muts!j)), T (\<acute>Muts!j))] FI,, | |
| 39 | \<acute>Muts:= \<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=False\<rparr>]\<rangle>" | |
| 40 | ||
| 41 | Mul_Color_Target :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" | |
| 42 | "Mul_Color_Target j n \<equiv> | |
| 43 |   .{\<acute>Mul_mut_init n \<and> \<not> Z (\<acute>Muts!j)}. 
 | |
| 44 | \<langle>\<acute>M:=\<acute>M[T (\<acute>Muts!j):=Black],, \<acute>Muts:=\<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=True\<rparr>]\<rangle>" | |
| 45 | ||
| 46 | Mul_Mutator :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" | |
| 47 | "Mul_Mutator j n \<equiv> | |
| 48 |   .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.  
 | |
| 49 | WHILE True | |
| 50 |     INV .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.  
 | |
| 51 | DO Mul_Redirect_Edge j n ;; | |
| 52 | Mul_Color_Target j n | |
| 53 | OD" | |
| 54 | ||
| 55 | lemmas mul_mutator_defs = Mul_mut_init_def Mul_Redirect_Edge_def Mul_Color_Target_def | |
| 56 | ||
| 57 | subsubsection {* Correctness of the proof outline of one mutator *}
 | |
| 58 | ||
| 59 | lemma Mul_Redirect_Edge: "0\<le>j \<and> j<n \<Longrightarrow> | |
| 60 | \<turnstile> Mul_Redirect_Edge j n | |
| 61 | pre(Mul_Color_Target j n)" | |
| 62 | apply (unfold mul_mutator_defs) | |
| 63 | apply annhoare | |
| 64 | apply(simp_all) | |
| 65 | apply clarify | |
| 66 | apply(simp add:nth_list_update) | |
| 67 | done | |
| 68 | ||
| 69 | lemma Mul_Color_Target: "0\<le>j \<and> j<n \<Longrightarrow> | |
| 70 | \<turnstile> Mul_Color_Target j n | |
| 71 |     .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}."
 | |
| 72 | apply (unfold mul_mutator_defs) | |
| 73 | apply annhoare | |
| 74 | apply(simp_all) | |
| 75 | apply clarify | |
| 76 | apply(simp add:nth_list_update) | |
| 77 | done | |
| 78 | ||
| 79 | lemma Mul_Mutator: "0\<le>j \<and> j<n \<Longrightarrow> | |
| 80 |  \<turnstile> Mul_Mutator j n .{False}."
 | |
| 81 | apply(unfold Mul_Mutator_def) | |
| 82 | apply annhoare | |
| 83 | apply(simp_all add:Mul_Redirect_Edge Mul_Color_Target) | |
| 84 | apply(simp add:mul_mutator_defs Mul_Redirect_Edge_def) | |
| 85 | done | |
| 86 | ||
| 87 | subsubsection {* Interference freedom between mutators *}
 | |
| 88 | ||
| 89 | lemma Mul_interfree_Redirect_Edge_Redirect_Edge: | |
| 90 | "\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> | |
| 91 |   interfree_aux (Some (Mul_Redirect_Edge i n),{}, Some(Mul_Redirect_Edge j n))"
 | |
| 92 | apply (unfold mul_mutator_defs) | |
| 93 | apply interfree_aux | |
| 94 | apply safe | |
| 95 | apply(simp_all add: nth_list_update) | |
| 96 | done | |
| 97 | ||
| 98 | lemma Mul_interfree_Redirect_Edge_Color_Target: | |
| 99 | "\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> | |
| 100 |   interfree_aux (Some(Mul_Redirect_Edge i n),{},Some(Mul_Color_Target j n))"
 | |
| 101 | apply (unfold mul_mutator_defs) | |
| 102 | apply interfree_aux | |
| 103 | apply safe | |
| 104 | apply(simp_all add: nth_list_update) | |
| 105 | done | |
| 106 | ||
| 107 | lemma Mul_interfree_Color_Target_Redirect_Edge: | |
| 108 | "\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> | |
| 109 |   interfree_aux (Some(Mul_Color_Target i n),{},Some(Mul_Redirect_Edge j n))"
 | |
| 110 | apply (unfold mul_mutator_defs) | |
| 111 | apply interfree_aux | |
| 112 | apply safe | |
| 113 | apply(simp_all add:nth_list_update) | |
| 114 | done | |
| 115 | ||
| 116 | lemma Mul_interfree_Color_Target_Color_Target: | |
| 117 | " \<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> | |
| 118 |   interfree_aux (Some(Mul_Color_Target i n),{},Some(Mul_Color_Target j n))"
 | |
| 119 | apply (unfold mul_mutator_defs) | |
| 120 | apply interfree_aux | |
| 121 | apply safe | |
| 122 | apply(simp_all add: nth_list_update) | |
| 123 | done | |
| 124 | ||
| 125 | lemmas mul_mutator_interfree = | |
| 126 | Mul_interfree_Redirect_Edge_Redirect_Edge Mul_interfree_Redirect_Edge_Color_Target | |
| 127 | Mul_interfree_Color_Target_Redirect_Edge Mul_interfree_Color_Target_Color_Target | |
| 128 | ||
| 129 | lemma Mul_interfree_Mutator_Mutator: "\<lbrakk>i < n; j < n; i \<noteq> j\<rbrakk> \<Longrightarrow> | |
| 130 |   interfree_aux (Some (Mul_Mutator i n), {}, Some (Mul_Mutator j n))"
 | |
| 131 | apply(unfold Mul_Mutator_def) | |
| 132 | apply(interfree_aux) | |
| 133 | apply(simp_all add:mul_mutator_interfree) | |
| 134 | apply(simp_all add: mul_mutator_defs) | |
| 135 | apply(tactic {* TRYALL (interfree_aux_tac) *})
 | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23880diff
changeset | 136 | apply(tactic {* ALLGOALS (clarify_tac @{claset}) *})
 | 
| 13020 | 137 | apply (simp_all add:nth_list_update) | 
| 138 | done | |
| 139 | ||
| 140 | subsubsection {* Modular Parameterized Mutators *}
 | |
| 141 | ||
| 142 | lemma Mul_Parameterized_Mutators: "0<n \<Longrightarrow> | |
| 143 |  \<parallel>- .{\<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))}.
 | |
| 144 | COBEGIN | |
| 145 | SCHEME [0\<le> j< n] | |
| 146 | Mul_Mutator j n | |
| 147 |  .{False}.
 | |
| 148 | COEND | |
| 149 |  .{False}."
 | |
| 150 | apply oghoare | |
| 151 | apply(force simp add:Mul_Mutator_def mul_mutator_defs nth_list_update) | |
| 152 | apply(erule Mul_Mutator) | |
| 13187 | 153 | apply(simp add:Mul_interfree_Mutator_Mutator) | 
| 13020 | 154 | apply(force simp add:Mul_Mutator_def mul_mutator_defs nth_list_update) | 
| 155 | done | |
| 156 | ||
| 157 | subsection {* The Collector *}
 | |
| 158 | ||
| 159 | constdefs | |
| 160 | Queue :: "mul_gar_coll_state \<Rightarrow> nat" | |
| 161 | "Queue \<equiv> \<guillemotleft> length (filter (\<lambda>i. \<not> Z i \<and> \<acute>M!(T i) \<noteq> Black) \<acute>Muts) \<guillemotright>" | |
| 162 | ||
| 163 | consts M_init :: nodes | |
| 164 | ||
| 165 | constdefs | |
| 166 | Proper_M_init :: "mul_gar_coll_state \<Rightarrow> bool" | |
| 167 | "Proper_M_init \<equiv> \<guillemotleft> Blacks M_init=Roots \<and> length M_init=length \<acute>M \<guillemotright>" | |
| 168 | ||
| 169 | Mul_Proper :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" | |
| 170 | "Mul_Proper \<equiv> \<guillemotleft> \<lambda>n. Proper_Roots \<acute>M \<and> Proper_Edges (\<acute>M, \<acute>E) \<and> \<acute>Proper_M_init \<and> n=length \<acute>Muts \<guillemotright>" | |
| 171 | ||
| 172 | Safe :: "mul_gar_coll_state \<Rightarrow> bool" | |
| 173 | "Safe \<equiv> \<guillemotleft> Reach \<acute>E \<subseteq> Blacks \<acute>M \<guillemotright>" | |
| 174 | ||
| 175 | lemmas mul_collector_defs = Proper_M_init_def Mul_Proper_def Safe_def | |
| 176 | ||
| 177 | subsubsection {* Blackening Roots *}
 | |
| 178 | ||
| 179 | constdefs | |
| 180 | Mul_Blacken_Roots :: "nat \<Rightarrow> mul_gar_coll_state ann_com" | |
| 181 | "Mul_Blacken_Roots n \<equiv> | |
| 182 |   .{\<acute>Mul_Proper n}.
 | |
| 183 | \<acute>ind:=0;; | |
| 184 |   .{\<acute>Mul_Proper n \<and> \<acute>ind=0}.
 | |
| 185 | WHILE \<acute>ind<length \<acute>M | |
| 186 |     INV .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind\<le>length \<acute>M}.
 | |
| 187 |   DO .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}.
 | |
| 188 | IF \<acute>ind\<in>Roots THEN | |
| 189 |      .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<in>Roots}. 
 | |
| 190 | \<acute>M:=\<acute>M[\<acute>ind:=Black] FI;; | |
| 191 |      .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind+1. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}.
 | |
| 192 | \<acute>ind:=\<acute>ind+1 | |
| 193 | OD" | |
| 194 | ||
| 195 | lemma Mul_Blacken_Roots: | |
| 196 | "\<turnstile> Mul_Blacken_Roots n | |
| 197 |   .{\<acute>Mul_Proper n \<and> Roots \<subseteq> Blacks \<acute>M}."
 | |
| 198 | apply (unfold Mul_Blacken_Roots_def) | |
| 199 | apply annhoare | |
| 200 | apply(simp_all add:mul_collector_defs Graph_defs) | |
| 201 | apply safe | |
| 202 | apply(simp_all add:nth_list_update) | |
| 203 | apply (erule less_SucE) | |
| 204 | apply simp+ | |
| 205 | apply force | |
| 206 | apply force | |
| 207 | done | |
| 208 | ||
| 209 | subsubsection {* Propagating Black *} 
 | |
| 210 | ||
| 211 | constdefs | |
| 212 | Mul_PBInv :: "mul_gar_coll_state \<Rightarrow> bool" | |
| 213 | "Mul_PBInv \<equiv> \<guillemotleft>\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue | |
| 214 | \<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M)) \<and> \<acute>l\<le>\<acute>Queue\<guillemotright>" | |
| 215 | ||
| 216 | Mul_Auxk :: "mul_gar_coll_state \<Rightarrow> bool" | |
| 217 | "Mul_Auxk \<equiv> \<guillemotleft>\<acute>l<\<acute>Queue \<or> \<acute>M!\<acute>k\<noteq>Black \<or> \<not>BtoW(\<acute>E!\<acute>ind, \<acute>M) \<or> \<acute>obc\<subset>Blacks \<acute>M\<guillemotright>" | |
| 218 | ||
| 219 | constdefs | |
| 220 | Mul_Propagate_Black :: "nat \<Rightarrow> mul_gar_coll_state ann_com" | |
| 221 | "Mul_Propagate_Black n \<equiv> | |
| 222 |  .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
 | |
| 223 | \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)}. | |
| 224 | \<acute>ind:=0;; | |
| 225 |  .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 226 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> Blacks \<acute>M\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 227 | \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) \<and> \<acute>ind=0}. | |
| 228 | WHILE \<acute>ind<length \<acute>E | |
| 229 |   INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 230 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 231 | \<and> \<acute>Mul_PBInv \<and> \<acute>ind\<le>length \<acute>E}. | |
| 232 |  DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 233 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 234 | \<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E}. | |
| 235 | IF \<acute>M!(fst (\<acute>E!\<acute>ind))=Black THEN | |
| 236 |    .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 237 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 238 | \<and> \<acute>Mul_PBInv \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black \<and> \<acute>ind<length \<acute>E}. | |
| 239 | \<acute>k:=snd(\<acute>E!\<acute>ind);; | |
| 240 |    .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 241 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 242 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M)) | |
| 243 | \<and> \<acute>l\<le>\<acute>Queue \<and> \<acute>Mul_Auxk ) \<and> \<acute>k<length \<acute>M \<and> \<acute>M!fst(\<acute>E!\<acute>ind)=Black | |
| 244 | \<and> \<acute>ind<length \<acute>E}. | |
| 245 | \<langle>\<acute>M:=\<acute>M[\<acute>k:=Black],,\<acute>ind:=\<acute>ind+1\<rangle> | |
| 246 |    ELSE .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 247 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 248 | \<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E}. | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32687diff
changeset | 249 | \<langle>IF \<acute>M!(fst (\<acute>E!\<acute>ind))\<noteq>Black THEN \<acute>ind:=\<acute>ind+1 FI\<rangle> FI | 
| 13020 | 250 | OD" | 
| 251 | ||
| 252 | lemma Mul_Propagate_Black: | |
| 253 | "\<turnstile> Mul_Propagate_Black n | |
| 254 |    .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
 | |
| 255 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))}." | |
| 256 | apply(unfold Mul_Propagate_Black_def) | |
| 257 | apply annhoare | |
| 258 | apply(simp_all add:Mul_PBInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def) | |
| 259 | --{* 8 subgoals left *}
 | |
| 260 | apply force | |
| 261 | apply force | |
| 262 | apply force | |
| 263 | apply(force simp add:BtoW_def Graph_defs) | |
| 264 | --{* 4 subgoals left *}
 | |
| 265 | apply clarify | |
| 266 | apply(simp add: mul_collector_defs Graph12 Graph6 Graph7 Graph8) | |
| 267 | apply(disjE_tac) | |
| 268 | apply(simp_all add:Graph12 Graph13) | |
| 269 | apply(case_tac "M x! k x=Black") | |
| 270 | apply(simp add: Graph10) | |
| 271 | apply(rule disjI2, rule disjI1, erule subset_psubset_trans, erule Graph11, force) | |
| 272 | apply(case_tac "M x! k x=Black") | |
| 273 | apply(simp add: Graph10 BtoW_def) | |
| 274 | apply(rule disjI2, clarify, erule less_SucE, force) | |
| 275 | apply(case_tac "M x!snd(E x! ind x)=Black") | |
| 276 | apply(force) | |
| 277 | apply(force) | |
| 278 | apply(rule disjI2, rule disjI1, erule subset_psubset_trans, erule Graph11, force) | |
| 279 | --{* 2 subgoals left *}
 | |
| 280 | apply clarify | |
| 281 | apply(conjI_tac) | |
| 282 | apply(disjE_tac) | |
| 283 | apply (simp_all) | |
| 284 | apply clarify | |
| 285 | apply(erule less_SucE) | |
| 286 | apply force | |
| 287 | apply (simp add:BtoW_def) | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 288 | --{* 1 subgoal left *}
 | 
| 13020 | 289 | apply clarify | 
| 290 | apply simp | |
| 291 | apply(disjE_tac) | |
| 292 | apply (simp_all) | |
| 293 | apply(rule disjI1 , rule Graph1) | |
| 294 | apply simp_all | |
| 295 | done | |
| 296 | ||
| 297 | subsubsection {* Counting Black Nodes *}
 | |
| 298 | ||
| 299 | constdefs | |
| 300 | Mul_CountInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" | |
| 301 |  "Mul_CountInv \<equiv> \<guillemotleft> \<lambda>ind. {i. i<ind \<and> \<acute>Ma!i=Black}\<subseteq>\<acute>bc \<guillemotright>"
 | |
| 302 | ||
| 303 | Mul_Count :: "nat \<Rightarrow> mul_gar_coll_state ann_com" | |
| 304 | "Mul_Count n \<equiv> | |
| 305 |   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 306 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 307 | \<and> length \<acute>Ma=length \<acute>M | |
| 308 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) ) | |
| 309 |     \<and> \<acute>q<n+1 \<and> \<acute>bc={}}.
 | |
| 310 | \<acute>ind:=0;; | |
| 311 |   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 312 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 313 | \<and> length \<acute>Ma=length \<acute>M | |
| 314 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) ) | |
| 315 |     \<and> \<acute>q<n+1 \<and> \<acute>bc={} \<and> \<acute>ind=0}.
 | |
| 316 | WHILE \<acute>ind<length \<acute>M | |
| 317 |      INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 318 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 319 | \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind | |
| 320 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32687diff
changeset | 321 | \<and> \<acute>q<n+1 \<and> \<acute>ind\<le>length \<acute>M}. | 
| 13020 | 322 |   DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
| 323 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 324 | \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind | |
| 325 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 326 | \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M}. | |
| 327 | IF \<acute>M!\<acute>ind=Black | |
| 328 |      THEN .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 329 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 330 | \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind | |
| 331 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 332 | \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}. | |
| 333 | \<acute>bc:=insert \<acute>ind \<acute>bc | |
| 334 | FI;; | |
| 335 |   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 336 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 337 | \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv (\<acute>ind+1) | |
| 338 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 339 | \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M}. | |
| 340 | \<acute>ind:=\<acute>ind+1 | |
| 341 | OD" | |
| 342 | ||
| 343 | lemma Mul_Count: | |
| 344 | "\<turnstile> Mul_Count n | |
| 345 |   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 346 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 347 | \<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc | |
| 348 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 349 | \<and> \<acute>q<n+1}." | |
| 350 | apply (unfold Mul_Count_def) | |
| 351 | apply annhoare | |
| 352 | apply(simp_all add:Mul_CountInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def) | |
| 353 | --{* 7 subgoals left *}
 | |
| 354 | apply force | |
| 355 | apply force | |
| 356 | apply force | |
| 357 | --{* 4 subgoals left *}
 | |
| 358 | apply clarify | |
| 359 | apply(conjI_tac) | |
| 360 | apply(disjE_tac) | |
| 361 | apply simp_all | |
| 362 | apply(simp add:Blacks_def) | |
| 363 | apply clarify | |
| 364 | apply(erule less_SucE) | |
| 365 | back | |
| 366 | apply force | |
| 367 | apply force | |
| 368 | --{* 3 subgoals left *}
 | |
| 369 | apply clarify | |
| 370 | apply(conjI_tac) | |
| 371 | apply(disjE_tac) | |
| 372 | apply simp_all | |
| 373 | apply clarify | |
| 374 | apply(erule less_SucE) | |
| 375 | back | |
| 376 | apply force | |
| 377 | apply simp | |
| 378 | apply(rotate_tac -1) | |
| 379 | apply (force simp add:Blacks_def) | |
| 380 | --{* 2 subgoals left *}
 | |
| 381 | apply force | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 382 | --{* 1 subgoal left *}
 | 
| 13020 | 383 | apply clarify | 
| 26316 
9e9e67e33557
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
24742diff
changeset | 384 | apply(drule_tac x = "ind x" in le_imp_less_or_eq) | 
| 13020 | 385 | apply (simp_all add:Blacks_def) | 
| 386 | done | |
| 387 | ||
| 388 | subsubsection {* Appending garbage nodes to the free list *}
 | |
| 389 | ||
| 390 | consts Append_to_free :: "nat \<times> edges \<Rightarrow> edges" | |
| 391 | ||
| 392 | axioms | |
| 393 | Append_to_free0: "length (Append_to_free (i, e)) = length e" | |
| 394 | Append_to_free1: "Proper_Edges (m, e) | |
| 395 | \<Longrightarrow> Proper_Edges (m, Append_to_free(i, e))" | |
| 396 | Append_to_free2: "i \<notin> Reach e | |
| 397 | \<Longrightarrow> n \<in> Reach (Append_to_free(i, e)) = ( n = i \<or> n \<in> Reach e)" | |
| 398 | ||
| 399 | constdefs | |
| 400 | Mul_AppendInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" | |
| 401 | "Mul_AppendInv \<equiv> \<guillemotleft> \<lambda>ind. (\<forall>i. ind\<le>i \<longrightarrow> i<length \<acute>M \<longrightarrow> i\<in>Reach \<acute>E \<longrightarrow> \<acute>M!i=Black)\<guillemotright>" | |
| 402 | ||
| 403 | Mul_Append :: "nat \<Rightarrow> mul_gar_coll_state ann_com" | |
| 404 | "Mul_Append n \<equiv> | |
| 405 |   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe}.
 | |
| 406 | \<acute>ind:=0;; | |
| 407 |   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe \<and> \<acute>ind=0}.
 | |
| 408 | WHILE \<acute>ind<length \<acute>M | |
| 409 |     INV .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>M}.
 | |
| 410 |   DO .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M}.
 | |
| 411 | IF \<acute>M!\<acute>ind=Black THEN | |
| 412 |      .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}. 
 | |
| 413 | \<acute>M:=\<acute>M[\<acute>ind:=White] | |
| 414 | ELSE | |
| 415 |      .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<notin>Reach \<acute>E}. 
 | |
| 416 | \<acute>E:=Append_to_free(\<acute>ind,\<acute>E) | |
| 417 | FI;; | |
| 418 |   .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv (\<acute>ind+1) \<and> \<acute>ind<length \<acute>M}. 
 | |
| 419 | \<acute>ind:=\<acute>ind+1 | |
| 420 | OD" | |
| 421 | ||
| 422 | lemma Mul_Append: | |
| 423 | "\<turnstile> Mul_Append n | |
| 424 |      .{\<acute>Mul_Proper n}."
 | |
| 425 | apply(unfold Mul_Append_def) | |
| 426 | apply annhoare | |
| 427 | apply(simp_all add: mul_collector_defs Mul_AppendInv_def | |
| 428 | Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) | |
| 429 | apply(force simp add:Blacks_def) | |
| 430 | apply(force simp add:Blacks_def) | |
| 431 | apply(force simp add:Blacks_def) | |
| 432 | apply(force simp add:Graph_defs) | |
| 433 | apply force | |
| 434 | apply(force simp add:Append_to_free1 Append_to_free2) | |
| 435 | apply force | |
| 436 | apply force | |
| 437 | done | |
| 438 | ||
| 439 | subsubsection {* Collector *}
 | |
| 440 | ||
| 441 | constdefs | |
| 442 | Mul_Collector :: "nat \<Rightarrow> mul_gar_coll_state ann_com" | |
| 443 | "Mul_Collector n \<equiv> | |
| 444 | .{\<acute>Mul_Proper n}.  
 | |
| 445 | WHILE True INV .{\<acute>Mul_Proper n}. 
 | |
| 446 | DO | |
| 447 | Mul_Blacken_Roots n ;; | |
| 448 | .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M}.  
 | |
| 449 |  \<acute>obc:={};; 
 | |
| 450 | .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={}}.  
 | |
| 451 | \<acute>bc:=Roots;; | |
| 452 | .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots}. 
 | |
| 453 | \<acute>l:=0;; | |
| 454 | .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots \<and> \<acute>l=0}. 
 | |
| 455 | WHILE \<acute>l<n+1 | |
| 456 |    INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and>  
 | |
| 457 | (\<acute>Safe \<or> (\<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M) \<and> \<acute>l<n+1)}. | |
| 458 |  DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
 | |
| 459 | \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M)}. | |
| 460 | \<acute>obc:=\<acute>bc;; | |
| 461 | Mul_Propagate_Black n;; | |
| 462 |     .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 463 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 464 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue | |
| 465 | \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))}. | |
| 466 |     \<acute>bc:={};;
 | |
| 467 |     .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 468 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 469 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue | |
| 470 |       \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) \<and> \<acute>bc={}}. 
 | |
| 471 | \<langle> \<acute>Ma:=\<acute>M,, \<acute>q:=\<acute>Queue \<rangle>;; | |
| 472 | Mul_Count n;; | |
| 473 |     .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 474 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 475 | \<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc | |
| 476 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 477 | \<and> \<acute>q<n+1}. | |
| 478 | IF \<acute>obc=\<acute>bc THEN | |
| 479 |     .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 480 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 481 | \<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc | |
| 482 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 483 | \<and> \<acute>q<n+1 \<and> \<acute>obc=\<acute>bc}. | |
| 484 | \<acute>l:=\<acute>l+1 | |
| 485 |     ELSE .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 486 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 487 | \<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc | |
| 488 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 489 | \<and> \<acute>q<n+1 \<and> \<acute>obc\<noteq>\<acute>bc}. | |
| 490 | \<acute>l:=0 FI | |
| 491 | OD;; | |
| 492 | Mul_Append n | |
| 493 | OD" | |
| 494 | ||
| 495 | lemmas mul_modules = Mul_Redirect_Edge_def Mul_Color_Target_def | |
| 496 | Mul_Blacken_Roots_def Mul_Propagate_Black_def | |
| 497 | Mul_Count_def Mul_Append_def | |
| 498 | ||
| 499 | lemma Mul_Collector: | |
| 500 | "\<turnstile> Mul_Collector n | |
| 501 |   .{False}."
 | |
| 502 | apply(unfold Mul_Collector_def) | |
| 503 | apply annhoare | |
| 504 | apply(simp_all only:pre.simps Mul_Blacken_Roots | |
| 505 | Mul_Propagate_Black Mul_Count Mul_Append) | |
| 506 | apply(simp_all add:mul_modules) | |
| 507 | apply(simp_all add:mul_collector_defs Queue_def) | |
| 508 | apply force | |
| 509 | apply force | |
| 510 | apply force | |
| 15247 | 511 | apply (force simp add: less_Suc_eq_le) | 
| 13020 | 512 | apply force | 
| 513 | apply (force dest:subset_antisym) | |
| 514 | apply force | |
| 515 | apply force | |
| 516 | apply force | |
| 517 | done | |
| 518 | ||
| 519 | subsection {* Interference Freedom *}
 | |
| 520 | ||
| 521 | lemma le_length_filter_update[rule_format]: | |
| 522 | "\<forall>i. (\<not>P (list!i) \<or> P j) \<and> i<length list | |
| 523 | \<longrightarrow> length(filter P list) \<le> length(filter P (list[i:=j]))" | |
| 524 | apply(induct_tac "list") | |
| 525 | apply(simp) | |
| 526 | apply(clarify) | |
| 527 | apply(case_tac i) | |
| 528 | apply(simp) | |
| 529 | apply(simp) | |
| 530 | done | |
| 531 | ||
| 532 | lemma less_length_filter_update [rule_format]: | |
| 533 | "\<forall>i. P j \<and> \<not>(P (list!i)) \<and> i<length list | |
| 534 | \<longrightarrow> length(filter P list) < length(filter P (list[i:=j]))" | |
| 535 | apply(induct_tac "list") | |
| 536 | apply(simp) | |
| 537 | apply(clarify) | |
| 538 | apply(case_tac i) | |
| 539 | apply(simp) | |
| 540 | apply(simp) | |
| 541 | done | |
| 542 | ||
| 543 | lemma Mul_interfree_Blacken_Roots_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk> \<Longrightarrow> | |
| 544 |   interfree_aux (Some(Mul_Blacken_Roots n),{},Some(Mul_Redirect_Edge j n))"
 | |
| 545 | apply (unfold mul_modules) | |
| 546 | apply interfree_aux | |
| 547 | apply safe | |
| 548 | apply(simp_all add:Graph6 Graph9 Graph12 nth_list_update mul_mutator_defs mul_collector_defs) | |
| 549 | done | |
| 550 | ||
| 551 | lemma Mul_interfree_Redirect_Edge_Blacken_Roots: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 552 |   interfree_aux (Some(Mul_Redirect_Edge j n ),{},Some (Mul_Blacken_Roots n))"
 | |
| 553 | apply (unfold mul_modules) | |
| 554 | apply interfree_aux | |
| 555 | apply safe | |
| 556 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 557 | done | |
| 558 | ||
| 559 | lemma Mul_interfree_Blacken_Roots_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 560 |   interfree_aux (Some(Mul_Blacken_Roots n),{},Some (Mul_Color_Target j n ))"
 | |
| 561 | apply (unfold mul_modules) | |
| 562 | apply interfree_aux | |
| 563 | apply safe | |
| 564 | apply(simp_all add:mul_mutator_defs mul_collector_defs nth_list_update Graph7 Graph8 Graph9 Graph12) | |
| 565 | done | |
| 566 | ||
| 567 | lemma Mul_interfree_Color_Target_Blacken_Roots: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 568 |   interfree_aux (Some(Mul_Color_Target j n ),{},Some (Mul_Blacken_Roots n ))"
 | |
| 569 | apply (unfold mul_modules) | |
| 570 | apply interfree_aux | |
| 571 | apply safe | |
| 572 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 573 | done | |
| 574 | ||
| 575 | lemma Mul_interfree_Propagate_Black_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 576 |   interfree_aux (Some(Mul_Propagate_Black n),{},Some (Mul_Redirect_Edge j n ))"
 | |
| 577 | apply (unfold mul_modules) | |
| 578 | apply interfree_aux | |
| 579 | apply(simp_all add:mul_mutator_defs mul_collector_defs Mul_PBInv_def nth_list_update Graph6) | |
| 580 | --{* 7 subgoals left *}
 | |
| 581 | apply clarify | |
| 582 | apply(disjE_tac) | |
| 583 | apply(simp_all add:Graph6) | |
| 584 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 585 | apply(rule conjI) | |
| 586 | apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 587 | apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 588 | --{* 6 subgoals left *}
 | |
| 589 | apply clarify | |
| 590 | apply(disjE_tac) | |
| 591 | apply(simp_all add:Graph6) | |
| 592 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 593 | apply(rule conjI) | |
| 594 | apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 595 | apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 596 | --{* 5 subgoals left *}
 | |
| 597 | apply clarify | |
| 598 | apply(disjE_tac) | |
| 599 | apply(simp_all add:Graph6) | |
| 600 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 601 | apply(rule conjI) | |
| 602 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 603 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 604 | apply(erule conjE) | |
| 605 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 606 | apply(rule conjI) | |
| 607 | apply(rule impI,(rule disjI2)+,rule conjI) | |
| 608 | apply clarify | |
| 609 | apply(case_tac "R (Muts x! j)=i") | |
| 610 | apply (force simp add: nth_list_update BtoW_def) | |
| 611 | apply (force simp add: nth_list_update) | |
| 612 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 613 | apply(rule impI,(rule disjI2)+, erule le_trans) | |
| 614 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 615 | apply(rule conjI) | |
| 616 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 617 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 618 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 619 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 620 | --{* 4 subgoals left *}
 | |
| 621 | apply clarify | |
| 622 | apply(disjE_tac) | |
| 623 | apply(simp_all add:Graph6) | |
| 624 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 625 | apply(rule conjI) | |
| 626 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 627 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 628 | apply(erule conjE) | |
| 629 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 630 | apply(rule conjI) | |
| 631 | apply(rule impI,(rule disjI2)+,rule conjI) | |
| 632 | apply clarify | |
| 633 | apply(case_tac "R (Muts x! j)=i") | |
| 634 | apply (force simp add: nth_list_update BtoW_def) | |
| 635 | apply (force simp add: nth_list_update) | |
| 636 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 637 | apply(rule impI,(rule disjI2)+, erule le_trans) | |
| 638 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 639 | apply(rule conjI) | |
| 640 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 641 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 642 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 643 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 644 | --{* 3 subgoals left *}
 | |
| 645 | apply clarify | |
| 646 | apply(disjE_tac) | |
| 647 | apply(simp_all add:Graph6) | |
| 648 | apply (rule impI) | |
| 649 | apply(rule conjI) | |
| 650 | apply(rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 651 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 652 | apply(simp add:nth_list_update) | |
| 653 | apply(simp add:nth_list_update) | |
| 654 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 655 | apply(simp add:nth_list_update) | |
| 656 | apply(simp add:nth_list_update) | |
| 657 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 658 | apply(rule conjI) | |
| 659 | apply(rule impI) | |
| 660 | apply(rule conjI) | |
| 661 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 662 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 663 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 664 | apply(simp add:nth_list_update) | |
| 665 | apply(simp add:nth_list_update) | |
| 666 | apply(rule impI) | |
| 667 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 668 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 669 | apply(rule conjI) | |
| 670 | apply(rule impI) | |
| 671 | apply(rule conjI) | |
| 672 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 673 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 674 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 675 | apply(simp add:nth_list_update) | |
| 676 | apply(simp add:nth_list_update) | |
| 677 | apply(rule impI) | |
| 678 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 679 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 680 | apply(erule conjE) | |
| 681 | apply(rule conjI) | |
| 682 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 683 | apply(rule impI,rule conjI,(rule disjI2)+,rule conjI) | |
| 684 | apply clarify | |
| 685 | apply(case_tac "R (Muts x! j)=i") | |
| 686 | apply (force simp add: nth_list_update BtoW_def) | |
| 687 | apply (force simp add: nth_list_update) | |
| 688 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 689 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 690 | apply(simp add:nth_list_update) | |
| 691 | apply(simp add:nth_list_update) | |
| 692 | apply(rule impI,rule conjI) | |
| 693 | apply(rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 694 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 695 | apply(case_tac "R (Muts x! j)=ind x") | |
| 696 | apply (force simp add: nth_list_update) | |
| 697 | apply (force simp add: nth_list_update) | |
| 698 | apply(rule impI, (rule disjI2)+, erule le_trans) | |
| 699 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 700 | --{* 2 subgoals left *}
 | |
| 701 | apply clarify | |
| 702 | apply(rule conjI) | |
| 703 | apply(disjE_tac) | |
| 704 | apply(simp_all add:Mul_Auxk_def Graph6) | |
| 705 | apply (rule impI) | |
| 706 | apply(rule conjI) | |
| 707 | apply(rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 708 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 709 | apply(simp add:nth_list_update) | |
| 710 | apply(simp add:nth_list_update) | |
| 711 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 712 | apply(simp add:nth_list_update) | |
| 713 | apply(simp add:nth_list_update) | |
| 714 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 715 | apply(rule impI) | |
| 716 | apply(rule conjI) | |
| 717 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 718 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 719 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 720 | apply(simp add:nth_list_update) | |
| 721 | apply(simp add:nth_list_update) | |
| 722 | apply(rule impI) | |
| 723 | apply(rule conjI) | |
| 724 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 725 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 726 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 727 | apply(simp add:nth_list_update) | |
| 728 | apply(simp add:nth_list_update) | |
| 729 | apply(rule impI) | |
| 730 | apply(rule conjI) | |
| 731 | apply(erule conjE)+ | |
| 732 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 733 | apply((rule disjI2)+,rule conjI) | |
| 734 | apply clarify | |
| 735 | apply(case_tac "R (Muts x! j)=i") | |
| 736 | apply (force simp add: nth_list_update BtoW_def) | |
| 737 | apply (force simp add: nth_list_update) | |
| 738 | apply(rule conjI) | |
| 739 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 740 | apply(rule impI) | |
| 741 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 742 | apply(simp add:nth_list_update BtoW_def) | |
| 743 | apply (simp add:nth_list_update) | |
| 744 | apply(rule impI) | |
| 745 | apply simp | |
| 746 | apply(disjE_tac) | |
| 747 | apply(rule disjI1, erule less_le_trans) | |
| 748 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 749 | apply force | |
| 750 | apply(rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 751 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 752 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 753 | apply(simp add:nth_list_update) | |
| 754 | apply(simp add:nth_list_update) | |
| 755 | apply(disjE_tac) | |
| 756 | apply simp_all | |
| 757 | apply(conjI_tac) | |
| 758 | apply(rule impI) | |
| 759 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 760 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 761 | apply(erule conjE)+ | |
| 762 | apply(rule impI,(rule disjI2)+,rule conjI) | |
| 763 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 764 | apply(rule impI)+ | |
| 765 | apply simp | |
| 766 | apply(disjE_tac) | |
| 767 | apply(rule disjI1, erule less_le_trans) | |
| 768 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 769 | apply force | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 770 | --{* 1 subgoal left *} 
 | 
| 13020 | 771 | apply clarify | 
| 772 | apply(disjE_tac) | |
| 773 | apply(simp_all add:Graph6) | |
| 774 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 775 | apply(rule conjI) | |
| 776 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 777 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 778 | apply(erule conjE) | |
| 779 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 780 | apply(rule conjI) | |
| 781 | apply(rule impI,(rule disjI2)+,rule conjI) | |
| 782 | apply clarify | |
| 783 | apply(case_tac "R (Muts x! j)=i") | |
| 784 | apply (force simp add: nth_list_update BtoW_def) | |
| 785 | apply (force simp add: nth_list_update) | |
| 786 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 787 | apply(rule impI,(rule disjI2)+, erule le_trans) | |
| 788 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 789 | apply(rule conjI) | |
| 790 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 791 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 792 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 793 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 794 | done | |
| 795 | ||
| 796 | lemma Mul_interfree_Redirect_Edge_Propagate_Black: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 797 |   interfree_aux (Some(Mul_Redirect_Edge j n ),{},Some (Mul_Propagate_Black n))"
 | |
| 798 | apply (unfold mul_modules) | |
| 799 | apply interfree_aux | |
| 800 | apply safe | |
| 801 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 802 | done | |
| 803 | ||
| 804 | lemma Mul_interfree_Propagate_Black_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 805 |   interfree_aux (Some(Mul_Propagate_Black n),{},Some (Mul_Color_Target j n ))"
 | |
| 806 | apply (unfold mul_modules) | |
| 807 | apply interfree_aux | |
| 808 | apply(simp_all add: mul_collector_defs mul_mutator_defs) | |
| 809 | --{* 7 subgoals left *}
 | |
| 810 | apply clarify | |
| 811 | apply (simp add:Graph7 Graph8 Graph12) | |
| 812 | apply(disjE_tac) | |
| 813 | apply(simp add:Graph7 Graph8 Graph12) | |
| 814 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 815 | apply(rule disjI2,rule disjI1, erule le_trans) | |
| 816 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 817 | apply((rule disjI2)+,erule subset_psubset_trans, erule Graph11, simp) | |
| 818 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 819 | --{* 6 subgoals left *}
 | |
| 820 | apply clarify | |
| 821 | apply (simp add:Graph7 Graph8 Graph12) | |
| 822 | apply(disjE_tac) | |
| 823 | apply(simp add:Graph7 Graph8 Graph12) | |
| 824 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 825 | apply(rule disjI2,rule disjI1, erule le_trans) | |
| 826 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 827 | apply((rule disjI2)+,erule subset_psubset_trans, erule Graph11, simp) | |
| 828 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 829 | --{* 5 subgoals left *}
 | |
| 830 | apply clarify | |
| 831 | apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) | |
| 832 | apply(disjE_tac) | |
| 833 | apply(simp add:Graph7 Graph8 Graph12) | |
| 834 | apply(rule disjI2,rule disjI1, erule psubset_subset_trans,simp add:Graph9) | |
| 835 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 836 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 837 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 838 | apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) | |
| 839 | apply(erule conjE) | |
| 840 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 841 | apply((rule disjI2)+) | |
| 842 | apply (rule conjI) | |
| 843 | apply(simp add:Graph10) | |
| 844 | apply(erule le_trans) | |
| 845 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 846 | apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) | |
| 847 | --{* 4 subgoals left *}
 | |
| 848 | apply clarify | |
| 849 | apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) | |
| 850 | apply(disjE_tac) | |
| 851 | apply(simp add:Graph7 Graph8 Graph12) | |
| 852 | apply(rule disjI2,rule disjI1, erule psubset_subset_trans,simp add:Graph9) | |
| 853 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 854 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 855 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 856 | apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) | |
| 857 | apply(erule conjE) | |
| 858 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 859 | apply((rule disjI2)+) | |
| 860 | apply (rule conjI) | |
| 861 | apply(simp add:Graph10) | |
| 862 | apply(erule le_trans) | |
| 863 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 864 | apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) | |
| 865 | --{* 3 subgoals left *}
 | |
| 866 | apply clarify | |
| 867 | apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) | |
| 868 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 869 | apply(simp add:Graph10) | |
| 870 | apply(disjE_tac) | |
| 871 | apply simp_all | |
| 872 | apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans) | |
| 873 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 874 | apply(erule conjE) | |
| 875 | apply((rule disjI2)+,erule le_trans) | |
| 876 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 877 | apply(rule conjI) | |
| 878 | apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11) | |
| 879 | apply (force simp add:nth_list_update) | |
| 880 | --{* 2 subgoals left *}
 | |
| 881 | apply clarify | |
| 882 | apply(simp add:Mul_Auxk_def Graph7 Graph8 Graph12) | |
| 883 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 884 | apply(simp add:Graph10) | |
| 885 | apply(disjE_tac) | |
| 886 | apply simp_all | |
| 887 | apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans) | |
| 888 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 889 | apply(erule conjE)+ | |
| 890 | apply((rule disjI2)+,rule conjI, erule le_trans) | |
| 891 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 892 | apply((rule impI)+) | |
| 893 | apply simp | |
| 894 | apply(erule disjE) | |
| 895 | apply(rule disjI1, erule less_le_trans) | |
| 896 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 897 | apply force | |
| 898 | apply(rule conjI) | |
| 899 | apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11) | |
| 900 | apply (force simp add:nth_list_update) | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 901 | --{* 1 subgoal left *}
 | 
| 13020 | 902 | apply clarify | 
| 903 | apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) | |
| 904 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 905 | apply(simp add:Graph10) | |
| 906 | apply(disjE_tac) | |
| 907 | apply simp_all | |
| 908 | apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans) | |
| 909 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 910 | apply(erule conjE) | |
| 911 | apply((rule disjI2)+,erule le_trans) | |
| 912 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 913 | apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11) | |
| 914 | done | |
| 915 | ||
| 916 | lemma Mul_interfree_Color_Target_Propagate_Black: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 917 |   interfree_aux (Some(Mul_Color_Target j n),{},Some(Mul_Propagate_Black n ))"
 | |
| 918 | apply (unfold mul_modules) | |
| 919 | apply interfree_aux | |
| 920 | apply safe | |
| 921 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 922 | done | |
| 923 | ||
| 924 | lemma Mul_interfree_Count_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 925 |   interfree_aux (Some(Mul_Count n ),{},Some(Mul_Redirect_Edge j n))"
 | |
| 926 | apply (unfold mul_modules) | |
| 927 | apply interfree_aux | |
| 928 | --{* 9 subgoals left *}
 | |
| 929 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def Graph6) | |
| 930 | apply clarify | |
| 931 | apply disjE_tac | |
| 932 | apply(simp add:Graph6) | |
| 933 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 934 | apply(simp add:Graph6) | |
| 935 | apply clarify | |
| 936 | apply disjE_tac | |
| 937 | apply(simp add:Graph6) | |
| 938 | apply(rule conjI) | |
| 939 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 940 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 941 | apply(simp add:Graph6) | |
| 942 | --{* 8 subgoals left *}
 | |
| 943 | apply(simp add:mul_mutator_defs nth_list_update) | |
| 944 | --{* 7 subgoals left *}
 | |
| 945 | apply(simp add:mul_mutator_defs mul_collector_defs) | |
| 946 | apply clarify | |
| 947 | apply disjE_tac | |
| 948 | apply(simp add:Graph6) | |
| 949 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 950 | apply(simp add:Graph6) | |
| 951 | apply clarify | |
| 952 | apply disjE_tac | |
| 953 | apply(simp add:Graph6) | |
| 954 | apply(rule conjI) | |
| 955 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 956 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 957 | apply(simp add:Graph6) | |
| 958 | --{* 6 subgoals left *}
 | |
| 959 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) | |
| 960 | apply clarify | |
| 961 | apply disjE_tac | |
| 962 | apply(simp add:Graph6 Queue_def) | |
| 963 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 964 | apply(simp add:Graph6) | |
| 965 | apply clarify | |
| 966 | apply disjE_tac | |
| 967 | apply(simp add:Graph6) | |
| 968 | apply(rule conjI) | |
| 969 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 970 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 971 | apply(simp add:Graph6) | |
| 972 | --{* 5 subgoals left *}
 | |
| 973 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) | |
| 974 | apply clarify | |
| 975 | apply disjE_tac | |
| 976 | apply(simp add:Graph6) | |
| 977 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 978 | apply(simp add:Graph6) | |
| 979 | apply clarify | |
| 980 | apply disjE_tac | |
| 981 | apply(simp add:Graph6) | |
| 982 | apply(rule conjI) | |
| 983 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 984 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 985 | apply(simp add:Graph6) | |
| 986 | --{* 4 subgoals left *}
 | |
| 987 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) | |
| 988 | apply clarify | |
| 989 | apply disjE_tac | |
| 990 | apply(simp add:Graph6) | |
| 991 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 992 | apply(simp add:Graph6) | |
| 993 | apply clarify | |
| 994 | apply disjE_tac | |
| 995 | apply(simp add:Graph6) | |
| 996 | apply(rule conjI) | |
| 997 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 998 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 999 | apply(simp add:Graph6) | |
| 1000 | --{* 3 subgoals left *}
 | |
| 1001 | apply(simp add:mul_mutator_defs nth_list_update) | |
| 1002 | --{* 2 subgoals left *}
 | |
| 1003 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) | |
| 1004 | apply clarify | |
| 1005 | apply disjE_tac | |
| 1006 | apply(simp add:Graph6) | |
| 1007 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 1008 | apply(simp add:Graph6) | |
| 1009 | apply clarify | |
| 1010 | apply disjE_tac | |
| 1011 | apply(simp add:Graph6) | |
| 1012 | apply(rule conjI) | |
| 1013 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 1014 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 1015 | apply(simp add:Graph6) | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1016 | --{* 1 subgoal left *}
 | 
| 13020 | 1017 | apply(simp add:mul_mutator_defs nth_list_update) | 
| 1018 | done | |
| 1019 | ||
| 1020 | lemma Mul_interfree_Redirect_Edge_Count: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1021 |   interfree_aux (Some(Mul_Redirect_Edge j n),{},Some(Mul_Count n ))"
 | |
| 1022 | apply (unfold mul_modules) | |
| 1023 | apply interfree_aux | |
| 1024 | apply safe | |
| 1025 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 1026 | done | |
| 1027 | ||
| 1028 | lemma Mul_interfree_Count_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1029 |   interfree_aux (Some(Mul_Count n ),{},Some(Mul_Color_Target j n))"
 | |
| 1030 | apply (unfold mul_modules) | |
| 1031 | apply interfree_aux | |
| 1032 | apply(simp_all add:mul_collector_defs mul_mutator_defs Mul_CountInv_def) | |
| 1033 | --{* 6 subgoals left *}
 | |
| 1034 | apply clarify | |
| 1035 | apply disjE_tac | |
| 1036 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1037 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1038 | apply clarify | |
| 1039 | apply disjE_tac | |
| 1040 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1041 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1042 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1043 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1044 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1045 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1046 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1047 | --{* 5 subgoals left *}
 | |
| 1048 | apply clarify | |
| 1049 | apply disjE_tac | |
| 1050 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1051 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1052 | apply clarify | |
| 1053 | apply disjE_tac | |
| 1054 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1055 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1056 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1057 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1058 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1059 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1060 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1061 | --{* 4 subgoals left *}
 | |
| 1062 | apply clarify | |
| 1063 | apply disjE_tac | |
| 1064 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1065 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1066 | apply clarify | |
| 1067 | apply disjE_tac | |
| 1068 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1069 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1070 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1071 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1072 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1073 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1074 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1075 | --{* 3 subgoals left *}
 | |
| 1076 | apply clarify | |
| 1077 | apply disjE_tac | |
| 1078 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1079 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1080 | apply clarify | |
| 1081 | apply disjE_tac | |
| 1082 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1083 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1084 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1085 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1086 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1087 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1088 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1089 | --{* 2 subgoals left *}
 | |
| 1090 | apply clarify | |
| 1091 | apply disjE_tac | |
| 1092 | apply (simp add: Graph7 Graph8 Graph12 nth_list_update) | |
| 1093 | apply (simp add: Graph7 Graph8 Graph12 nth_list_update) | |
| 1094 | apply clarify | |
| 1095 | apply disjE_tac | |
| 1096 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1097 | apply(rule conjI) | |
| 1098 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1099 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1100 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1101 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1102 | apply (simp add: nth_list_update) | |
| 1103 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1104 | apply(rule conjI) | |
| 1105 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1106 | apply (simp add: nth_list_update) | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1107 | --{* 1 subgoal left *}
 | 
| 13020 | 1108 | apply clarify | 
| 1109 | apply disjE_tac | |
| 1110 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1111 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1112 | apply clarify | |
| 1113 | apply disjE_tac | |
| 1114 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1115 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1116 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1117 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1118 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1119 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1120 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1121 | done | |
| 1122 | ||
| 1123 | lemma Mul_interfree_Color_Target_Count: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1124 |   interfree_aux (Some(Mul_Color_Target j n),{}, Some(Mul_Count n ))"
 | |
| 1125 | apply (unfold mul_modules) | |
| 1126 | apply interfree_aux | |
| 1127 | apply safe | |
| 1128 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 1129 | done | |
| 1130 | ||
| 1131 | lemma Mul_interfree_Append_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1132 |   interfree_aux (Some(Mul_Append n),{}, Some(Mul_Redirect_Edge j n))"
 | |
| 1133 | apply (unfold mul_modules) | |
| 1134 | apply interfree_aux | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23880diff
changeset | 1135 | apply(tactic {* ALLGOALS (clarify_tac @{claset}) *})
 | 
| 13020 | 1136 | apply(simp_all add:Graph6 Append_to_free0 Append_to_free1 mul_collector_defs mul_mutator_defs Mul_AppendInv_def) | 
| 1137 | apply(erule_tac x=j in allE, force dest:Graph3)+ | |
| 1138 | done | |
| 1139 | ||
| 1140 | lemma Mul_interfree_Redirect_Edge_Append: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1141 |   interfree_aux (Some(Mul_Redirect_Edge j n),{},Some(Mul_Append n))"
 | |
| 1142 | apply (unfold mul_modules) | |
| 1143 | apply interfree_aux | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23880diff
changeset | 1144 | apply(tactic {* ALLGOALS (clarify_tac @{claset}) *})
 | 
| 13020 | 1145 | apply(simp_all add:mul_collector_defs Append_to_free0 Mul_AppendInv_def mul_mutator_defs nth_list_update) | 
| 1146 | done | |
| 1147 | ||
| 1148 | lemma Mul_interfree_Append_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1149 |   interfree_aux (Some(Mul_Append n),{}, Some(Mul_Color_Target j n))"
 | |
| 1150 | apply (unfold mul_modules) | |
| 1151 | apply interfree_aux | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23880diff
changeset | 1152 | apply(tactic {* ALLGOALS (clarify_tac @{claset}) *})
 | 
| 13020 | 1153 | apply(simp_all add:mul_mutator_defs mul_collector_defs Mul_AppendInv_def Graph7 Graph8 Append_to_free0 Append_to_free1 | 
| 1154 | Graph12 nth_list_update) | |
| 1155 | done | |
| 1156 | ||
| 1157 | lemma Mul_interfree_Color_Target_Append: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1158 |   interfree_aux (Some(Mul_Color_Target j n),{}, Some(Mul_Append n))"
 | |
| 1159 | apply (unfold mul_modules) | |
| 1160 | apply interfree_aux | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23880diff
changeset | 1161 | apply(tactic {* ALLGOALS (clarify_tac @{claset}) *})
 | 
| 13020 | 1162 | apply(simp_all add: mul_mutator_defs nth_list_update) | 
| 1163 | apply(simp add:Mul_AppendInv_def Append_to_free0) | |
| 1164 | done | |
| 1165 | ||
| 1166 | subsubsection {* Interference freedom Collector-Mutator *}
 | |
| 1167 | ||
| 1168 | lemmas mul_collector_mutator_interfree = | |
| 1169 | Mul_interfree_Blacken_Roots_Redirect_Edge Mul_interfree_Blacken_Roots_Color_Target | |
| 1170 | Mul_interfree_Propagate_Black_Redirect_Edge Mul_interfree_Propagate_Black_Color_Target | |
| 1171 | Mul_interfree_Count_Redirect_Edge Mul_interfree_Count_Color_Target | |
| 1172 | Mul_interfree_Append_Redirect_Edge Mul_interfree_Append_Color_Target | |
| 1173 | Mul_interfree_Redirect_Edge_Blacken_Roots Mul_interfree_Color_Target_Blacken_Roots | |
| 1174 | Mul_interfree_Redirect_Edge_Propagate_Black Mul_interfree_Color_Target_Propagate_Black | |
| 1175 | Mul_interfree_Redirect_Edge_Count Mul_interfree_Color_Target_Count | |
| 1176 | Mul_interfree_Redirect_Edge_Append Mul_interfree_Color_Target_Append | |
| 1177 | ||
| 1178 | lemma Mul_interfree_Collector_Mutator: "j<n \<Longrightarrow> | |
| 1179 |   interfree_aux (Some (Mul_Collector n), {}, Some (Mul_Mutator j n))"
 | |
| 1180 | apply(unfold Mul_Collector_def Mul_Mutator_def) | |
| 1181 | apply interfree_aux | |
| 1182 | apply(simp_all add:mul_collector_mutator_interfree) | |
| 1183 | apply(unfold mul_modules mul_collector_defs mul_mutator_defs) | |
| 1184 | apply(tactic  {* TRYALL (interfree_aux_tac) *})
 | |
| 1185 | --{* 42 subgoals left *}
 | |
| 1186 | apply (clarify,simp add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)+ | |
| 1187 | --{* 24 subgoals left *}
 | |
| 1188 | apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) | |
| 1189 | --{* 14 subgoals left *}
 | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23880diff
changeset | 1190 | apply(tactic {* TRYALL (clarify_tac @{claset}) *})
 | 
| 13020 | 1191 | apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) | 
| 1192 | apply(tactic {* TRYALL (rtac conjI) *})
 | |
| 1193 | apply(tactic {* TRYALL (rtac impI) *})
 | |
| 1194 | apply(tactic {* TRYALL (etac disjE) *})
 | |
| 1195 | apply(tactic {* TRYALL (etac conjE) *})
 | |
| 1196 | apply(tactic {* TRYALL (etac disjE) *})
 | |
| 1197 | apply(tactic {* TRYALL (etac disjE) *})
 | |
| 1198 | --{* 72 subgoals left *}
 | |
| 1199 | apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) | |
| 1200 | --{* 35 subgoals left *}
 | |
| 26342 | 1201 | apply(tactic {* TRYALL(EVERY'[rtac disjI1,rtac subset_trans,etac @{thm Graph3},force_tac @{clasimpset}, assume_tac]) *})
 | 
| 13020 | 1202 | --{* 28 subgoals left *}
 | 
| 1203 | apply(tactic {* TRYALL (etac conjE) *})
 | |
| 1204 | apply(tactic {* TRYALL (etac disjE) *})
 | |
| 1205 | --{* 34 subgoals left *}
 | |
| 1206 | apply(rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 1207 | apply(rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 27095 | 1208 | apply(case_tac [!] "M x!(T (Muts x ! j))=Black") | 
| 13020 | 1209 | apply(simp_all add:Graph10) | 
| 1210 | --{* 47 subgoals left *}
 | |
| 26342 | 1211 | apply(tactic {* TRYALL(EVERY'[REPEAT o (rtac disjI2),etac (thm "subset_psubset_trans"),etac (thm "Graph11"),force_tac @{clasimpset}]) *})
 | 
| 13020 | 1212 | --{* 41 subgoals left *}
 | 
| 26342 | 1213 | apply(tactic {* TRYALL(EVERY'[rtac disjI2, rtac disjI1, etac @{thm le_trans}, force_tac (@{claset},@{simpset} addsimps [@{thm Queue_def}, @{thm less_Suc_eq_le}, @{thm le_length_filter_update}])]) *})
 | 
| 13020 | 1214 | --{* 35 subgoals left *}
 | 
| 26342 | 1215 | apply(tactic {* TRYALL(EVERY'[rtac disjI2,rtac disjI1,etac (thm "psubset_subset_trans"),rtac (thm "Graph9"),force_tac @{clasimpset}]) *})
 | 
| 13020 | 1216 | --{* 31 subgoals left *}
 | 
| 26342 | 1217 | apply(tactic {* TRYALL(EVERY'[rtac disjI2,rtac disjI1,etac (thm "subset_psubset_trans"),etac (thm "Graph11"),force_tac @{clasimpset}]) *})
 | 
| 13020 | 1218 | --{* 29 subgoals left *}
 | 
| 26342 | 1219 | apply(tactic {* TRYALL(EVERY'[REPEAT o (rtac disjI2),etac (thm "subset_psubset_trans"),etac (thm "subset_psubset_trans"),etac (thm "Graph11"),force_tac @{clasimpset}]) *})
 | 
| 13020 | 1220 | --{* 25 subgoals left *}
 | 
| 26342 | 1221 | apply(tactic {* TRYALL(EVERY'[rtac disjI2, rtac disjI2, rtac disjI1, etac @{thm le_trans}, force_tac (@{claset},@{simpset} addsimps [@{thm Queue_def}, @{thm less_Suc_eq_le}, @{thm le_length_filter_update}])]) *})
 | 
| 13020 | 1222 | --{* 10 subgoals left *}
 | 
| 1223 | apply(rule disjI2,rule disjI2,rule conjI,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update, rule disjI1, rule less_imp_le, erule less_le_trans, force simp add:Queue_def less_Suc_eq_le le_length_filter_update)+ | |
| 1224 | done | |
| 1225 | ||
| 1226 | subsubsection {* Interference freedom Mutator-Collector *}
 | |
| 1227 | ||
| 1228 | lemma Mul_interfree_Mutator_Collector: " j < n \<Longrightarrow> | |
| 1229 |   interfree_aux (Some (Mul_Mutator j n), {}, Some (Mul_Collector n))"
 | |
| 1230 | apply(unfold Mul_Collector_def Mul_Mutator_def) | |
| 1231 | apply interfree_aux | |
| 1232 | apply(simp_all add:mul_collector_mutator_interfree) | |
| 1233 | apply(unfold mul_modules mul_collector_defs mul_mutator_defs) | |
| 1234 | apply(tactic  {* TRYALL (interfree_aux_tac) *})
 | |
| 1235 | --{* 76 subgoals left *}
 | |
| 32687 
27530efec97a
tuned proofs; be more cautios wrt. default simp rules
 haftmann parents: 
32621diff
changeset | 1236 | apply (clarsimp simp add: nth_list_update)+ | 
| 13020 | 1237 | --{* 56 subgoals left *}
 | 
| 32687 
27530efec97a
tuned proofs; be more cautios wrt. default simp rules
 haftmann parents: 
32621diff
changeset | 1238 | apply (clarsimp simp add: Mul_AppendInv_def Append_to_free0 nth_list_update)+ | 
| 13020 | 1239 | done | 
| 1240 | ||
| 1241 | subsubsection {* The Multi-Mutator Garbage Collection Algorithm *}
 | |
| 1242 | ||
| 1243 | text {* The total number of verification conditions is 328 *}
 | |
| 1244 | ||
| 1245 | lemma Mul_Gar_Coll: | |
| 1246 |  "\<parallel>- .{\<acute>Mul_Proper n \<and> \<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))}.  
 | |
| 1247 | COBEGIN | |
| 1248 | Mul_Collector n | |
| 1249 |  .{False}.
 | |
| 1250 | \<parallel> | |
| 1251 | SCHEME [0\<le> j< n] | |
| 1252 | Mul_Mutator j n | |
| 1253 |  .{False}.  
 | |
| 1254 | COEND | |
| 1255 |  .{False}."
 | |
| 1256 | apply oghoare | |
| 1257 | --{* Strengthening the precondition *}
 | |
| 1258 | apply(rule Int_greatest) | |
| 1259 | apply (case_tac n) | |
| 1260 | apply(force simp add: Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append) | |
| 1261 | apply(simp add: Mul_Mutator_def mul_collector_defs mul_mutator_defs nth_append) | |
| 1262 | apply force | |
| 1263 | apply clarify | |
| 32133 | 1264 | apply(case_tac i) | 
| 13020 | 1265 | apply(simp add:Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append) | 
| 1266 | apply(simp add: Mul_Mutator_def mul_mutator_defs mul_collector_defs nth_append nth_map_upt) | |
| 1267 | --{* Collector *}
 | |
| 1268 | apply(rule Mul_Collector) | |
| 1269 | --{* Mutator *}
 | |
| 1270 | apply(erule Mul_Mutator) | |
| 1271 | --{* Interference freedom *}
 | |
| 1272 | apply(simp add:Mul_interfree_Collector_Mutator) | |
| 1273 | apply(simp add:Mul_interfree_Mutator_Collector) | |
| 1274 | apply(simp add:Mul_interfree_Mutator_Mutator) | |
| 1275 | --{* Weakening of the postcondition *}
 | |
| 1276 | apply(case_tac n) | |
| 1277 | apply(simp add:Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append) | |
| 1278 | apply(simp add:Mul_Mutator_def mul_mutator_defs mul_collector_defs nth_append) | |
| 1279 | done | |
| 1280 | ||
| 13187 | 1281 | end |