24584
|
1 |
(* Title: Sequents/modal.ML
|
7096
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
Simple modal reasoner
|
|
7 |
*)
|
|
8 |
|
|
9 |
|
|
10 |
signature MODAL_PROVER_RULE =
|
|
11 |
sig
|
|
12 |
val rewrite_rls : thm list
|
|
13 |
val safe_rls : thm list
|
|
14 |
val unsafe_rls : thm list
|
|
15 |
val bound_rls : thm list
|
|
16 |
val aside_rls : thm list
|
|
17 |
end;
|
|
18 |
|
|
19 |
signature MODAL_PROVER =
|
|
20 |
sig
|
|
21 |
val rule_tac : thm list -> int ->tactic
|
|
22 |
val step_tac : int -> tactic
|
|
23 |
val solven_tac : int -> int -> tactic
|
|
24 |
val solve_tac : int -> tactic
|
|
25 |
end;
|
|
26 |
|
|
27 |
functor Modal_ProverFun (Modal_Rule: MODAL_PROVER_RULE) : MODAL_PROVER =
|
|
28 |
struct
|
|
29 |
local open Modal_Rule
|
|
30 |
in
|
|
31 |
|
|
32 |
(*Returns the list of all formulas in the sequent*)
|
|
33 |
fun forms_of_seq (Const("SeqO",_) $ P $ u) = P :: forms_of_seq u
|
|
34 |
| forms_of_seq (H $ u) = forms_of_seq u
|
|
35 |
| forms_of_seq _ = [];
|
|
36 |
|
|
37 |
(*Tests whether two sequences (left or right sides) could be resolved.
|
|
38 |
seqp is a premise (subgoal), seqc is a conclusion of an object-rule.
|
|
39 |
Assumes each formula in seqc is surrounded by sequence variables
|
|
40 |
-- checks that each concl formula looks like some subgoal formula.*)
|
|
41 |
fun could_res (seqp,seqc) =
|
|
42 |
forall (fn Qc => exists (fn Qp => could_unify (Qp,Qc))
|
|
43 |
(forms_of_seq seqp))
|
|
44 |
(forms_of_seq seqc);
|
|
45 |
|
|
46 |
(*Tests whether two sequents G|-H could be resolved, comparing each side.*)
|
|
47 |
fun could_resolve_seq (prem,conc) =
|
|
48 |
case (prem,conc) of
|
|
49 |
(_ $ Abs(_,_,leftp) $ Abs(_,_,rightp),
|
|
50 |
_ $ Abs(_,_,leftc) $ Abs(_,_,rightc)) =>
|
|
51 |
could_res (leftp,leftc) andalso could_res (rightp,rightc)
|
|
52 |
| _ => false;
|
|
53 |
|
|
54 |
(*Like filt_resolve_tac, using could_resolve_seq
|
|
55 |
Much faster than resolve_tac when there are many rules.
|
|
56 |
Resolve subgoal i using the rules, unless more than maxr are compatible. *)
|
|
57 |
fun filseq_resolve_tac rules maxr = SUBGOAL(fn (prem,i) =>
|
|
58 |
let val rls = filter_thms could_resolve_seq (maxr+1, prem, rules)
|
|
59 |
in if length rls > maxr then no_tac else resolve_tac rls i
|
|
60 |
end);
|
|
61 |
|
|
62 |
fun fresolve_tac rls n = filseq_resolve_tac rls 999 n;
|
|
63 |
|
|
64 |
(* NB No back tracking possible with aside rules *)
|
|
65 |
|
|
66 |
fun aside_tac n = DETERM(REPEAT (filt_resolve_tac aside_rls 999 n));
|
|
67 |
fun rule_tac rls n = fresolve_tac rls n THEN aside_tac n;
|
|
68 |
|
|
69 |
val fres_safe_tac = fresolve_tac safe_rls;
|
|
70 |
val fres_unsafe_tac = fresolve_tac unsafe_rls THEN' aside_tac;
|
|
71 |
val fres_bound_tac = fresolve_tac bound_rls;
|
|
72 |
|
|
73 |
fun UPTOGOAL n tf = let fun tac i = if i<n then all_tac
|
|
74 |
else tf(i) THEN tac(i-1)
|
|
75 |
in fn st => tac (nprems_of st) st end;
|
|
76 |
|
|
77 |
(* Depth first search bounded by d *)
|
|
78 |
fun solven_tac d n state = state |>
|
|
79 |
(if d<0 then no_tac
|
|
80 |
else if (nprems_of state = 0) then all_tac
|
|
81 |
else (DETERM(fres_safe_tac n) THEN UPTOGOAL n (solven_tac d)) ORELSE
|
|
82 |
((fres_unsafe_tac n THEN UPTOGOAL n (solven_tac d)) APPEND
|
|
83 |
(fres_bound_tac n THEN UPTOGOAL n (solven_tac (d-1)))));
|
|
84 |
|
|
85 |
fun solve_tac d = rewrite_goals_tac rewrite_rls THEN solven_tac d 1;
|
|
86 |
|
|
87 |
fun step_tac n =
|
|
88 |
COND (has_fewer_prems 1) all_tac
|
|
89 |
(DETERM(fres_safe_tac n) ORELSE
|
|
90 |
(fres_unsafe_tac n APPEND fres_bound_tac n));
|
|
91 |
|
|
92 |
end;
|
|
93 |
end;
|