| author | traytel | 
| Fri, 02 Aug 2013 12:08:55 +0200 | |
| changeset 52839 | 2c0e1a84dcc7 | 
| parent 51143 | 0a2371e7ced3 | 
| child 53374 | a14d2a854c02 | 
| permissions | -rw-r--r-- | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 1 | (* Title: HOL/Predicate.thy | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 2 | Author: Lukas Bulwahn and Florian Haftmann, TU Muenchen | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 3 | *) | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 4 | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 5 | header {* Predicates as enumerations *}
 | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 6 | |
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 7 | theory Predicate | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 8 | imports List | 
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 9 | begin | 
| 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 10 | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 11 | subsection {* The type of predicate enumerations (a monad) *}
 | 
| 30328 | 12 | |
| 13 | datatype 'a pred = Pred "'a \<Rightarrow> bool" | |
| 14 | ||
| 15 | primrec eval :: "'a pred \<Rightarrow> 'a \<Rightarrow> bool" where | |
| 16 | eval_pred: "eval (Pred f) = f" | |
| 17 | ||
| 18 | lemma Pred_eval [simp]: | |
| 19 | "Pred (eval x) = x" | |
| 20 | by (cases x) simp | |
| 21 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 22 | lemma pred_eqI: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 23 | "(\<And>w. eval P w \<longleftrightarrow> eval Q w) \<Longrightarrow> P = Q" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 24 | by (cases P, cases Q) (auto simp add: fun_eq_iff) | 
| 30328 | 25 | |
| 46038 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 26 | lemma pred_eq_iff: | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 27 | "P = Q \<Longrightarrow> (\<And>w. eval P w \<longleftrightarrow> eval Q w)" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 28 | by (simp add: pred_eqI) | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 29 | |
| 44033 | 30 | instantiation pred :: (type) complete_lattice | 
| 30328 | 31 | begin | 
| 32 | ||
| 33 | definition | |
| 34 | "P \<le> Q \<longleftrightarrow> eval P \<le> eval Q" | |
| 35 | ||
| 36 | definition | |
| 37 | "P < Q \<longleftrightarrow> eval P < eval Q" | |
| 38 | ||
| 39 | definition | |
| 40 | "\<bottom> = Pred \<bottom>" | |
| 41 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 42 | lemma eval_bot [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 43 | "eval \<bottom> = \<bottom>" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 44 | by (simp add: bot_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 45 | |
| 30328 | 46 | definition | 
| 47 | "\<top> = Pred \<top>" | |
| 48 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 49 | lemma eval_top [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 50 | "eval \<top> = \<top>" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 51 | by (simp add: top_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 52 | |
| 30328 | 53 | definition | 
| 54 | "P \<sqinter> Q = Pred (eval P \<sqinter> eval Q)" | |
| 55 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 56 | lemma eval_inf [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 57 | "eval (P \<sqinter> Q) = eval P \<sqinter> eval Q" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 58 | by (simp add: inf_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 59 | |
| 30328 | 60 | definition | 
| 61 | "P \<squnion> Q = Pred (eval P \<squnion> eval Q)" | |
| 62 | ||
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 63 | lemma eval_sup [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 64 | "eval (P \<squnion> Q) = eval P \<squnion> eval Q" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 65 | by (simp add: sup_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 66 | |
| 30328 | 67 | definition | 
| 37767 | 68 | "\<Sqinter>A = Pred (INFI A eval)" | 
| 30328 | 69 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 70 | lemma eval_Inf [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 71 | "eval (\<Sqinter>A) = INFI A eval" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 72 | by (simp add: Inf_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 73 | |
| 30328 | 74 | definition | 
| 37767 | 75 | "\<Squnion>A = Pred (SUPR A eval)" | 
| 30328 | 76 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 77 | lemma eval_Sup [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 78 | "eval (\<Squnion>A) = SUPR A eval" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 79 | by (simp add: Sup_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 80 | |
| 44033 | 81 | instance proof | 
| 44415 | 82 | qed (auto intro!: pred_eqI simp add: less_eq_pred_def less_pred_def le_fun_def less_fun_def) | 
| 44033 | 83 | |
| 84 | end | |
| 85 | ||
| 86 | lemma eval_INFI [simp]: | |
| 87 | "eval (INFI A f) = INFI A (eval \<circ> f)" | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44415diff
changeset | 88 | by (simp only: INF_def eval_Inf image_compose) | 
| 44033 | 89 | |
| 90 | lemma eval_SUPR [simp]: | |
| 91 | "eval (SUPR A f) = SUPR A (eval \<circ> f)" | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44415diff
changeset | 92 | by (simp only: SUP_def eval_Sup image_compose) | 
| 44033 | 93 | |
| 94 | instantiation pred :: (type) complete_boolean_algebra | |
| 95 | begin | |
| 96 | ||
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 97 | definition | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 98 | "- P = Pred (- eval P)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 99 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 100 | lemma eval_compl [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 101 | "eval (- P) = - eval P" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 102 | by (simp add: uminus_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 103 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 104 | definition | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 105 | "P - Q = Pred (eval P - eval Q)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 106 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 107 | lemma eval_minus [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 108 | "eval (P - Q) = eval P - eval Q" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 109 | by (simp add: minus_pred_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 110 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 111 | instance proof | 
| 46884 | 112 | qed (auto intro!: pred_eqI) | 
| 30328 | 113 | |
| 22259 
476604be7d88
New theory for converting between predicates and sets.
 berghofe parents: diff
changeset | 114 | end | 
| 30328 | 115 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 116 | definition single :: "'a \<Rightarrow> 'a pred" where | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 117 | "single x = Pred ((op =) x)" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 118 | |
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 119 | lemma eval_single [simp]: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 120 | "eval (single x) = (op =) x" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 121 | by (simp add: single_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 122 | |
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 123 | definition bind :: "'a pred \<Rightarrow> ('a \<Rightarrow> 'b pred) \<Rightarrow> 'b pred" (infixl "\<guillemotright>=" 70) where
 | 
| 41080 | 124 |   "P \<guillemotright>= f = (SUPR {x. eval P x} f)"
 | 
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 125 | |
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 126 | lemma eval_bind [simp]: | 
| 41080 | 127 |   "eval (P \<guillemotright>= f) = eval (SUPR {x. eval P x} f)"
 | 
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 128 | by (simp add: bind_def) | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 129 | |
| 30328 | 130 | lemma bind_bind: | 
| 131 | "(P \<guillemotright>= Q) \<guillemotright>= R = P \<guillemotright>= (\<lambda>x. Q x \<guillemotright>= R)" | |
| 46884 | 132 | by (rule pred_eqI) auto | 
| 30328 | 133 | |
| 134 | lemma bind_single: | |
| 135 | "P \<guillemotright>= single = P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 136 | by (rule pred_eqI) auto | 
| 30328 | 137 | |
| 138 | lemma single_bind: | |
| 139 | "single x \<guillemotright>= P = P x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 140 | by (rule pred_eqI) auto | 
| 30328 | 141 | |
| 142 | lemma bottom_bind: | |
| 143 | "\<bottom> \<guillemotright>= P = \<bottom>" | |
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 144 | by (rule pred_eqI) auto | 
| 30328 | 145 | |
| 146 | lemma sup_bind: | |
| 147 | "(P \<squnion> Q) \<guillemotright>= R = P \<guillemotright>= R \<squnion> Q \<guillemotright>= R" | |
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 148 | by (rule pred_eqI) auto | 
| 30328 | 149 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 150 | lemma Sup_bind: | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 151 | "(\<Squnion>A \<guillemotright>= f) = \<Squnion>((\<lambda>x. x \<guillemotright>= f) ` A)" | 
| 46884 | 152 | by (rule pred_eqI) auto | 
| 30328 | 153 | |
| 154 | lemma pred_iffI: | |
| 155 | assumes "\<And>x. eval A x \<Longrightarrow> eval B x" | |
| 156 | and "\<And>x. eval B x \<Longrightarrow> eval A x" | |
| 157 | shows "A = B" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 158 | using assms by (auto intro: pred_eqI) | 
| 30328 | 159 | |
| 160 | lemma singleI: "eval (single x) x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 161 | by simp | 
| 30328 | 162 | |
| 163 | lemma singleI_unit: "eval (single ()) x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 164 | by simp | 
| 30328 | 165 | |
| 166 | lemma singleE: "eval (single x) y \<Longrightarrow> (y = x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 167 | by simp | 
| 30328 | 168 | |
| 169 | lemma singleE': "eval (single x) y \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 170 | by simp | 
| 30328 | 171 | |
| 172 | lemma bindI: "eval P x \<Longrightarrow> eval (Q x) y \<Longrightarrow> eval (P \<guillemotright>= Q) y" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 173 | by auto | 
| 30328 | 174 | |
| 175 | lemma bindE: "eval (R \<guillemotright>= Q) y \<Longrightarrow> (\<And>x. eval R x \<Longrightarrow> eval (Q x) y \<Longrightarrow> P) \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 176 | by auto | 
| 30328 | 177 | |
| 178 | lemma botE: "eval \<bottom> x \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 179 | by auto | 
| 30328 | 180 | |
| 181 | lemma supI1: "eval A x \<Longrightarrow> eval (A \<squnion> B) x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 182 | by auto | 
| 30328 | 183 | |
| 184 | lemma supI2: "eval B x \<Longrightarrow> eval (A \<squnion> B) x" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 185 | by auto | 
| 30328 | 186 | |
| 187 | lemma supE: "eval (A \<squnion> B) x \<Longrightarrow> (eval A x \<Longrightarrow> P) \<Longrightarrow> (eval B x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 188 | by auto | 
| 30328 | 189 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 190 | lemma single_not_bot [simp]: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 191 | "single x \<noteq> \<bottom>" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 192 | by (auto simp add: single_def bot_pred_def fun_eq_iff) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 193 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 194 | lemma not_bot: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 195 | assumes "A \<noteq> \<bottom>" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 196 | obtains x where "eval A x" | 
| 45970 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 haftmann parents: 
45630diff
changeset | 197 | using assms by (cases A) (auto simp add: bot_pred_def) | 
| 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 haftmann parents: 
45630diff
changeset | 198 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 199 | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 200 | subsection {* Emptiness check and definite choice *}
 | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 201 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 202 | definition is_empty :: "'a pred \<Rightarrow> bool" where | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 203 | "is_empty A \<longleftrightarrow> A = \<bottom>" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 204 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 205 | lemma is_empty_bot: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 206 | "is_empty \<bottom>" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 207 | by (simp add: is_empty_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 208 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 209 | lemma not_is_empty_single: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 210 | "\<not> is_empty (single x)" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 211 | by (auto simp add: is_empty_def single_def bot_pred_def fun_eq_iff) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 212 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 213 | lemma is_empty_sup: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 214 | "is_empty (A \<squnion> B) \<longleftrightarrow> is_empty A \<and> is_empty B" | 
| 36008 | 215 | by (auto simp add: is_empty_def) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 216 | |
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 217 | definition singleton :: "(unit \<Rightarrow> 'a) \<Rightarrow> 'a pred \<Rightarrow> 'a" where | 
| 33111 | 218 | "singleton dfault A = (if \<exists>!x. eval A x then THE x. eval A x else dfault ())" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 219 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 220 | lemma singleton_eqI: | 
| 33110 | 221 | "\<exists>!x. eval A x \<Longrightarrow> eval A x \<Longrightarrow> singleton dfault A = x" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 222 | by (auto simp add: singleton_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 223 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 224 | lemma eval_singletonI: | 
| 33110 | 225 | "\<exists>!x. eval A x \<Longrightarrow> eval A (singleton dfault A)" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 226 | proof - | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 227 | assume assm: "\<exists>!x. eval A x" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 228 | then obtain x where "eval A x" .. | 
| 33110 | 229 | moreover with assm have "singleton dfault A = x" by (rule singleton_eqI) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 230 | ultimately show ?thesis by simp | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 231 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 232 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 233 | lemma single_singleton: | 
| 33110 | 234 | "\<exists>!x. eval A x \<Longrightarrow> single (singleton dfault A) = A" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 235 | proof - | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 236 | assume assm: "\<exists>!x. eval A x" | 
| 33110 | 237 | then have "eval A (singleton dfault A)" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 238 | by (rule eval_singletonI) | 
| 33110 | 239 | moreover from assm have "\<And>x. eval A x \<Longrightarrow> singleton dfault A = x" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 240 | by (rule singleton_eqI) | 
| 33110 | 241 | ultimately have "eval (single (singleton dfault A)) = eval A" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 242 | by (simp (no_asm_use) add: single_def fun_eq_iff) blast | 
| 40616 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 243 | then have "\<And>x. eval (single (singleton dfault A)) x = eval A x" | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 244 | by simp | 
| 
c5ee1e06d795
eval simp rules for predicate type, simplify primitive proofs
 haftmann parents: 
39302diff
changeset | 245 | then show ?thesis by (rule pred_eqI) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 246 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 247 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 248 | lemma singleton_undefinedI: | 
| 33111 | 249 | "\<not> (\<exists>!x. eval A x) \<Longrightarrow> singleton dfault A = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 250 | by (simp add: singleton_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 251 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 252 | lemma singleton_bot: | 
| 33111 | 253 | "singleton dfault \<bottom> = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 254 | by (auto simp add: bot_pred_def intro: singleton_undefinedI) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 255 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 256 | lemma singleton_single: | 
| 33110 | 257 | "singleton dfault (single x) = x" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 258 | by (auto simp add: intro: singleton_eqI singleI elim: singleE) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 259 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 260 | lemma singleton_sup_single_single: | 
| 33111 | 261 | "singleton dfault (single x \<squnion> single y) = (if x = y then x else dfault ())" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 262 | proof (cases "x = y") | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 263 | case True then show ?thesis by (simp add: singleton_single) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 264 | next | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 265 | case False | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 266 | have "eval (single x \<squnion> single y) x" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 267 | and "eval (single x \<squnion> single y) y" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 268 | by (auto intro: supI1 supI2 singleI) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 269 | with False have "\<not> (\<exists>!z. eval (single x \<squnion> single y) z)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 270 | by blast | 
| 33111 | 271 | then have "singleton dfault (single x \<squnion> single y) = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 272 | by (rule singleton_undefinedI) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 273 | with False show ?thesis by simp | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 274 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 275 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 276 | lemma singleton_sup_aux: | 
| 33110 | 277 | "singleton dfault (A \<squnion> B) = (if A = \<bottom> then singleton dfault B | 
| 278 | else if B = \<bottom> then singleton dfault A | |
| 279 | else singleton dfault | |
| 280 | (single (singleton dfault A) \<squnion> single (singleton dfault B)))" | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 281 | proof (cases "(\<exists>!x. eval A x) \<and> (\<exists>!y. eval B y)") | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 282 | case True then show ?thesis by (simp add: single_singleton) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 283 | next | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 284 | case False | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 285 | from False have A_or_B: | 
| 33111 | 286 | "singleton dfault A = dfault () \<or> singleton dfault B = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 287 | by (auto intro!: singleton_undefinedI) | 
| 33110 | 288 | then have rhs: "singleton dfault | 
| 33111 | 289 | (single (singleton dfault A) \<squnion> single (singleton dfault B)) = dfault ()" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 290 | by (auto simp add: singleton_sup_single_single singleton_single) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 291 | from False have not_unique: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 292 | "\<not> (\<exists>!x. eval A x) \<or> \<not> (\<exists>!y. eval B y)" by simp | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 293 | show ?thesis proof (cases "A \<noteq> \<bottom> \<and> B \<noteq> \<bottom>") | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 294 | case True | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 295 | then obtain a b where a: "eval A a" and b: "eval B b" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 296 | by (blast elim: not_bot) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 297 | with True not_unique have "\<not> (\<exists>!x. eval (A \<squnion> B) x)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 298 | by (auto simp add: sup_pred_def bot_pred_def) | 
| 33111 | 299 | then have "singleton dfault (A \<squnion> B) = dfault ()" by (rule singleton_undefinedI) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 300 | with True rhs show ?thesis by simp | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 301 | next | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 302 | case False then show ?thesis by auto | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 303 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 304 | qed | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 305 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 306 | lemma singleton_sup: | 
| 33110 | 307 | "singleton dfault (A \<squnion> B) = (if A = \<bottom> then singleton dfault B | 
| 308 | else if B = \<bottom> then singleton dfault A | |
| 33111 | 309 | else if singleton dfault A = singleton dfault B then singleton dfault A else dfault ())" | 
| 33110 | 310 | using singleton_sup_aux [of dfault A B] by (simp only: singleton_sup_single_single) | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 311 | |
| 30328 | 312 | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 313 | subsection {* Derived operations *}
 | 
| 30328 | 314 | |
| 315 | definition if_pred :: "bool \<Rightarrow> unit pred" where | |
| 316 | if_pred_eq: "if_pred b = (if b then single () else \<bottom>)" | |
| 317 | ||
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 318 | definition holds :: "unit pred \<Rightarrow> bool" where | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 319 | holds_eq: "holds P = eval P ()" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 320 | |
| 30328 | 321 | definition not_pred :: "unit pred \<Rightarrow> unit pred" where | 
| 322 | not_pred_eq: "not_pred P = (if eval P () then \<bottom> else single ())" | |
| 323 | ||
| 324 | lemma if_predI: "P \<Longrightarrow> eval (if_pred P) ()" | |
| 325 | unfolding if_pred_eq by (auto intro: singleI) | |
| 326 | ||
| 327 | lemma if_predE: "eval (if_pred b) x \<Longrightarrow> (b \<Longrightarrow> x = () \<Longrightarrow> P) \<Longrightarrow> P" | |
| 328 | unfolding if_pred_eq by (cases b) (auto elim: botE) | |
| 329 | ||
| 330 | lemma not_predI: "\<not> P \<Longrightarrow> eval (not_pred (Pred (\<lambda>u. P))) ()" | |
| 331 | unfolding not_pred_eq eval_pred by (auto intro: singleI) | |
| 332 | ||
| 333 | lemma not_predI': "\<not> eval P () \<Longrightarrow> eval (not_pred P) ()" | |
| 334 | unfolding not_pred_eq by (auto intro: singleI) | |
| 335 | ||
| 336 | lemma not_predE: "eval (not_pred (Pred (\<lambda>u. P))) x \<Longrightarrow> (\<not> P \<Longrightarrow> thesis) \<Longrightarrow> thesis" | |
| 337 | unfolding not_pred_eq | |
| 338 | by (auto split: split_if_asm elim: botE) | |
| 339 | ||
| 340 | lemma not_predE': "eval (not_pred P) x \<Longrightarrow> (\<not> eval P x \<Longrightarrow> thesis) \<Longrightarrow> thesis" | |
| 341 | unfolding not_pred_eq | |
| 342 | by (auto split: split_if_asm elim: botE) | |
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 343 | lemma "f () = False \<or> f () = True" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 344 | by simp | 
| 30328 | 345 | |
| 37549 | 346 | lemma closure_of_bool_cases [no_atp]: | 
| 44007 | 347 | fixes f :: "unit \<Rightarrow> bool" | 
| 348 | assumes "f = (\<lambda>u. False) \<Longrightarrow> P f" | |
| 349 | assumes "f = (\<lambda>u. True) \<Longrightarrow> P f" | |
| 350 | shows "P f" | |
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 351 | proof - | 
| 44007 | 352 | have "f = (\<lambda>u. False) \<or> f = (\<lambda>u. True)" | 
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 353 | apply (cases "f ()") | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 354 | apply (rule disjI2) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 355 | apply (rule ext) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 356 | apply (simp add: unit_eq) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 357 | apply (rule disjI1) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 358 | apply (rule ext) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 359 | apply (simp add: unit_eq) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 360 | done | 
| 41550 | 361 | from this assms show ?thesis by blast | 
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 362 | qed | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 363 | |
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 364 | lemma unit_pred_cases: | 
| 44007 | 365 | assumes "P \<bottom>" | 
| 366 | assumes "P (single ())" | |
| 367 | shows "P Q" | |
| 44415 | 368 | using assms unfolding bot_pred_def bot_fun_def bot_bool_def empty_def single_def proof (cases Q) | 
| 44007 | 369 | fix f | 
| 370 | assume "P (Pred (\<lambda>u. False))" "P (Pred (\<lambda>u. () = u))" | |
| 371 | then have "P (Pred f)" | |
| 372 | by (cases _ f rule: closure_of_bool_cases) simp_all | |
| 373 | moreover assume "Q = Pred f" | |
| 374 | ultimately show "P Q" by simp | |
| 375 | qed | |
| 376 | ||
| 33754 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 377 | lemma holds_if_pred: | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 378 | "holds (if_pred b) = b" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 379 | unfolding if_pred_eq holds_eq | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 380 | by (cases b) (auto intro: singleI elim: botE) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 381 | |
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 382 | lemma if_pred_holds: | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 383 | "if_pred (holds P) = P" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 384 | unfolding if_pred_eq holds_eq | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 385 | by (rule unit_pred_cases) (auto intro: singleI elim: botE) | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 386 | |
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 387 | lemma is_empty_holds: | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 388 | "is_empty P \<longleftrightarrow> \<not> holds P" | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 389 | unfolding is_empty_def holds_eq | 
| 
f2957bd46faf
adding derived constant Predicate.holds to Predicate theory; adopting the predicate compiler
 bulwahn parents: 
33622diff
changeset | 390 | by (rule unit_pred_cases) (auto elim: botE intro: singleI) | 
| 30328 | 391 | |
| 41311 | 392 | definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a pred \<Rightarrow> 'b pred" where
 | 
| 393 | "map f P = P \<guillemotright>= (single o f)" | |
| 394 | ||
| 395 | lemma eval_map [simp]: | |
| 44363 | 396 |   "eval (map f P) = (\<Squnion>x\<in>{x. eval P x}. (\<lambda>y. f x = y))"
 | 
| 44415 | 397 | by (auto simp add: map_def comp_def) | 
| 41311 | 398 | |
| 41505 
6d19301074cf
"enriched_type" replaces less specific "type_lifting"
 haftmann parents: 
41372diff
changeset | 399 | enriched_type map: map | 
| 44363 | 400 | by (rule ext, rule pred_eqI, auto)+ | 
| 41311 | 401 | |
| 402 | ||
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 403 | subsection {* Implementation *}
 | 
| 30328 | 404 | |
| 405 | datatype 'a seq = Empty | Insert "'a" "'a pred" | Join "'a pred" "'a seq" | |
| 406 | ||
| 407 | primrec pred_of_seq :: "'a seq \<Rightarrow> 'a pred" where | |
| 44414 | 408 | "pred_of_seq Empty = \<bottom>" | 
| 409 | | "pred_of_seq (Insert x P) = single x \<squnion> P" | |
| 410 | | "pred_of_seq (Join P xq) = P \<squnion> pred_of_seq xq" | |
| 30328 | 411 | |
| 412 | definition Seq :: "(unit \<Rightarrow> 'a seq) \<Rightarrow> 'a pred" where | |
| 413 | "Seq f = pred_of_seq (f ())" | |
| 414 | ||
| 415 | code_datatype Seq | |
| 416 | ||
| 417 | primrec member :: "'a seq \<Rightarrow> 'a \<Rightarrow> bool" where | |
| 418 | "member Empty x \<longleftrightarrow> False" | |
| 44414 | 419 | | "member (Insert y P) x \<longleftrightarrow> x = y \<or> eval P x" | 
| 420 | | "member (Join P xq) x \<longleftrightarrow> eval P x \<or> member xq x" | |
| 30328 | 421 | |
| 422 | lemma eval_member: | |
| 423 | "member xq = eval (pred_of_seq xq)" | |
| 424 | proof (induct xq) | |
| 425 | case Empty show ?case | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 426 | by (auto simp add: fun_eq_iff elim: botE) | 
| 30328 | 427 | next | 
| 428 | case Insert show ?case | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 429 | by (auto simp add: fun_eq_iff elim: supE singleE intro: supI1 supI2 singleI) | 
| 30328 | 430 | next | 
| 431 | case Join then show ?case | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 432 | by (auto simp add: fun_eq_iff elim: supE intro: supI1 supI2) | 
| 30328 | 433 | qed | 
| 434 | ||
| 46038 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 435 | lemma eval_code [(* FIXME declare simp *)code]: "eval (Seq f) = member (f ())" | 
| 30328 | 436 | unfolding Seq_def by (rule sym, rule eval_member) | 
| 437 | ||
| 438 | lemma single_code [code]: | |
| 439 | "single x = Seq (\<lambda>u. Insert x \<bottom>)" | |
| 440 | unfolding Seq_def by simp | |
| 441 | ||
| 41080 | 442 | primrec "apply" :: "('a \<Rightarrow> 'b pred) \<Rightarrow> 'a seq \<Rightarrow> 'b seq" where
 | 
| 44415 | 443 | "apply f Empty = Empty" | 
| 444 | | "apply f (Insert x P) = Join (f x) (Join (P \<guillemotright>= f) Empty)" | |
| 445 | | "apply f (Join P xq) = Join (P \<guillemotright>= f) (apply f xq)" | |
| 30328 | 446 | |
| 447 | lemma apply_bind: | |
| 448 | "pred_of_seq (apply f xq) = pred_of_seq xq \<guillemotright>= f" | |
| 449 | proof (induct xq) | |
| 450 | case Empty show ?case | |
| 451 | by (simp add: bottom_bind) | |
| 452 | next | |
| 453 | case Insert show ?case | |
| 454 | by (simp add: single_bind sup_bind) | |
| 455 | next | |
| 456 | case Join then show ?case | |
| 457 | by (simp add: sup_bind) | |
| 458 | qed | |
| 459 | ||
| 460 | lemma bind_code [code]: | |
| 461 | "Seq g \<guillemotright>= f = Seq (\<lambda>u. apply f (g ()))" | |
| 462 | unfolding Seq_def by (rule sym, rule apply_bind) | |
| 463 | ||
| 464 | lemma bot_set_code [code]: | |
| 465 | "\<bottom> = Seq (\<lambda>u. Empty)" | |
| 466 | unfolding Seq_def by simp | |
| 467 | ||
| 30376 | 468 | primrec adjunct :: "'a pred \<Rightarrow> 'a seq \<Rightarrow> 'a seq" where | 
| 44415 | 469 | "adjunct P Empty = Join P Empty" | 
| 470 | | "adjunct P (Insert x Q) = Insert x (Q \<squnion> P)" | |
| 471 | | "adjunct P (Join Q xq) = Join Q (adjunct P xq)" | |
| 30376 | 472 | |
| 473 | lemma adjunct_sup: | |
| 474 | "pred_of_seq (adjunct P xq) = P \<squnion> pred_of_seq xq" | |
| 475 | by (induct xq) (simp_all add: sup_assoc sup_commute sup_left_commute) | |
| 476 | ||
| 30328 | 477 | lemma sup_code [code]: | 
| 478 | "Seq f \<squnion> Seq g = Seq (\<lambda>u. case f () | |
| 479 | of Empty \<Rightarrow> g () | |
| 480 | | Insert x P \<Rightarrow> Insert x (P \<squnion> Seq g) | |
| 30376 | 481 | | Join P xq \<Rightarrow> adjunct (Seq g) (Join P xq))" | 
| 30328 | 482 | proof (cases "f ()") | 
| 483 | case Empty | |
| 484 | thus ?thesis | |
| 34007 
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
 haftmann parents: 
33988diff
changeset | 485 | unfolding Seq_def by (simp add: sup_commute [of "\<bottom>"]) | 
| 30328 | 486 | next | 
| 487 | case Insert | |
| 488 | thus ?thesis | |
| 489 | unfolding Seq_def by (simp add: sup_assoc) | |
| 490 | next | |
| 491 | case Join | |
| 492 | thus ?thesis | |
| 30376 | 493 | unfolding Seq_def | 
| 494 | by (simp add: adjunct_sup sup_assoc sup_commute sup_left_commute) | |
| 30328 | 495 | qed | 
| 496 | ||
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 497 | lemma [code]: | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 498 | "size (P :: 'a Predicate.pred) = 0" by (cases P) simp | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 499 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 500 | lemma [code]: | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 501 | "pred_size f P = 0" by (cases P) simp | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 502 | |
| 30430 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 503 | primrec contained :: "'a seq \<Rightarrow> 'a pred \<Rightarrow> bool" where | 
| 44415 | 504 | "contained Empty Q \<longleftrightarrow> True" | 
| 505 | | "contained (Insert x P) Q \<longleftrightarrow> eval Q x \<and> P \<le> Q" | |
| 506 | | "contained (Join P xq) Q \<longleftrightarrow> P \<le> Q \<and> contained xq Q" | |
| 30430 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 507 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 508 | lemma single_less_eq_eval: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 509 | "single x \<le> P \<longleftrightarrow> eval P x" | 
| 44415 | 510 | by (auto simp add: less_eq_pred_def le_fun_def) | 
| 30430 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 511 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 512 | lemma contained_less_eq: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 513 | "contained xq Q \<longleftrightarrow> pred_of_seq xq \<le> Q" | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 514 | by (induct xq) (simp_all add: single_less_eq_eval) | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 515 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 516 | lemma less_eq_pred_code [code]: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 517 | "Seq f \<le> Q = (case f () | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 518 | of Empty \<Rightarrow> True | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 519 | | Insert x P \<Rightarrow> eval Q x \<and> P \<le> Q | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 520 | | Join P xq \<Rightarrow> P \<le> Q \<and> contained xq Q)" | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 521 | by (cases "f ()") | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 522 | (simp_all add: Seq_def single_less_eq_eval contained_less_eq) | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 523 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 524 | lemma eq_pred_code [code]: | 
| 31133 | 525 | fixes P Q :: "'a pred" | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 526 | shows "HOL.equal P Q \<longleftrightarrow> P \<le> Q \<and> Q \<le> P" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 527 | by (auto simp add: equal) | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 528 | |
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 529 | lemma [code nbe]: | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 530 | "HOL.equal (x :: 'a pred) x \<longleftrightarrow> True" | 
| 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
38651diff
changeset | 531 | by (fact equal_refl) | 
| 30430 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 532 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 533 | lemma [code]: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 534 | "pred_case f P = f (eval P)" | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 535 | by (cases P) simp | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 536 | |
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 537 | lemma [code]: | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 538 | "pred_rec f P = f (eval P)" | 
| 
42ea5d85edcc
explicit code equations for some rarely used pred operations
 haftmann parents: 
30378diff
changeset | 539 | by (cases P) simp | 
| 30328 | 540 | |
| 31105 
95f66b234086
added general preprocessing of equality in predicates for code generation
 bulwahn parents: 
30430diff
changeset | 541 | inductive eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where "eq x x" | 
| 
95f66b234086
added general preprocessing of equality in predicates for code generation
 bulwahn parents: 
30430diff
changeset | 542 | |
| 
95f66b234086
added general preprocessing of equality in predicates for code generation
 bulwahn parents: 
30430diff
changeset | 543 | lemma eq_is_eq: "eq x y \<equiv> (x = y)" | 
| 31108 | 544 | by (rule eq_reflection) (auto intro: eq.intros elim: eq.cases) | 
| 30948 | 545 | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 546 | primrec null :: "'a seq \<Rightarrow> bool" where | 
| 44415 | 547 | "null Empty \<longleftrightarrow> True" | 
| 548 | | "null (Insert x P) \<longleftrightarrow> False" | |
| 549 | | "null (Join P xq) \<longleftrightarrow> is_empty P \<and> null xq" | |
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 550 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 551 | lemma null_is_empty: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 552 | "null xq \<longleftrightarrow> is_empty (pred_of_seq xq)" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 553 | by (induct xq) (simp_all add: is_empty_bot not_is_empty_single is_empty_sup) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 554 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 555 | lemma is_empty_code [code]: | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 556 | "is_empty (Seq f) \<longleftrightarrow> null (f ())" | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 557 | by (simp add: null_is_empty Seq_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 558 | |
| 33111 | 559 | primrec the_only :: "(unit \<Rightarrow> 'a) \<Rightarrow> 'a seq \<Rightarrow> 'a" where | 
| 560 | [code del]: "the_only dfault Empty = dfault ()" | |
| 44415 | 561 | | "the_only dfault (Insert x P) = (if is_empty P then x else let y = singleton dfault P in if x = y then x else dfault ())" | 
| 562 | | "the_only dfault (Join P xq) = (if is_empty P then the_only dfault xq else if null xq then singleton dfault P | |
| 33110 | 563 | else let x = singleton dfault P; y = the_only dfault xq in | 
| 33111 | 564 | if x = y then x else dfault ())" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 565 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 566 | lemma the_only_singleton: | 
| 33110 | 567 | "the_only dfault xq = singleton dfault (pred_of_seq xq)" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 568 | by (induct xq) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 569 | (auto simp add: singleton_bot singleton_single is_empty_def | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 570 | null_is_empty Let_def singleton_sup) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 571 | |
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 572 | lemma singleton_code [code]: | 
| 33110 | 573 | "singleton dfault (Seq f) = (case f () | 
| 33111 | 574 | of Empty \<Rightarrow> dfault () | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 575 | | Insert x P \<Rightarrow> if is_empty P then x | 
| 33110 | 576 | else let y = singleton dfault P in | 
| 33111 | 577 | if x = y then x else dfault () | 
| 33110 | 578 | | Join P xq \<Rightarrow> if is_empty P then the_only dfault xq | 
| 579 | else if null xq then singleton dfault P | |
| 580 | else let x = singleton dfault P; y = the_only dfault xq in | |
| 33111 | 581 | if x = y then x else dfault ())" | 
| 32578 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 582 | by (cases "f ()") | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 583 | (auto simp add: Seq_def the_only_singleton is_empty_def | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 584 | null_is_empty singleton_bot singleton_single singleton_sup Let_def) | 
| 
22117a76f943
added emptiness check predicate and singleton projection
 haftmann parents: 
32372diff
changeset | 585 | |
| 44414 | 586 | definition the :: "'a pred \<Rightarrow> 'a" where | 
| 37767 | 587 | "the A = (THE x. eval A x)" | 
| 33111 | 588 | |
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 589 | lemma the_eqI: | 
| 41080 | 590 | "(THE x. eval P x) = x \<Longrightarrow> the P = x" | 
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 591 | by (simp add: the_def) | 
| 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 592 | |
| 44414 | 593 | definition not_unique :: "'a pred \<Rightarrow> 'a" where | 
| 594 | [code del]: "not_unique A = (THE x. eval A x)" | |
| 595 | ||
| 596 | code_abort not_unique | |
| 597 | ||
| 40674 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 598 | lemma the_eq [code]: "the A = singleton (\<lambda>x. not_unique A) A" | 
| 
54dbe6a1c349
adhere established Collect/mem convention more closely
 haftmann parents: 
40616diff
changeset | 599 | by (rule the_eqI) (simp add: singleton_def not_unique_def) | 
| 33110 | 600 | |
| 36531 
19f6e3b0d9b6
code_reflect: specify module name directly after keyword
 haftmann parents: 
36513diff
changeset | 601 | code_reflect Predicate | 
| 36513 | 602 | datatypes pred = Seq and seq = Empty | Insert | Join | 
| 603 | ||
| 30948 | 604 | ML {*
 | 
| 605 | signature PREDICATE = | |
| 606 | sig | |
| 51126 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
51112diff
changeset | 607 |   val anamorph: ('a -> ('b * 'a) option) -> int -> 'a -> 'b list * 'a
 | 
| 30948 | 608 | datatype 'a pred = Seq of (unit -> 'a seq) | 
| 609 | and 'a seq = Empty | Insert of 'a * 'a pred | Join of 'a pred * 'a seq | |
| 51126 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
51112diff
changeset | 610 |   val map: ('a -> 'b) -> 'a pred -> 'b pred
 | 
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 611 |   val yield: 'a pred -> ('a * 'a pred) option
 | 
| 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 612 | val yieldn: int -> 'a pred -> 'a list * 'a pred | 
| 30948 | 613 | end; | 
| 614 | ||
| 615 | structure Predicate : PREDICATE = | |
| 616 | struct | |
| 617 | ||
| 51126 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
51112diff
changeset | 618 | fun anamorph f k x = | 
| 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
51112diff
changeset | 619 | (if k = 0 then ([], x) | 
| 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
51112diff
changeset | 620 | else case f x | 
| 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
51112diff
changeset | 621 | of NONE => ([], x) | 
| 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
51112diff
changeset | 622 | | SOME (v, y) => let | 
| 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
51112diff
changeset | 623 | val k' = k - 1; | 
| 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
51112diff
changeset | 624 | val (vs, z) = anamorph f k' y | 
| 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
51112diff
changeset | 625 | in (v :: vs, z) end); | 
| 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
51112diff
changeset | 626 | |
| 36513 | 627 | datatype pred = datatype Predicate.pred | 
| 628 | datatype seq = datatype Predicate.seq | |
| 629 | ||
| 51126 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
51112diff
changeset | 630 | fun map f = @{code Predicate.map} f;
 | 
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 631 | |
| 36513 | 632 | fun yield (Seq f) = next (f ()) | 
| 633 | and next Empty = NONE | |
| 634 | | next (Insert (x, P)) = SOME (x, P) | |
| 635 | | next (Join (P, xq)) = (case yield P | |
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 636 | of NONE => next xq | 
| 36513 | 637 | | SOME (x, Q) => SOME (x, Seq (fn _ => Join (Q, xq)))); | 
| 30959 
458e55fd0a33
fixed compilation of predicate types in ML environment
 haftmann parents: 
30948diff
changeset | 638 | |
| 51126 
df86080de4cb
reform of predicate compiler / quickcheck theories:
 haftmann parents: 
51112diff
changeset | 639 | fun yieldn k = anamorph yield k; | 
| 30948 | 640 | |
| 641 | end; | |
| 642 | *} | |
| 643 | ||
| 46038 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 644 | text {* Conversion from and to sets *}
 | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 645 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 646 | definition pred_of_set :: "'a set \<Rightarrow> 'a pred" where | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 647 | "pred_of_set = Pred \<circ> (\<lambda>A x. x \<in> A)" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 648 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 649 | lemma eval_pred_of_set [simp]: | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 650 | "eval (pred_of_set A) x \<longleftrightarrow> x \<in>A" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 651 | by (simp add: pred_of_set_def) | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 652 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 653 | definition set_of_pred :: "'a pred \<Rightarrow> 'a set" where | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 654 | "set_of_pred = Collect \<circ> eval" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 655 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 656 | lemma member_set_of_pred [simp]: | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 657 | "x \<in> set_of_pred P \<longleftrightarrow> Predicate.eval P x" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 658 | by (simp add: set_of_pred_def) | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 659 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 660 | definition set_of_seq :: "'a seq \<Rightarrow> 'a set" where | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 661 | "set_of_seq = set_of_pred \<circ> pred_of_seq" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 662 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 663 | lemma member_set_of_seq [simp]: | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 664 | "x \<in> set_of_seq xq = Predicate.member xq x" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 665 | by (simp add: set_of_seq_def eval_member) | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 666 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 667 | lemma of_pred_code [code]: | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 668 | "set_of_pred (Predicate.Seq f) = (case f () of | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 669 |      Predicate.Empty \<Rightarrow> {}
 | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 670 | | Predicate.Insert x P \<Rightarrow> insert x (set_of_pred P) | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 671 | | Predicate.Join P xq \<Rightarrow> set_of_pred P \<union> set_of_seq xq)" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 672 | by (auto split: seq.split simp add: eval_code) | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 673 | |
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 674 | lemma of_seq_code [code]: | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 675 |   "set_of_seq Predicate.Empty = {}"
 | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 676 | "set_of_seq (Predicate.Insert x P) = insert x (set_of_pred P)" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 677 | "set_of_seq (Predicate.Join P xq) = set_of_pred P \<union> set_of_seq xq" | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 678 | by auto | 
| 
bb2f7488a0f1
conversions from sets to predicates and vice versa; extensionality on predicates
 haftmann parents: 
45970diff
changeset | 679 | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 680 | text {* Lazy Evaluation of an indexed function *}
 | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 681 | |
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
51126diff
changeset | 682 | function iterate_upto :: "(natural \<Rightarrow> 'a) \<Rightarrow> natural \<Rightarrow> natural \<Rightarrow> 'a Predicate.pred" | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 683 | where | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 684 | "iterate_upto f n m = | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 685 | Predicate.Seq (%u. if n > m then Predicate.Empty | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 686 | else Predicate.Insert (f n) (iterate_upto f (n + 1) m))" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 687 | by pat_completeness auto | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 688 | |
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
51126diff
changeset | 689 | termination by (relation "measure (%(f, n, m). nat_of_natural (m + 1 - n))") | 
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
51126diff
changeset | 690 | (auto simp add: less_natural_def) | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 691 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 692 | text {* Misc *}
 | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 693 | |
| 47399 | 694 | declare Inf_set_fold [where 'a = "'a Predicate.pred", code] | 
| 695 | declare Sup_set_fold [where 'a = "'a Predicate.pred", code] | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 696 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 697 | (* FIXME: better implement conversion by bisection *) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 698 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 699 | lemma pred_of_set_fold_sup: | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 700 | assumes "finite A" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 701 | shows "pred_of_set A = Finite_Set.fold sup bot (Predicate.single ` A)" (is "?lhs = ?rhs") | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 702 | proof (rule sym) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 703 | interpret comp_fun_idem "sup :: 'a Predicate.pred \<Rightarrow> 'a Predicate.pred \<Rightarrow> 'a Predicate.pred" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 704 | by (fact comp_fun_idem_sup) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 705 | from `finite A` show "?rhs = ?lhs" by (induct A) (auto intro!: pred_eqI) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 706 | qed | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 707 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 708 | lemma pred_of_set_set_fold_sup: | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 709 | "pred_of_set (set xs) = fold sup (List.map Predicate.single xs) bot" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 710 | proof - | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 711 | interpret comp_fun_idem "sup :: 'a Predicate.pred \<Rightarrow> 'a Predicate.pred \<Rightarrow> 'a Predicate.pred" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 712 | by (fact comp_fun_idem_sup) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 713 | show ?thesis by (simp add: pred_of_set_fold_sup fold_set_fold [symmetric]) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 714 | qed | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 715 | |
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 716 | lemma pred_of_set_set_foldr_sup [code]: | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 717 | "pred_of_set (set xs) = foldr sup (List.map Predicate.single xs) bot" | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 718 | by (simp add: pred_of_set_set_fold_sup ac_simps foldr_fold fun_eq_iff) | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 719 | |
| 30328 | 720 | no_notation | 
| 721 | bind (infixl "\<guillemotright>=" 70) | |
| 722 | ||
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
36008diff
changeset | 723 | hide_type (open) pred seq | 
| 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
36008diff
changeset | 724 | hide_const (open) Pred eval single bind is_empty singleton if_pred not_pred holds | 
| 33111 | 725 | Empty Insert Join Seq member pred_of_seq "apply" adjunct null the_only eq map not_unique the | 
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 726 | iterate_upto | 
| 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 727 | hide_fact (open) null_def member_def | 
| 30328 | 728 | |
| 729 | end | |
| 46664 
1f6c140f9c72
moved predicate relations and conversion rules between set and predicate relations from Predicate.thy to Relation.thy; moved Predicate.thy upwards in theory hierarchy
 haftmann parents: 
46638diff
changeset | 730 |